首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose mass loss was measured for four levels of canopy cover,i.e., clearcut, 25%, 75%, and uncut, in northern red oak (Quercus rubra) and red pine (Pinus resinosa) stands in northern Lower Michigan, USA. Cellulose mass loss was more rapid in the clearcut and 25% canopy cover treatments than in the 75% canopy cover and uncut treatments. After 4 month incubation of cellulose filter papers, mass loss rates averaged 75.2% in the clearcut, 56.3% in the 25% canopy cover, 46.9% in the 75% canopy cover, and 45.7% in the uncut stands. For the clearcut and the 25% canopy cover treatments, cellulose mass loss in the mineral soil layer was significantly higher than in the forest floor after 2 and 4 months of incubation, while cellulose mass loss of the uncut treatment was significantly lower in the soil layer than in the forest floor after 4 months of incubation. Cellulose mass loss was not significantly different between the oak and the pine stands (p > 0.05), but cellulose mass loss rates in other canopy cover treatments except for the clearcut were generally higher in red oak stands than in red pine stands. These results suggest that canopy manipulation increases cellulose decomposition and may stimulate nutrient cycling process in canopy removal stands. This study was supported in part by USDA Forest Service and Michigan Technological University.  相似文献   

2.
Patterns of litter decomposition and nitrogen (N) and phosphorus (P) release in relation to various levels of canopy cover were examined using litterbags placed on the forest floor of northern red oak (Quercus rubra L.) and red pine (Pinus resinosa Ait.) stands in northern Lower Michigan, USA. A series of experimental plots consisted of four levels of canopy cover treatments, i.e. clearcut, 25% (50% during first sampling year), 75%, and uncut. Mass loss from decomposing leaves was higher for oak leaves in red oak stands (approximately 60% loss of the original mass) than for pine needles in red pine stands (approximately 40% loss of the original mass) during the 2 year study period. Leaf mass loss in the clearcut red oak treatment was significantly higher than in the uncut red oak treatment. In contrast, no canopy cover effects on litter mass loss were found in red pine stands. Nitrogen concentrations in decomposing litter increased during the 2 year period in all canopy cover treatments in both stand types, but they did not differ significantly among canopy cover treatments. These results indicate that various levels of red oak and red pine canopy removal generally have a minor impact on litter decomposition and nutrient (N and P) release during the first 2 years following canopy manipulation, except in red oak clearcuts.  相似文献   

3.
This study looked at the effects that multi-nutrient fertilization had on understory vegetation nutrient concentrations at four conifer forested locations in the inland Northwest. Multi-nutrient fertilization of conifer stands cannot only enhance the overstory species in the inland Northwest but also the understory vegetation. Determination of nutrient concentration response to fertilization treatments can provide managers the ability to better manipulate their forests for grazing and wildlife habitat. We grouped the understory vegetation into three general life forms: forbs, grasses and grass-likes, and shrubs. Multi-nutrient fertilization had little effect on nitrogen concentration across all life forms. Potassium and sulfur generally increased in concentration. Micronutrients as a whole showed less variability in response to multi-nutrient fertilization. Boron, copper, molybdenum, and zinc generally showed increases in concentrations across all life forms. We were able to conduct analyses on a selected number of understory vegetation species. Individual species showed variability in nutrient concentration response to multi-nutrient fertilization. Wildlife habitat and grazing quality were both increased and decreased following multi-nutrient fertilization. Increases in nutrient concentrations will provide more nutritious vegetation to these animals and vice versa for decreases in concentrations.  相似文献   

4.
Savanna vegetation is characterized by high and variable ground layer species richness regulated by functional group interactions with fire regimes and canopy cover. Frequent fire selects for C4 grasses and prairie forbs in canopy openings and C3 graminoid species and shade-adapted forbs and shrubs in canopy shade. Frequent fire also maximizes heterogeneity in partial canopy cover and species richness across the full canopy gradient. However, few studies have linked fire induced change in tree canopy cover with groundlayer vegetation dynamics in relation to this model. In 1986 and in 2007, we measured canopy cover and sampled groundlayer vegetation in 1 m2 plots along 53 transects at the Tefft Savanna, a fire managed 197 ha eastern sand savanna with strong canopy cover and elevation gradients. We analyzed temporal change in canopy cover and groundlayer vegetation, correlating percent change in canopy cover with change in ground layer functional groups. After 20 years of burning at 3 fires/decade, elevation accounted for 62% of the variation in an NMS ordination of groundlayer vegetation. However, canopy cover, which averaged 24-86% in 2007, had a significant secondary effect on the ordination. Five vegetation types classified by TWINSPAN varied significantly in elevation and canopy cover. Woody vegetation comprised 8 of the 12 species with greatest niche breadths, and tended to predominant in woodland or forest, where tree cover averaged 50% or more. Forbs had greater richness in savanna, which averaged less than 30% canopy cover. The C3 sedge Carex pensylvanica was the dominant graminoid species under woodland canopy cover, and was co-dominant with the C4 grasses Andropogon scoparius and Sorghastrum nutans under savanna canopy cover. As in other savannas, N-fixing species sorted across shade and canopy openings, and heterogeneity among transects was maximized at mid-canopy cover. Over time, canopy cover decreased up to 50%, creating more open savanna conditions at mid to high elevations. This decrease was associated with a 20-100 % increase in species richness and was significantly correlated with increasing richness and cover of C4 grasses and summer flowering prairie and woodland forbs. These results support a canopy cover model of fire-maintained savanna vegetation, with greater abundance of C4 grasses and prairie forb species associated with lower canopy cover, greater heterogeneity at mid-canopy cover, and species richness maximized across the light gradient. They also indicate that decreasing canopy cover caused by repeated burning increases species richness and abundance of C4 and prairie forb species.  相似文献   

5.
An outbreak of the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB), currently affecting over 10.1 million hectares of lodgepole pine forests (Pinus contorta Dougl.) in British Columbia, Canada, is the largest in recorded history. We examined the dynamics of even-aged lodgepole pine forests in southern British Columbia, which were undergoing this MPB outbreak. Using dendroecology and forest measurements we reconstructed the stand processes of stand initiation, stand disturbances, tree mortality, and regeneration, and explained the current stand structure and the potential MPB impacts in selected stands. Our results indicate that stand-replacing fires initiated even-aged seral lodgepole pine stands in this region. In the absence of fire in the 20th century, multiple MPB disturbances, which each resulted in partial canopy removal, modified the simple one-layer structure of the fire-origin stands by the initiation of post-MPB disturbance regeneration layers, transforming the stands into complex, multi-aged stands. Despite high overstory mortality due to the current MPB outbreak, regeneration layers, which are likely to survive the current outbreak, will provide important ecological legacies and will contribute to mid-term timber supply.  相似文献   

6.
于振良  郝占庆 《林业研究》1998,9(3):160-165
lntroductionBroad-leavedKoreanpineforestisacldriaxforestli1tCm-peratezoneofNortheaster11Cl1ina.ltscharacteristichasIligllstabilityandproductivity.Therewerenlanyresearcl1worksfocusedontl1estructure,dynandcsanditsmain-tainingmechanisn1.Researchontheforestregeneratio11wasamali1approaclltoundersta11dtlleforestdynanlicsI;j.ThereweremanyresearcI1eso11tl1erege11erationofh1iskindofforestsincel95ol5~ll].Butfewoftl1emweredoneundertheconsiderationofcanopygapdistUrbance.Sincel99O's,moreandmoreresearch…  相似文献   

7.
Novel fire mitigation treatments that chip harvested biomass on site are increasingly prescribed to reduce the density of small-diameter trees, yet the ecological effects of these treatments are unknown. Our objective was to investigate the impacts of mechanical thinning and whole tree chipping on Pinus ponderosa (ponderosa pine) regeneration and understory plant communities to guide applications of these new fuel disposal methods. We sampled in three treatments: (1) unthinned forests (control), (2) thinned forests with harvested biomass removed (thin-only), and (3) thinned forests with harvested biomass chipped and broadcast on site (thin + chip). Plots were located in a ponderosa pine forest of Colorado and vegetation was sampled three to five growing seasons following treatment. Forest litter depth, augmented with chipped biomass, had a negative relationship with cover of understory plant species. In situ chipping often produces a mosaic of chipped patches tens of meters in size, creating a range of woodchip depths including areas lacking woodchip cover within thinned and chipped forest stands. Thin-only and thin + chip treatments had similar overall abundance and species richness of understory plants at the stand scale, but at smaller spatial scales, areas within thin + chip treatments that were free of woodchip cover had an increased abundance of understory vegetation compared to all other areas sampled. Relative cover of non-native plant species was significantly higher in the thin-only treatments compared to control and thin + chip areas. Thin + chip treated forests also had a significantly different understory plant community composition compared to control or thin-only treatments, including an increased richness of rhizomatous plant species. We suggest that thinning followed by either chipping or removing the harvested biomass could alter understory plant species composition in ponderosa pine forests of Colorado. When considering post-treatment responses, managers should be particularly aware of both the depth and the distribution of chipped biomass that is left in forested landscapes.  相似文献   

8.
Models were developed to predict understory vegetation response to multi-nutrient fertilization at six conifer-forested stands in the inland Northwest United States. Equations are presented to estimate how fertilization as well as other factors impacting understory production in the inland Northwest change total understory vegetation production and the production of three individual lifeforms (shrubs, forbs, and grasses and grass-likes). Overstory stand density was found to have the greatest impact on understory production, and regardless of factors such as fertilization or precipitation, large stand densities will limit understory production. At lower stand densities, multi-nutrient fertilization as well as greater amounts of precipitation will increase understory production. These factors were also found to be synergistic; thus, greater amounts of precipitation increase the effects of multi-nutrient fertilization on understory production. For sites of the same stand density, Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] was shown to have a greater negative impact on understory production than ponderosa pine (Pinus ponderosa Dougl. ex Laws.). The models predict that multi-nutrient fertilization of ponderosa pine stands will produce increases in understory production across a broader range of stand densities.  相似文献   

9.
We experimentally investigated interacting effects of canopy gaps, understory vegetation and leaf litter on recruitment and mortality of tree seedlings at the community level in a 20-year-old lowland forest in Costa Rica, and tested several predictions based on results of previous studies. We predicted that experimental canopy gaps would greatly enhance tree seedling recruitment, and that leaf litter removal would further enhance recruitment of small-seeded, shade-intolerant seedlings in gaps. We created a large (320–540 m2) gap in the center of 5 out of 10 40 m × 40 m experimental plots, and applied the following treatments bimonthly over a 14-month-period in a factorial, split–split plot design: clipping of understory vegetation (cut, uncut), and leaf litter manipulations (removal, addition, control). As expected, experimental gaps dramatically increased tree seedling recruitment, but gap effects varied among litter treatments. Litter addition reduced recruitment in gaps, but enhanced recruitment under intact canopy. Species composition of recruits also differed markedly between gap treatments: several small-seeded pioneer and long-lived pioneer species recruited almost exclusively in gaps. In contrast, a few medium-to-large-seeded shade-tolerant species recruited predominantly under intact canopy. Leaf litter represents a major barrier for seedling emergence and establishment of small-seeded, shade-intolerant species, but enhances emergence and establishment of large-seeded, shade-tolerant species, possibly through increased humidity and reduced detection by predators. Periodic clipping of the understory vegetation marginally reduced tree seedling mortality, but only in experimental gaps, where understory vegetation cover was greatly enhanced compared to intact canopy conditions. Successful regeneration of commercially valuable long-lived pioneer trees that dominate the forest canopy may require clear-cutting, as well as weeding and site preparation (litter removal) treatments in felling clearings. Management systems that mimic natural canopy gaps (reduced-impact selective logging) could favor the regeneration of shade-tolerant tree species, potentially accelerating convergence to old-growth forest composition. In contrast, systems that produce large canopy openings (clear-cutting) may re-initiate succession, potentially leading to less diverse but perhaps more easily managed “natural plantations” of long-lived pioneer tree species.  相似文献   

10.
11.
North American jack pine (Pinus banksiana Lamb.) stands are generally characterized by an even-aged structure resulting from high intensity fires (HIF). However, non-lethal fires of moderate intensity (MIF), which leave behind surviving trees, have also been reported. The objectives of this study were two-fold: (1) assess the concurrent dynamics of live trees, understory vegetation and different types of coarse woody debris (CWD) during succession after HIF; and (2) document how MIF affects stand structure component dynamics compared to HIF. Stands affected by both HIF and MIF were selected. Tree characteristics and age structure, understory biomass, and CWD volume were assessed. Our results suggest that the structural succession of jack pine stands following HIF comprises three stages: young stands (<48 years), premature and mature stands (58–100 years) and old stands (>118 years). Canopy openness and jack pine density significantly decreased with time since HIF, while black spruce density and CWD volume significantly increased. The highest structural diversity was measured in the premature and mature stands. Compared to HIF, MIF increased mean jack pine basal area, decreased average stand density, delayed the replacement of jack pine by black spruce replacement in the canopy, decreased CWD volume, and significantly increased bryophytes mass. MIF increased the diversity of live trees and generally decreased CWD structural diversity. The study confirms the diversity of natural disturbance magnitude and successional processes thereby initiated. Thereafter, it appeared to be relevant for adjustment of disturbance emulating forest-management systems.  相似文献   

12.
Laterally cast Picea albertiana ssp. albertiana (western white spruce) shadows were analyzed to determine their effect on understory plant abundance in two high-latitude (62.7°N) boreal Populus tremuloides (trembling aspen) forest stands. Each stand had a uniform and continuous overstory, and occurred on level to gently sloping terrain with a submesic moisture regime. Picea >1 m tall had <20% cover in each stand, with few trees equalling or exceeding the height of the P. tremuloides canopy. Understory vegetation composition was sampled in 30-m × 30-m plots that were subdivided into 1.5-m × 1.5-m cells (200 sampled per plot). Picea shadow locations and their areal extent were determined on an hourly basis (7:00-19:00 h Pacific Standard Time on the summer solstice) for individual plot cells using silhouette diagrams constructed from tree height and canopy-related data (n = 140 trees). Shadow data were analyzed using the lower- (QL, minimum to first-quartile values) and upper-most (QU, third-quartile values to maximum) portions of each species’ abundance distribution. Kruskal-Wallis tests (P < 0.001) indicated that greater Arctostaphylos uva-ursi (bearberry) abundance occurred where shadow cover was the least (daytime average ∼24%); whereas Geocaulon lividum (toadflax), Hylocomium splendens (stairstep moss), and Shepherdia canadensis (buffaloberry) incurred the most shadows (>34% cover) and had the shortest periods of continuous (<6 h) sunlight exposure with <30% Picea shadow cover. Hylocomium and Shepherdia also occurred nearer Picea than Arctostaphylos. Rosa acicularis (wild rose), Linnaea borealis (twinflower), Vaccinium vitis-idaea (bog cranberry), Chamerion angustifolium (fireweed), and Calamagrostis purpurascens (purple reedgrass) incurred intermediate amounts of shadow. Differences in hourly shadow abundance values (QU minus QL plot cells) were greatest for Arctostaphylos (−14.7%) and Rosa (−10.8%), but H. splendens (+3.8%) and Geocaulon had the least (+1.7%). Greater Hylocomium and Shepherdia abundance occurred in plot cells with more shadow indicating a tolerance for shade, which was contrary to the other species. These differences may represent examples of niche partitioning based on relative light availability. Individual understory species based on percent cover and species richness were more strongly correlated with Picea shadow cover than canopy cover. As a direct representation of impeded light transmittance, assessment of lateral tree shadows may represent a viable approach for investigating within stand compositional variation and temporal change among forest understory species, when a distinct physiognomic difference occurs between seral and climax overstory species.  相似文献   

13.
Intensive forest management practices often disturb understory vegetation, and the recovery of these plant communities may depend on the type and severity of the disturbance. We examined the effects of stump removal and N-fertilization on understory plant communities and functional group (shrubs, graminoids, forbs, and introduced species) cover and diversity at five study areas in the Pacific Northwest of North America 24–28 years after treatment. Treatments at each study area included stumped and non-stumped controls as well as four levels of broadcast ammonium nitrate (0, 336, 672, and 1345 kg N ha−1) in all combinations. Stumping had significant effects on community composition at all sites, and several plant species were associated (p < 0.05) with either controls or stumped plots. Diversity of graminoids, forbs and introduced species increased in stumped areas region wide. Stumping reduced cover and diversity of shrubs at some sites. Cover of graminoids and forbs also increased in stumped plots at some study areas. Forbs like Viola sempervirens were often indicators of stump removal while shrubs such as Acer circinatum tended to be associated with non-stumped plots. N-fertilization affected community composition at only one study area, and had no effects on cover or richness of functional groups. Stump removal has lasting impacts on plant communities and may make them more vulnerable to colonization by introduced species.  相似文献   

14.
The carryover effects of N fertilization on five coastal Pacific Northwest Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) plantations were studied. “Carryover” is defined as the long-term impact of N fertilizer added to a previous stand on the growth of a subsequent stand. Average height and diameter at 1.3 m above-ground (DBH) of 7–9-year-old Douglas-fir trees and biomass and N-content of understory vegetation were assessed on paired control (untreated) and urea-N-fertilized plots that had received cumulative additions of 810–1120 kg N ha−1 to a previous stand. Overall productivity was significantly greater in the fertilized stands compared to the controls. In 2006, the last growth measurement year, mean seedling height was 15% greater (p = 0.06) and mean DBH was 29% greater (p = 0.04) on previously fertilized plots compared to control plots. Understory vegetation biomass of fertilized plots was 73% greater (p = 0.005), and N-content was 97% greater (p = 0.004) compared to control plots. These results show that past N fertilization markedly increased seedling growth in these plantations as well as biomass and N-content of understory vegetation in a subsequent rotation. These findings suggest that N fertilization could potentially increase site productivity of young Douglas-fir stands found on low quality sites in the Pacific Northwest 15–22 years after application by a carryover effect. These plantations have not yet reached the age where marketable materials can be harvested from them, and the growth of trees should be monitored over a longer time period before potential impacts on older stands, if any, can be determined.  相似文献   

15.
Projected changes in forest carbon stocks and carbon balance differ according to the choice of estimation methods and the carbon pools considered. Here, we compared three carbon assessment methods for optimizing timber production and carbon sequestration in six example Scots pine (Pinus sylvestris L.) stands in Finland. The forest carbon stock was assessed, with three methods: stem carbon, biomass expansion factors (BEFs), and a process-based model. Given a carbon price of 40 € t−1 (equivalent to 10.9 € t−1 CO2) and a 3% discount rate, the highest average carbon stock and mean annual increment (MAI) were obtained with the BEF method. Increasing the carbon price from 0 to 200 € t−1 resulted in longer optimal rotations and higher MAI, and increased the average carbon stock, especially when carbon was assessed by the BEF method. Comparison of these carbon assessment methods, using economic sensitivity analyses, indicated that optimal thinning regimes and average carbon stocks are strongly dependent on the assessment method. The process-based method led to less frequent thinnings and shorter rotations than the BEF method, due to different predictions of biomass production. As a cost-effective option, optimal thinning regimes play a very important role in timber production and carbon sequestration.  相似文献   

16.
In many second-rotation Pinus radiata forest planta-tions, there has been a steady trend towards wider tree spacing and an increased rate of application of P fertiliser. Under these regimes, the potential for understory growth is expected to in-crease through increased light and greater nutrient resources. Therefore, understory vegetation could become a more signifi-cant component of P cycling in P. radiata forests than under closely-spaced stands. Studies have shown that growth rates and survival of trees is reduced in the presence of understory vegeta-tion due to the competition of understory vegetation with trees. Other studies have suggested that understory vegetation might have beneficial effects on nutrient cycling and conservation within forest stands. This review discusses the significance of understory vegetation in radiata pine forest stands, especially their role in enhancing or reducing P availability to forest trees.  相似文献   

17.
Native Monterey pine (Pinus radiata D. Don) stands on the Monterey peninsula have been significantly modified by natural and anthropogenic disturbances. The exclusion of fire and the introduction of pitch canker (caused by Fusarium circinatum Nirenberg & O’Donnell) created a need for the examination of these changing ecosystems with respect to regeneration, especially as these stands reach mature ages. We established 210 plots on 35 transects distributed throughout five stands in order to describe the current stand structure and quantify the extent and condition of regeneration. The results indicated that Monterey pine seedling establishment varies throughout the peninsula depending on percent canopy cover, duff and litter depth, and percent shrub cover while seedling growth is influenced by percent shrub cover. Canopy cover was also found to inversely influence shrub cover. Our study highlights the importance of understory removal to increase Monterey pine regeneration and seedling growth as canopy cover decreases, especially in areas where coast live oak (Quercus agrifolia Nee) and poison-oak (Toxicodendron diversilobum E. Greene) are abundant.  相似文献   

18.
Wang Ke  Zhang Yu 《林业研究》1995,6(1):12-17
Comparative analyses were conducted on the nutrient element content and returning amount of main fractional compositions of litter in Korean pine (KP), Mongolian Scots pine (MSP) and Dahurian larch (DL) plantations in Laoshan Plantation Experiment Station of Maoershan Experiment Forest Farm of Northeast Forestry University. The results are as follows: (1) The nutrient element content and returning amount in litter varies among different fractional compositions and tree species, the total returning amount of all nutrient elements and the returning amount of K, Ca, Mg, N and P are DL > MSP > KP, the returning amount of Cu is DL > KP > MSP, the returning amount of Fe and Mn are MSP > DL > KP; (2) To KP and DL plantations, the main nutrient element returned is dead needles; dead branches, bark scales and dead cones account for a little proportion; whereas to MSP plantation, besides dead needles, dead branches and bark scales also play an important role in the return of nutrient elements; (3) A little deal of dead leaves can provided a great deal of returning amount of nutrient elements.  相似文献   

19.
Effects of clear-cut harvesting on ground vegetation plant species diversity and their cover are investigated at two Norway spruce sites in southern Norway, differing in climate and topography. Experimental plots at these two sites were either harvested conventionally (stem-only harvesting) or whole trees including crowns, twigs and branches were removed (whole-tree harvesting), leaving residue piles on the ground for some months. We compare the number of plant species in different groups and their cover sums before and after harvesting, and between the different treatments, using non-parametric statistical tests. An overall loss of ground vegetation biodiversity is induced by harvesting and there is a shift in cover of dominant species, with negative effects for bryophytes and dwarf shrubs and an increase of graminoid cover. Differences between the two harvesting methods at both sites were mainly due to the residue piles assembled during whole-tree harvesting and the physical damage made during the harvesting of residues in these piles. The presence of the residue piles had a clear negative impact on both species numbers and cover. Pile residue harvesting on unfrozen and snow-free soil caused more damage to the forest floor in the steep terrain at the western site compared to the eastern site.  相似文献   

20.
在2001年森林生长季(6-9月),通过测量降雨各分量,分析了中国吉林省长白山北坡红松阔叶林冠层对降水分配各分量的影响。结果表明:干流量(37.39 mm),透流量(326.02 mm)和截留量(105.67 mm),分别占同期降雨量(469.08 mm) 的7.97%、69.50%和22.53%。林冠对降雨的月份分配规律是:树干茎流率的月变化为七、八月份大于其它月份,穿透率从6-9月份有逐渐减少的趋势,而截留率的变化正好与穿透率相反,从19.43%增加到31.02%。林内降雨中的养分元素浓度发生显著变化,除Ca、Mg外,其它元素的浓度都有所增加。经分析得出,大气降雨中养分元素的浓度序列为:Ca> Mg> N> K> Fe > P> Cu > Mn;而穿透雨中养分元素的浓度序列为:K>N>Mg>Ca>P>Fe>Mn>Cu;在林冠淋溶中各养分元素的浓度序列为:Mn> P>K>Cu>Fe>N>Mg>Ca。图1表5参13。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号