首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究小球藻在循环水养殖系统中对三态氮的吸收能力。实验表明,小球藻可有效吸收养殖水体中的含氮化合物,但对三态氮的吸收有差异性。在一定氨氮浓度范围内小球藻优先吸收水体中的还原态氮,随着氮氧化程度的提高,其吸收能力有所下降。小球藻净化养殖水体中的氮化物与水体中小球藻数量有关,小球藻吸收氮的能力受到养殖环境中pH值、溶氧浓度、温度以及水体中磷浓度的影响。实验证明,用小球藻进行养殖水环境调控是可行的,但还存在一些需要探讨解决的问题。  相似文献   

2.
亚硝酸氮(NO2-N)对鱼、虾、蟹、贝类等水产养殖动物的危害,大量实验资料早已对其致病和致死机理进行了科学的阐述。同时各国水产养殖业因其发生养殖水产动物致死事件也是屡见不鲜。面对养殖水体,特别是高密度养殖水体中高浓度的亚硝酸氮,一些降亚硝酸氮的方法已被采用,但均未取得预期的效果。  相似文献   

3.
随着水产养殖业逐渐向高密度、集约化方向的发展,对养殖水体溶解氧浓度的要求越来越高.目前对循环水高密度养殖水体中溶解氧收支平衡的基础研究较少.如何提高氧气的溶解效率、减少氧气的逸出、合理控制溶解氧水平等技术难关的突破,对循环水养殖技术的提高具有重大的意义.本文旨在通过阐述曝气技术的设计理论基础以及曝气设备的最近发展状况,比较各式曝气器的性能参数,从而为封闭循环水养殖曝气系统的设计和曝气器的选择提供理论支持,推动封闭式循环水养殖向精准化的环保节能方向发展.  相似文献   

4.
鲟鱼工厂化高密度循环水养殖模式的应用已越来越广泛。循环水养殖存在着氨氮、磷酸盐总量不断积累的问题,影响鲟鱼品质和产量。为了提高鲟鱼循环水养殖效果,本文采用了6种水生植物,研究了其调节鲟鱼养殖水体氨氮与磷酸盐等水质、促进鲟鱼生长、改善鲟鱼品质的作用,结果显示:种植了水生植物的A、B试验单元氨氮去除率分别为76.4%与56.6%,磷酸盐去除率分别为64%与44.0%;鲟鱼养殖成活率分别为96.8%与96.5%,饵料系数分别为1.52与1.63;鲟鱼肉质口感好,没有泥腥味。结果表明,水生植物对养殖水体中氮、磷具有极强的去除能力,通过对水质的改良能提高鲟鱼养殖效果和品质。  相似文献   

5.
利用先进的工厂化水产养殖技术与设施进行的全封闭高密度循环水养殖,具有节水、节地、节能、环保等优点。其成功的关键在于对养殖水体的水质调控。以下就陆基水产养殖的水质调控技术作一介绍。  相似文献   

6.
池塘封闭循环水养殖废水脱氮的试验研究   总被引:2,自引:1,他引:2  
确定封闭循环水养殖池塘系统对养殖水体的脱氮能力.循环净水系统主要有生物合成固氮、污泥吸附分离脱氮、光化学脱氮、微生物脱氮、物理脱氮等环节,采用海洋监测国家标准方法对系统中的南美白对虾(Penaeus vannamei)养殖水体进行跟踪监测.结果表明:系统对养殖水体中硝酸盐氮、亚硝酸盐氮和氨氮的去除率分别为10.37%~27.35%、22.45%~44.74%和22.00%~79.53%,脱氮解毒效果较好.  相似文献   

7.
换水率和密度对刺参生长和水质的影响   总被引:1,自引:0,他引:1  
为探究日换水率(0、10%、20%、30%和100%)和养殖密度[0.980±0.008、1.760±0.005、2.810±0.007和(3.640±0.006)kg/m3]对刺参(Apostichopus japonicus)生长率和养殖水质的影响,养殖试验首先在非循环水养殖条件下,测定各组刺参综合特定生长率(ISGR)及养殖水体中氨氮及亚硝酸盐氮质量浓度。结果显示,日换水率为10%和20%处理组的ISGR分别达到每天(1.330±0.161)%和(1.410±0.182)%,显著高于其他处理组;密度养殖试验证明,随着养殖密度的增加,ISGR逐渐降低,分别达到每天(0.610±0.500)%,(0.570±0.030)%,(0.560±0.045)%和(0.320±0.040)%,各组换水率及养殖密度组水体中氨氮及亚硝酸盐氮均在安全浓度范围内波动;养殖结果显示,循环水养殖试验组刺参的ISGR高于非循环水养殖组,可达(0.130±0.007)%,且氨氮及亚硝酸盐氮质量浓度在0.020 mg/L以下,而非循环水养殖的分别积累到(0.600±0.015)mg/L和(0.076±0.002)mg/L。研究表明,在换水率15%,养殖密度(2.810±0.007)kg/m3的循环水养殖条件下,可以保证水体水质稳定,刺参生长良好。  相似文献   

8.
鱼类循环水养殖是一种工业化的养殖方式,其主要特征是养殖水体的循环利用,这一过程要对养殖水体进行处理,对水质参数进行监测与控制,要涉及物理、化学、生物及控制理论等许多学科的理论与技术。本文列出了循环水养殖水体中影响鱼类生长的各种因子并总结了前人的研究成果,进而提出了一些水质参数的控制方式。其中着重分析了溶解氧、pH值和氨氮的监测与控制方式,为进一步实验研究奠定基础。  相似文献   

9.
为探索绿色环保的循环水养殖模式,设计循环水鱼菜共生系统(鱼菜组)、紫外灯鱼菜共生系统(鱼菜紫外灯组)及循环水养殖系统(循环水组),比较三种不同处理方式对镜鲤(Cyprinuscarpio var.specularis)、叶用莴苣(Lactuca sativa var.ramosa)生长和养殖水质的影响。结果显示,鱼菜组、鱼菜紫外灯组处理对镜鲤的生长无显著影响,但会显著影响镜鲤形态学指标,鱼菜组镜鲤肠体比显著低于循环水组。体成分方面,鱼菜组全鱼粗蛋白、粗脂肪显著高于循环水组,鱼菜组肝脏粗蛋白显著低于循环水组。鱼菜紫外灯组的细菌总数显著低于鱼菜组。水质方面,鱼菜组、鱼菜紫外灯组可显著降低系统中氨氮、硝酸盐氮及总磷总氮含量,鱼菜紫外灯组硝酸盐氮、总磷及总氮含量显著高于鱼菜组。综上所述,循环水系统耦合水培蔬菜单元可改善系统水质,改善鱼体成分,并且结合紫外灯处理可降低水体细菌总数。  相似文献   

10.
为有效调控高密度海水养殖池塘的水环境状况,构建了以人工湿地为核心的"鱼-虾-贝-草"海水池塘循环水养殖系统。通过比较人工湿地连续流与间歇流,以及种植盐角草(Salicornia europaea)和互花米草(Spartina alterniflora)时的净化效率,研究适用于海水池塘养殖系统的人工湿地运行方式及植物种类。通过比较不同养殖模式下池塘水质及养殖对象生长情况,分析人工湿地对养殖池塘水体的调控效果,探讨循环养殖模式对池塘产量的提升效果。结果显示:人工湿地间歇运行时(水力负荷为300 mm/d),其净化效率相比于连续运行有显著提升;盐角草湿地出水中的氮、磷质量浓度显著低于互花米草湿地;虽然排、换水频率有较大差异,循环养殖模式与传统养殖模式下养殖池塘水体氨氮(NH^+_4-N)和亚硝酸盐氮(NO^-_2-N)质量浓度均处于较低水平;采用基于湿地循环水处理的文蛤(Meretrix meretrix)和脊尾白虾(Exopalaemon carinicauda)分池组合混养模式能进一步提高脊尾白虾的单位面积产量,并有效控制养殖废水排放。研究表明:基于人工湿地的海水池塘循环水养殖系统具有较强的环境效益,可为江苏地区海水池塘养殖业的健康发展提供参考。  相似文献   

11.
不同养殖措施防治对虾暴发性流行病效果的初步研究   总被引:4,自引:0,他引:4  
利用水泥池、土池及不同水处理方法等不同措施养殖对虾,研究养殖升旗与对虾暴发性病毒发生的关系,探讨合理养殖模式。试验结果表明,利用水泥池、沙滤水、封闭式循环水养殖和使用防病药物等措施对防治暴发性疾病都有一定的效果;使用优质饵料强化对虾体质,合理使用防病药物及水质净化剂,优化养殖生态环境对增强对虾抗病能力有效;虾池内放养部分肉食性鱼类能延缓对虾发病时间。  相似文献   

12.
The use of artificial substrates in shrimp aquaculture may allow for production of shrimp at increased densities while providing a growth medium for microbes that assist with water quality processes and provide supplemental nutrition for shrimp. Greenhouse-based shrimp production systems can extend the shrimp production season in temperate climates while conserving water and energy. For this study, we evaluated the effects of providing extra substrate and shrimp density on water quality and shrimp production in greenhouse-based biofloc systems. Four 11-m3, wood framed, and rubber-lined tanks were constructed in each of four high tunnel greenhouses (for a total of 16 tanks). Four treatments were evaluated: high-density stocking with substrate (HDS), high-density stocking with no substrate (HDNS), low-density stocking with substrate (LDS), and low-density stocking with no substrate (LDNS). Each treatment was randomly assigned to one tank in each tunnel to block for location. No artificial heat was used, and shrimp were grown for 120 days. High-density systems were stocked at 200 shrimp/m³ while low-density tanks had 100 shrimp/m³. Adding substrate increased total in-tank surface area by 13.4%. The addition of substrate had no significant effect on any shrimp production or standard water quality parameters. Shrimp had significantly greater final weight, faster growth rate, and lower feed conversion rate in low-density treatments (P ≤ 0.02 for all). Total shrimp biomass production was significantly higher in high-density treatments (HD: 4.0 kg/m3; LD: 2.3 kg/m3; P < 0.05). There were no significant differences in survival between densities (HD: 91.3%; LD: 94.5%; P = 0.43). Peak and overall mean nitrite levels were significantly higher in high-density treatments compared to low-density treatments. Dissolved oxygen levels and pH over the course of the study were significantly lower in high-density treatments, likely due to increased respiration rates in the water column. This project shows the feasibility of shrimp production in temperate climates with no artificial heat using high tunnel greenhouses, few impacts of added substrate on shrimp production, and increased shrimp density can result in much larger harvests with few negative impacts on production metrics.  相似文献   

13.
工厂化对虾养殖池管式射流集污水力特性   总被引:2,自引:0,他引:2  
工厂化养殖池内水体的流场分布特性直接决定了其对残饵、粪便等的排污性能。本实验研究了管式射流驱动模式下,射流角度与射流流速对养殖池内水体流场与污物聚集特性的影响。养殖池流场特性采用点式流速仪进行布点测量,利用MATLAB软件对流场特性进行分析。采用相机采集的养殖池集污效果图像,并利用Photoshop软件与自行开发的不规则图形面积分析软件对图像进行分析。研究表明,流速从池心向外呈"V"型变化,在射流角度固定的情况下,射流速度越大,池心低流速区域越小,污物向池心的聚集效果越好;在流速固定的情况下,存在一个最佳的射流角度,本实验在24 cm/s流速条件下,射流角度为40°时,池内污物聚集效果最优。结论认为在保证养殖对象生长的前提下,可尽量提高射流流速;在24 cm/s流速条件下,最佳射流角度在40°左右。本研究成果可为工厂化养鱼池、养虾池等管式射流水力驱动系统的优化设计提供参考依据。  相似文献   

14.
Method for determining the physical stability of shrimp feeds in water   总被引:4,自引:0,他引:4  
Three methods for measuring the water stability and leaching characteristics of shrimp pelleted feeds were developed and tested: static water method, horizontal shaking method and vertical shaking method. Each method was tested using a commercial and experimental pelleted shrimp feed. Both feeds had a pellet size of 2.4 mm × 5.0 mm with similar proximate composition (35% protein and 9% fat). Each test run consisted of leaching c. 2 g of feed at six intervals of immersion time (0, 30, 60, 120, 240, 360 min), two concentrations of salinity (0, 34 ppt), and three different water temperatures (15, 25, 35 °C). A refrigerated circulating water bath was used to maintain the desired level of water temperature. For the static water and horizontal shaking methods, a Buchner filtration apparatus with Whatman filter paper no. 3 (5 μ) was used to separate the remaining pellets from leached water. The vertical shaking method (VanKel) utilized a perforated stainless‐steel basket (381 μ) for leaching and serving as a filter to separate pellets from leached water. For all three methods, the leached feed and original feed samples were dried in a convection oven at 105 °C for 24 h and then cooled in a desiccator. Dried feed samples were weighed and analysed for dry matter retention. Pellet stability was calculated as the ratio of dry matter retention after leaching and dry matter of original samples expressed as a percentage. Results indicated that any method for pellet stability analysis should take into account water temperature and salinity in addition to actual pellet agitation rate to obtain accurate and consistent measurement of pellet disintegration and nutrient leaching. Dry matter retention was different for each shrimp feed with experimental feed (72.8%) showing lower retention than commercial feed (88%) after 6 h of VanKel leaching under normal shrimp culture conditions. The three methods provided reproducible results with both horizontal and vertical shaking methods recommended for routine laboratory analysis because they could provide different degrees of pellet agitation that simulate actual indoor and outdoor shrimp culture conditions.  相似文献   

15.
Recirculating aquaculture systems (RAS) can be installed indoors, allowing year-round production of tropical animals in nearly any climate. A nursery phase is commonly used in Litopenaeus vannamei production since it allows for enhanced biosecurity and better quantification of animals while reducing space requirements. However, it is unclear whether animal density and inclusion of artificial substrate may improve shrimp performance during the nursery phase. In this experiment, we compared shrimp production parameters in two stocking densities with or without the use of an artificial substrate by creating four treatments: low-density LD; 1500 PL/m−3, low-density with substrate LDS, high-density HD; 3000 PL/m−3), and high-density with substrate (HDS). The LDS and HDS treatments included 0.46-m2 of high-density polyethylene 2.5-cm mesh as a substrate, which increased the tank surface area by 21 %. Each treatment was randomly assigned to four 160-l culture tanks, each with a biofilter. The shrimp had an initial weight of 4 mg and were grown for 50 days. The low-density treatments had significantly higher dissolved oxygen (DO) and pH than the high-density treatments (P ≤ 0.001). Specifically, LDS had the highest DO and pH followed by the LD, HD, and HDS treatments, respectively. High-density treatments had significantly higher NO2-N levels than low-density treatments during week 2 of the experiment when an unusually high concentration of nitrite was observed. FCR was significantly lower in both low-density treatments than in high-density treatments. At harvest, the total biomass (kg m−3) was significantly higher in high-density treatments than in low-density treatments (P ≤ 0.001), and the HDS treatment had a significantly greater biomass output than HD. Producers should consider artificial substrate and higher densities during nursery production to maximize shrimp production; however, the effects on water quality should also be taken into account.  相似文献   

16.
长毛对虾海水养殖环境以及虾肠道微生物群落结构研究   总被引:4,自引:2,他引:4  
为了研究长毛对虾养殖环境以及对虾肠道微生物种群结构的特征,实验分别采集养殖区进水口水体、养殖池底泥、养殖池水体以及长毛对虾肠道样品,采用构建16S rRNA基因克隆文库的方法对不同样品间的微生物群落组成进行了研究。结果表明,4组样品中共获得621条序列,操作分类单元(OTU)总数达212个,表明养殖环境微生物群落结构具有高度的多样性。从遗传进化树分析发现,进水口水体中细菌优势种群为蓝细菌(53.97%)、α-变形杆菌(13.76%)和γ-变形杆菌(10.58%);养殖池水体细菌优势种群为蓝细菌(33.55%)、γ-变形杆菌(14.84%)、厚壁菌(14.19%)、拟杆菌(12.26%)和α-变形杆菌(9.68%);养殖池底泥细菌优势种群大部分属于厚壁细菌(79.12%);对虾肠道细菌优势种群为厚壁细菌(75.79%)、梭杆菌(13.68%)和γ-变形杆菌(10.53%)。在目分类水平上,养殖池底泥、养殖池水体和对虾肠道中芽孢杆菌占有较高的比例,分别占克隆数的69.78%、13.55%和72.63%;进水口水体和养殖池水体中红细菌的比例较高,分别占克隆数的10.05%和9.68%。本研究分析了养殖环境以及对虾肠道微生物的群落结构,揭示微生物从水源到对虾肠道内的演替规律。总体上,本养殖系统微生物群落结构良好,但在养殖池水体和对虾肠道中也检测到黄杆菌类群和少量的弧菌。本研究有助于了解养殖环境对于对虾肠道微生物组成的影响,并为长毛对虾病害的预防提供参考。  相似文献   

17.
The present study identifies and quantifies appropriate sites for brackish water aquaculture development in southwestern Bangladesh using remote sensing, GPS and geographical information systems (GIS). A colour composite Landsat TM image from 1996 covering the southwestern part of Bangladesh was used to identify the extent of brackish water and to classify land use. The remotely sensed data were complemented by secondary data digitised from a range of sources, including hard copy maps, to create a spatial database that included environmental and infrastructural data. A series of GIS models were developed in order to identify and prioritise the most suitable areas for brackish water shrimp and crab farming. Using qualitative and quantitative output from the models, the benefits of shrimp and crab farming and alternative land uses in the Khulna region were compared, based on gross production, economic output and employment potential. Comparisons were made of brackish water shrimp and crab culture with moderately saline-tolerant tilapia and prawn culture, freshwater carp culture and traditional rice production systems. Shrimp was identified as the most capital intensive and risky production system. Earnings per hectare were a little higher for shrimp culture than for crab culture. The present study demonstrates the usefulness of GIS as an aquaculture planning tool in a region where natural resources are already under considerable pressure.  相似文献   

18.
Biological water purification grid (BWPG), a type of biofilm, could increase aquaculture production by improving the growth of shrimp and culture environment. In this study, the microbial community composition and diversity of water, sediment and shrimp intestine were analysed using the Illumina Miseq high‐throughput sequencing technique. Installation of BWPG did not only increase the dissolved oxygen, pH and decreased inorganic nutrients, but also increased shrimp body length by 5.39% and weight by 16.35%. Furthermore, it was found that the microbial community diversity of water and shrimp intestine in test pond with BWPG was higher than that of control pond without BWPG. Cyanobacteria, Bacillus and Lactococcus were enriched in the test pond with BWPG. However, Rhodobacter was mainly identified in the test pond. It thus seems to suggest that the application of BWPG in shrimp culture pond enhanced the microbial species richness, types of species and proportion of beneficial bacteria in culture environment as well as shrimp intestine. The results from this study will therefore provide some scientific basis for the improvement and development of shrimp aquaculture.  相似文献   

19.
ABSTRACT:   A pelagic bacterial community structure was examined in experimental intensive shrimp culture ponds that have a shrimp–mangrove complex aquaculture system, an extensive shrimp culture pond and a mangrove area in Thailand by denaturant gradient gel electrophoresis analysis of polymerase chain reaction amplified partial 16S rRNA genes. Bacterial community structure in the intensive shrimp culture ponds was distinguishable from that of the mangrove area. In the extensive shrimp culture pond, the bacterial community structure resembled that in the mangrove area, but bacterial abundance was as great as that in the intensive shrimp culture ponds. Among the intensive shrimp culture ponds, the bacterial community structure was different between a closed culture system and a shrimp–mangrove complex culture system. Moreover, the bacterial community structure in mangrove planted ponds was close to those in the intensive shrimp culture ponds when shrimp culture was conducted, but it was close to those in the mangrove areas without shrimp culture. These results suggest that intensive shrimp culture with shrimp feed input affects the bacterial community structures in pond water.  相似文献   

20.
对虾工厂化养殖的系统结构   总被引:9,自引:0,他引:9  
对虾工厂化养殖是在人工控制条件下,利用有限水体进行对虾高密度养殖的一种生产方式,它依托一定的养殖工程和水处理设施作为技术支撑,融合无公害生产的管理模式,是一种高效的环境友好型养殖。文章就构建对虾工厂化养殖平台中的各系统环节及该种生产模式的概况作系统综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号