首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Elk, fire and climate have influenced aspen populations in the Rocky Mountains, but mostly subjective studies have characterized these factors. A broad-scale perspective may shed new light on the status of aspen in the region. We collected field measurements of aspen (Populus tremuloides Michx.) patches encountered within 36 randomly located belt transects in 340 km2 of Rocky Mountain National Park, Colorado, to quantify the aspen population. Aspen covered 5.6% of the area in the transects, much more than expected based on previously collected remotely sensed data. The distribution and structure of aspen patches were highly heterogeneous throughout the study area. Of the 123 aspen patches encountered in the 238 ha surveyed, all but one showed signs of elk browsing or had conifer species mixed with the aspen stems. No significant difference occurred in aspen basal area, density, regeneration, browsing of regeneration and patch size, between areas of concentrated elk use (elk winter range) and areas of dispersed elk use (elk summer range). Two-thirds of the aspen patches were mixed with conifer species. We concluded that the population of aspen in our study area is highly variable in structure and that, at a landscape-scale, evidence of elk browsing is widespread but evidence of aspen decline is not. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Topography, vegetation, and climate act together to determine thespatial patterns of fires at landscape scales. Knowledge oflandscape-fire-climate relations at these broad scales (1,000s hato 100,000s ha) is limited and is largely based on inferences andextrapolations from fire histories reconstructed from finer scales. In thisstudy, we used long time series of fire perimeter data (fire atlases) and datafor topography, vegetation, and climate to evaluate relationships between large20thcentury fires and landscape characteristics in two contrastingareas: the 486,673-ha Gila/Aldo Leopold Wilderness Complex (GALWC)in New Mexico, USA, and the 785,090-ha Selway-BitterrootWilderness Complex (SBWC) in Idaho and Montana, USA. There were importantsimilarities and differences in gradients of topography, vegetation, andclimatefor areas with different fire frequencies, both within and between study areas.These unique and general relationships, when compared between study areas,highlight important characteristics of fire regimes in the Northern andSouthernRocky Mountains of the Western United States.Results suggest that amount and horizontal continuity of herbaceous fuels limitthe frequency and spread of surface fires in the GALWC, while the moisturestatus of large fuels and crown fuels limits the frequency of moderate-to-highseverity fires in the SBWC. These empirically described spatial and temporalrelationships between fire, landscape attributes, and climate increaseunderstanding of interactions among broad-scale ecosystem processes. Resultsalso provide a historical baseline for fire management planning over broadspatial and temporal scales in each wilderness complex.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

3.
A probabilistic spatial model was created based on empirical data to examine the influence of different fire regimes on stand structure of lodgepole pine (Pinus contorta var. latifolia) forests across a >500,000-ha landscape in Yellowstone National Park, Wyoming, USA. We asked how variation in the frequency of large fire events affects (1) the mean and annual variability of age and tree density (defined by postfire sapling density and subsequent stand density) of lodgepole pine stands and (2) the spatial pattern of stand age and density across the landscape. The model incorporates spatial and temporal variation in fire and serotiny in predicting postfire sapling densities of lodgepole pine. Empirical self-thinning and in-filling curves alter initital postfire sapling densities over decades to centuries. In response to a six-fold increase in the probability of large fires (0.003 to 0.018 year−1), mean stand age declined from 291 to 121 years. Mean stand density did not increase appreciably at high elevations (1,029 to 1,249 stems ha−1) where serotiny was low and postfire sapling density was relatively low (1,252 to 2,203 stems ha−1). At low elevations, where prefire serotiny and postfire lodgepole pine density are high, mean stand densities increased from 2,807 to 7,664 stems ha−1. Spatially, the patterns of stand age became more simplified across the landscape, yet patterns of stand density became more complex. In response to more frequent stand replacing fires, very high annual variability in postfire sapling density is expected, with higher means and greater variation in stand density across lodgepole pine landscapes, especially in the few decades following large fires.  相似文献   

4.
Landscape Ecology - Understanding the implications of past, present and future patterns of human land use for biodiversity and ecosystem function is increasingly important in landscape ecology. We...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号