首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
复种模式对豫西褐土团聚体稳定性及其碳、氮分布的影响   总被引:1,自引:0,他引:1  
[目的]长期单一的玉米–小麦复种模式会引起土壤结构破坏、农田生产力下降.探究不同复种模式对农田土壤团聚体稳定性及其碳、氮分布的影响,为维持土壤结构稳定,实现农业可持续发展提供科学依据.[方法]定位试验在河南洛阳褐土上进行.设置冬小麦–夏玉米(T1)、冬小麦–夏花生(T2)、冬小麦–夏玉米||花生间作(2行玉米间作4行花...  相似文献   

2.
This work aims to evaluate the soil physical properties affected by cover crop rotation and soil management in a long-term experiment in southern Brazil. The experiment was established in 1986, with treatments combining six winter treatments and two tillage systems (conventional and no tillage). Bulk density, porosity, aggregate-size class distribution, and organic carbon content of the aggregates were determined at six depths. Bulk density was not affected by tillage systems and winter treatments. The soil disturbance by plowing enhanced the macroporosity, decreased the microporosity, and promoted the formation of smaller aggregate size, in comparison to no tillage. Apart from the soil management, all winter species increased the greater aggregate-size classes, mean weight diameter, geometric mean diameter, and aggregate stability index compared to the fallow treatments. At the no-till treatments, the greater part of sequestered carbon into the soil was stored into the lower and bigger soil aggregates.  相似文献   

3.
The deterministic modelling of bio‐hydrological processes in soil requires a void structure model that is explicitly dual‐porous containing fully and separately characterized macroporosity and microporosity. It should also contain information that relates the positioning of microporosity relative to macroporosity. An example of such a process is the production of nitrous oxide, in which bacteria in microporous ‘hot‐spots’ are supplied with nutrients and gases through a macroporous pathway. We present a precision void‐structure model that satisfies these two criteria, namely explicit macroporosity and microporosity, and their positional relationship. To demonstrate the construction of the model, we describe the modelling of a single soil, namely Warren soil from Rothamsted Research's Woburn Experimental Farm in Bedfordshire, UK, although the modelling approach is applicable to a wide range of soils and other dual porous solids. The model is capable of fitting several fundamental properties of soil, namely water retention, aggregate size distribution, and porosity of the microporous and macroporous zones. It comprises a dendritic critical percolation path, around which are clustered the microporous regions. The saturated hydraulic conductivity of the dual‐porous network is of the correct order of magnitude for a soil of the same density and texture as the Warren sample. Finally, we demonstrate how the preferential flow pathway in the resulting structure differs from the critical percolation pathway, and that only 4.6% by volume of the unclogged macroporosity contributes to the fluid flow through the structure.  相似文献   

4.
Abstract. The impact of cattle trampling on the porosity of a representative soil (Typic Natraquoll) of the flooding Pampa of Argentina was studied from 1984 to 1987. Water content, total porosity (TP), macroporosity (> 30 μm) and mean weight diameter of water-stable aggregates (MWD) were determined in undisturbed topsoil samples taken from adjacent continuously grazed (1.0 animal unit/ha/yr) and ungrazed (since 1976) areas. It was expected that trampling would decrease macroporosity when the soil was ponded, and that the damaged macropores would regenerate during the subsequent soil drying. This was only partly verified. The soil varied in TP from 58 to 64% in the ungrazed area, and from 53 to 78% in the grazed area. This variation resulted mainly from shrink-swell processes. Trampling decreased soil macroporosity (mainly >60 μm) from 8 to 5% and decreased MWD from 5.35 to 4.58 mm under dry soil conditions. The damaged soil pores regenerated and aggregate stability recovered during the subsequent period of surface water ponding, when soil swelling increased macropores in the grazed area but not in the ungrazed area. There was no evidence of poaching damage in this soil.  相似文献   

5.
渭北旱塬管理措施对冬小麦地土壤剖面物理性状的影响   总被引:1,自引:1,他引:0  
【目的】研究黄土高原旱作农业区不同施肥覆盖措施对冬小麦地0—40 cm土壤剖面物理性质的影响,可为保持良好的土壤物理性状,探求适合渭北旱塬可持续的田间管理措施提供参考。【方法】基于设在渭北旱塬15年的田间定位试验,选取NP (N 150 kg/hm^2+P 75 kg/hm^2)、NPK (NP+K 30 kg/hm^2)、NPB (NP+biochar 14.0t/hm^2)、NPFFT (NP配合地膜夏闲期覆盖)、NPFGT (NP配合地膜生育期覆盖)和NPFWT (NP配合地膜全年覆盖)共6个处理。于2017年冬小麦收获期采集剖面土样,对0—10 cm、10—20 cm、20—30 cm和30—40 cm土层土壤含水量、土壤容重、饱和导水率和水稳定性团聚体等相关土壤物理性质进行测定与分析。【结果】与NP相比,NPK处理降低了收获期0—20 cm土壤容重,增加了耕层土壤总孔隙度和0—40 cm土层> 2 mm水稳定性团聚体含量,0—10 cm土层> 2 mm水稳定性团聚体含量显著提高了1.3倍(P <0.05);NPB处理,收获期耕层土壤容重降低,土壤总孔隙度增加,表层土壤饱和导水率显著降低27.9%,剖面土壤含水量和> 2 mm水稳定性团聚体含量均增加,且表层> 2 mm水稳定性团聚体含量显著提高了1.0倍;NPFFT处理收获期剖面土壤含水量降低,耕层土壤容重增加,总孔隙度降低;NPFGT处理收获期耕层土壤容重和剖面土壤含水量均增加,耕层总孔隙度降低,剖面土壤饱和导水率降低,尤其表层显著降低60.2%;NPFWT处理收获期耕层土壤容重增加,总孔隙度降低,表层土壤饱和导水率降低,但10—40 cm土壤饱和导水率平均提高57.5%,剖面土壤含水量、> 2 mm水稳定性团聚体含量、平均重量直径和几何平均直径均增加。受当地传统耕作深度的影响,不同施肥覆盖措施对土壤容重、饱和导水率和孔隙度的影响主要集中在0—20 cm土层,对20—40 cm土层影响较小。【结论】在氮磷肥配施的基础上,增施钾肥、生物炭和地膜全年覆盖均有利于改善试验农田土壤物理性质,但从经济投入和对土壤物理性状改良程度方面考虑,增施钾肥和地膜全年覆盖这两种处理是保持渭北旱塬良好土壤剖面物理性质的有效措施。  相似文献   

6.
Intermittent cultivation for forage cropping and subsequent grazing by dairy cattle during winter is practiced in southern New Zealand to protect remaining pastures from poaching damage by cattle. However, this practice may degrade soil aggregate structure affecting pasture yield and nutrient loss. A study was conducted to determine the ability of different aggregate sizes to supply phosphorus (P) to ryegrass in a soil used for winter forage cropping and grazed by dairy cattle 2 out of 7 years. Over 35 weeks ryegrass was grown in pots containing one of six wet‐sieved soil aggregate size classes and leached every 2 weeks. Soil analyses included water soluble P, inorganic and organic P fractions, and P in leachate. Results showed that organic P was preferentially lost in leachate or mineralized and used by ryegrass with decreasing aggregate size, although this did not affect yield. Ryegrass yield was best correlated with bicarbonate extractable P in aggregates, and P loss with water soluble inorganic P after minimum disturbance. These findings suggest that although intermittent cultivation did not affect yield, if this practice decreases aggregate size in the future, it may increase the risk of P loss.  相似文献   

7.
Changes in the structure of tilled soil over a growing season were investigated. Structural data from ten differently tilled plots were collected at the 40–50 mm depth on sectioned tilth block samples impregnated with paraffin wax. At the end of the growing season, significant increases in clod size and decreases in void size were observed. In some plots also a significant reduction in percentage of small (1–5 mm) aggregates was observed, but a crop cover (barley) increased the percentage of small aggregates.  相似文献   

8.
Even over short time intervals, soil properties are subject to variation, especially in managed soils. The objective of this study was to assess the temporal changes of soil physical and hydraulic properties in strawberry fields cultivated under surface drip fertigation in Turuçu, Brazil. Intact core samples were collected from the near surface soil layer of seedbeds to determine the total porosity (TP), macroporosity (MA), matrix porosity, bulk density (BD), available water capacity (AWC), field capacity, wilting point and Dexter’s S index. Aggregate samples were collected from the arable layer to determine the aggregate size distribution and aggregate mean weight diameter. All samples were collected from 15 strawberry fields and at four different times during the 2007–2008 strawberry growing cycle. Although soil pore‐solid relations are expected to adjust soon after seedbed construction, their variation was only evident after >13 weeks. Even though values of TP and MA decreased with time, and those of BD increased near the end of the growing cycle, all the soils maintained their capacity to support root activity as indicated by critical values of Dexter’s index (S > 0.03). The amount of relatively large aggregates (9.51–2.00 mm) and AWC increased towards the end of the strawberry cultivation cycle. With changes in soil structure improving soil physical quality, strawberry development benefitted. We showed that if farmers gradually increase the amount of water through fertigation to a maximum value occurring at the end of crop cycle instead of applying water at a constant rate, water and energy use efficiency in agriculture would improve.  相似文献   

9.
Effective management of soil structure and organic matter are essential in organic cropping to ensure good rooting conditions and to optimize the production of mineralized N and thus minimize greenhouse gas emissions. We investigated how mid‐winter or early spring ploughing and three grazing duration treatments prior to ploughing influenced soil structure, soil organic matter and plant root growth under the first spring barley crop after a grass–clover ley. The experiment was carried out over two seasons. We also studied the soil under first‐year oats in a long‐term rotations experiment where 2 or 3 years of arable crops followed 3 or 4 years of grass. Pore size distribution and pore continuity, bulk density, particulate (light fraction) organic matter, readily oxidizable organic matter (ROM), aggregate size distribution and root length densities were measured. Macroporosity appeared to be the best indicator of soil physical fertility; it was sensitive to changes in soil structure arising from compaction and root growth. This, along with visual examination, revealed the loosening resulting from ploughing. The generally favourable macroporosity amongst small, stable aggregates reduced the likelihood of development of anaerobism. Macroporosity and aggregate size can be estimated from visual examination of the soil, a method that offers the advantage of being quick and of sampling a large volume. The content of ROM was high 6.1–6.4 g 100 g?1 whole soil. However, particulates formed only a small fraction (6–9%) of the ROM. Despite the favourable ROM and structure, the soil was susceptible to compaction damage during seedbed preparation in wet soil after ploughing which reduced grain yield in some plots. Grazing by sheep before ploughing and date of ploughing had minor effects on soil quality. Grazing for 2 months prior to ploughing increased root length density in the upper topsoil in the following arable crop, possibly because of the higher quality of the animal and grass–clover residues. Conservation of soil quality was related more to secondary tillage and sowing operations after ploughing than to duration and timing of grazing.  相似文献   

10.
The evaluation of soil aggregate stability and water retention is important in the assessment of soil management options. A 3-year study was conducted in 1999 to determine the effects of two cattle manure application methods on soil aggregate stability and water retention capacity of a sandy soil (Haplic Lixisol). Manure application increased soil organic C by 10–38% in the 0–10 cm layer. Compared with the control, manure management treatments increased the aggregate stability of soil as measured by the mean weight diameter (MWD) and aggregates between 2 and 10 mm (AGG2) indices from 0.243 to 0.733–0.926 mm, and from 27.3 to 128.3–148.3 g kg−1, respectively. The readily available water (RAW) capacity of the soil was significantly increased by manure addition, whereas the increase in AWC was not significant. The increase in water retention capacity in the soil was more affected at low suctions and this was related to the effects of manure on macroporosity. It was concluded that cattle manure was beneficial to the structural stability and water retention of this soil.  相似文献   

11.
Vegetated buffer zones (BZs) between arable fields and bodies of water are commonly established to reduce erosion and run‐off of particle‐bound nutrients. Functioning of a BZ depends on soil structure, as it is important for water infiltration. Therefore, it is vital to understand how varying management practices affect soils of BZs. We studied the structural and hydraulic properties of three differently managed BZs established in a boreal Vertic Stagnic Cambisol (clay, 51%). The three management practices for vegetation were as follows: natural with no treatment, harvested yearly and grazed by cattle. We used bulk density and macroporosity, together with a pore geometry index (air permeability per unit air‐filled porosity), to describe the soil structural properties. Hydraulic properties were measured at different length scales by means of an aggregate sorptivity test, saturated hydraulic conductivity of the core samples and field‐saturated hydraulic conductivity. Vegetation management markedly affected the physical properties in the top 5 cm of the soil. Properties were least favourable for infiltration at the grazed site, with the greatest bulk density, least macroporosity and hydraulic conductivity or greatest pore tortuosity. In general, spatial variation in zones with restricted and good hydraulic conductivity together with reduced aggregate sorptivity in the deeper horizons made the soil prone to preferential flow when initially dry. Prolonged wetness, on the other hand, reduced saturated hydraulic conductivity significantly, resulting in surface run‐off. Harvesting was considered the best management practice due to its inherent capacity for reducing the soil nutrient content and because it has minor implications for soil physical properties.  相似文献   

12.
Conversion of meadow and forest ecosystems to agricultural land generally leads to changes in soil structure. This comparative study presents the composition and stability of structural aggregates in humus horizons (0–30 cm) of noncarbonate silty‐clay Fluvisols in the Kolubara River Valley, W Serbia. Aggregates collected from under a native forest were compared to aggregates from meadows and arable fields which underwent crop rotation for > 100 y. The results show that size distribution and stability of structural aggregates in the humus horizons of arable soil are significantly impaired due to long‐term anthropogenization. In the humus horizons, the content of the agronomically most valuable aggregates (0.25–10 mm) decreased by a factor of ≈ 2, from 68%–74% to 37%–39%, while the percentage of cloddy aggregates (>10 mm) increased by a factor of ≈ 2, from 23%–31% to 48%–62%, compared to forest aggregates. The long‐term‐arable soil had significantly (p < 0.05) lower aggregate stability, determined by wet sieving, than meadow and forest soils. The lowest aggregate stability was found in aggregates > 3 mm. Their content is ≈ 2.5–3 times lower in arable soil (13%–16%) than in forest soil (32%–42%) at a depth of 0–20 cm. The largest mean weight diameters of dry aggregates (dMWD) with a range between 12.6 and 14.7 mm were found in arable soil, vs. 9.5–9.9 mm in meadow and 6.5–8.3 mm in forest. The arable soil had significantly lower mean weight diameters of wet‐stable aggregates (wMWD) and a lower structure coefficient (Ks) than forest and meadow soils. The dispersion ratio (DR) of arable soil was significantly higher than that of forest and meadow soils. Forest and meadow showed a significantly higher soil organic‐matter content (SOM) by 74% and 39%, respectively, compared with arable soil, while meadow uses decreased the SOM content by 57% compared with forest at a depth of 0–10 cm. In conclusion, the results showed that long‐term conventional tillage of soils from natural forest and meadow in the lowland ecosystems of W Serbia degraded soil aggregate–size distribution and stability and reduced SOM content, probably resulting in lower productivity and reduced crop yields.  相似文献   

13.
Surface runoff is the major way of P transport from agricultural land to surface waters. To assess the potential of P loss in runoff in relation to soil P status, the chemical nature and distribution of soil P in different size classes of water-stable aggregates were quantified for two distinctive soil types. For both soils unfertilized areas under pasture and well-fertilized arable soils were sampled. The content of total P, organic P and microbial biomass P (Pmic) decreased in the aggregate size order <0.1, 1–2, and 0.1–1.0 mm respectively. In contrast available P (extracted by Bray I reagent) was lowest in the <0.1 mm aggregate size. Cultivation decreased the percentage of 1–2 mm aggregates but increased that of the <0.1 mm aggregates. Fertilization increased markedly both total P and organic P in the <0.1 mm fraction of arable soils compared to the corresponding samples from unfertilized grassland soils. During aggregate separation, most of P loss was in the form of particulate P and less than 1% in solution. More organic P and Pmic were lost from the grassland soils than from the arable soils.  相似文献   

14.
Cover crops (CCs) can improve soil hydraulic properties prior to termination, but their effects on soil hydraulic properties during the growing season are less known. The objective of this study was to investigate the influence of no-till CC on the soil hydraulic properties during the commodity crop growing season in Murfreesboro, USA. The CCs included hairy vetch (Vicia villosa Roth.), crimson clover (Trifolium incarnatum L.), winter wheat (Triticum aestivum L.), winter peas (Lathyrus hirsutus L.), oats (Avena sativa), triticale (Triticale hexaploide Lart.), barley (Hordeum vulgare L.) and flax (Linum usitatissimum L.). The cash crop grown was corn (Zea mays). Soil samples were collected using a cylindrical core (55 mm inside diameter, 60 mm long) at 0–10, 10–20, and 20–30 cm depths during April (prior to CC termination), May, June and July. Results showed that soil bulk density (Db) was 23%, 12%, 11% and 10% higher under no cover crop (NCC) compared with CC management during April – July, respectively. This suggests a lower rate of soil consolidation under CC management even after several rainfall events. Four months after CC termination, macroporosity and total porosity were 306 and 50% higher, respectively, under CC compared with NCC management. Therefore, saturated hydraulic conductivity (Ksat) during July was two times higher under CC management compared with NCC management and this can affect increase water infiltration and conservation during the growing season. Due to CC root-induced improvement in macroporosity, CCs had 64% higher volumetric water content (θ) at saturation during July compared with NCC management. Cover crops can improve soil hydraulic properties and these benefits can persist for up to four months after termination.  相似文献   

15.
Soil water retention characteristic is required for modeling of water and substance movement in unsaturated soils and need to be estimated using indirect methods. Point pedotransfer functions (PTFs) for prediction of soil water content at matric suctions of 1, 5, 25, 50, and 1500 kPa were developed and validated using a data-set of 148 soil samples from Hamedan and Guilan provinces, Iran, by multiobjective group method of data handling (mGMDH). In addition to textural and structural properties, fractal parameters of the power-law fractal models for both particles and aggregates distributions were also included as predictors. Their inclusion significantly improved the PTFs’ accuracy and reliability. The aggregate size distribution fractal parameters ranked next to the particle size distribution (PSD) in terms of prediction accuracy. The mGMDH-derived PTFs were significantly more reliable than those by artificial neural networks but their accuracies were practically the same. Similarity between the fractal behavior of particle and void size distributions may contribute to the improvement of the derived PTFs using PSD fractal parameters. It means that both distributions of the pore and particle size represent the fractal behavior and can be described by fractal models.  相似文献   

16.
《CATENA》2001,44(1):47-67
Soil aggregation in relation to other soil properties was studied along a climatological transect in the Southeast of Spain. Three sites were selected along this transect ranging from semiarid to subhumid climatological conditions. The aggregate size distribution, the macro and microaggregate stability of the superficial soil horizon and their relations with other soil properties were analysed. Large aggregates (>10, 10–5, 5–2 mm) were present in highest proportions in the most arid of the studied areas. These large aggregates were associated with high values of water-stable microaggregates; however, they did not improve soil structure and are related to high bulk densities and low water retention. Aggregates 1–0.105 mm were positively correlated to medium, fine, very fine sand and silt fractions and to organic matter. Aggregates <0.105 mm were positively correlated to organic matter and clay content. Small aggregate sizes (1–0.105 and <0.105 mm) had a positive influence on soil water retention and they seem a good indicator of soil degradation.Water stability of microaggregates showed a positive correlation with clay content while the stability of the macroaggregates depended on the organic matter content when the organic matter content was greater than 5 or 6%. Below that threshold the carbonate content was strongly correlated with aggregate stability. A general conceptual scheme of associations between aggregate size distribution, water-stable microaggregation and textural characteristics for the area was developed.The land use history affecting soil overlaps the pattern of climatological situations and has to be taken into account. Aggregate size distribution and stability can be used as indicator of soil degradation, but not as a unique parameter.  相似文献   

17.
A comparative study was carried out of annual ridge tillage (RT) and short‐term effects of conservation agriculture (CA) on soil properties in fields of small‐scale farmers. Soil samples were collected at depths of 0–10 and 10–20 cm from a total of 12 fields which had been under CA for two and four seasons, respectively, and from adjacent RT fields for direct comparisons. CA fields were converted from fields previously under continuous RT. Soil organic carbon, total nitrogen and available phosphorus were greater in CA fields while extractable potassium, pH and salt content were moderated under CA. Conversion of long‐term RT to CA did not significantly influence bulk density and aggregate stability (geometric mean diameter) although structural stability was greater under CA practices. Total porosity, macroporosity and matrix porosity, and volumetric water content at saturation, field capacity and permanent wilting point did not substantively respond to tillage effects. Relative water capacity and air–water storage parameter, θfc/PORt, were significantly greater after 4 yr of CA. Soils under CA showed greater values for field‐saturated hydraulic conductivity compared with RT fields. With the highest loadings in a principal component analysis, this work suggests that variables related to volumetric water content and aeration of the soil matrix, organic carbon, available phosphorus and soil texture were the most useful indices for future field comparison of RT and CA practices.  相似文献   

18.
The effects of direct drilling and ploughing on the structure and macroporosity of a clay soil at Compton Beauchamp, Oxfordshire, growing winter wheat, were studied using large thin sections (10 * 5 * 3.5 cm) and image analysis of photographs of fluorescent resin impregnated soil blocks.
Composite coarse angular to subangular blocky and medium to fine granular aggregates were present in the top 3 cm of the direct drilled soil and in the top 10 cm of the ploughed soil. Settling of the soil and coalescing of these aggregates took place throughout the year under both treatments, but was most marked in the ploughed soil. In the subsoil (20 to 30 cm) most of the structural changes could be attributed to changes in the soil water content. Swelling in the winter led to the closure of the most macropores and shrinking in the spring and summer led initially to the development of vertical planar macropores and then to large cracks. Freezing and thawing in the winter created many very small subcuboidial aggregates at the soil surface which later coalesced as a result of raindrop impact.  相似文献   

19.
The influence of soil structure on the degree of seed-soil contact within a seedbed is poorly understood. This paper presents a simple analogue of seed-soil contact which allows the examination of the influence of macroporosity and relative aggregate size on the degree of contact within a bed of deformable spheres. A method is described in which a rigid disc or sphere representing a seed is placed within a bed of deformable spheres of uniform size representing soil aggregates. The structure is then compressed uniaxially to a given macroporosity. Contact areas were measured by a technique involving the use of paint, dismantling of the sample, and image analysis. Results show that degree of contact increases as macroporosity decreases. Greatest levels of contact are achieved where rigid and deformable spheres are of similar size. This result appears to be a consequence of maximum stress concentration occurring at this size ratio. Contact points were unevenly distributed over the surface of the rigid sphere. The applicability of these findings is considered.  相似文献   

20.
Soil erosion contributes to the removal and redistribution of soil organic C from cultivated fields. The soil organic C content of wind erodible and water unstable aggregates is an important factor in determining the amount of carbon loss occurring in erosion processes. The relative distribution of organic carbon among aggregate size fractions may also affect the response of soils to erosion. Soil organic C distribution is dependent on the chosen management system. The effects of no-till, till, and grassland management systems on organic C content of erodible and non-erodible aggregates were examined in six Ustolls and two Usterts of central South Dakota. Organic C contents were related to dry- and wet-sieving to represent the potential influence of wind and water erosion on C loss in the absence of vegetative cover. Loss of aggregate stability in cultivated soils was associated with organic C loss. Most structural characteristics developed under tilled systems persisted after 6–16 years of no-till. Changes in distribution of organic C due to management systems were most evident in Ustolls where cultivation resulted in net soil C losses. Soil organic C was not significantly increased by the no-tillage practices applied in this on-farm study (in Ustolls 49 Mg ha−1 in no-till versus 41 Mg ha−1 in till, for 0–0.20 m depth). Soil properties of Usterts were less affected by land use and management practices due to the high shrink swell action and self-mixing. In both soil orders the greater concentration of organic C in the wind erodible (<1 mm) dry aggregate size fraction implies a high potential for organic C loss by erosion in addition to organic C loss from mineralization after tillage. Grassland when compared to cultivated topsoil showed the largest amounts of organic carbon stored and the minimal potential for erosion loss of soil organic C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号