首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to evaluate the suitability of a commercial kit for bovine embryo vitrification for cryopreserving cat oocytes and to evaluate comparatively the effects of its use with slow freezing procedure on cryotolerance in terms of morphology and oocyte resumption of meiosis. Germinal vesicle stage oocytes isolated from cat ovaries were either vitrified (n = 72) using a vitrification kit for bovine embryo or slow frozen (n = 69) by exposing oocyte to ethylene glycol solution before being transferred to a programmable embryo freezer. After thawing and warming, oocytes were cultured for 48 h and then were examined for meiosis resumption using bisbenzimide fluorescent staining (Hoechst 33342). Fresh immature oocytes (n = 92) were used as the control group. The proportion of oocytes recovered in a morphologically normal state after thawing/warming was significantly higher in frozen oocytes (94.5%) than in the vitrified ones (75%, p < 0.01). Morphological integrity after culture was similar in vitrified (73.6%) and slow frozen oocytes (76.8%); however, only 37.5% of the morphologically normal oocytes resumed meiosis after vitrification compared to 60.9% of those submitted to slow freezing procedure (p < 0.01). Fresh oocytes showed higher morphological integrity (91.3%) and meiosis resumption rates (82.6%, p < 0.002) than cryopreserved oocytes, irrespective of the procedure used. These results suggest that immature cat oocytes vitrified with a kit for bovine embryos retain their capacity to resume meiosis after warming and culture, albeit at lower rates than slow frozen oocytes. Vitrification and slow freezing methods show similar proportions of oocytes with normal morphology after culture, which demonstrate that thawed and warmed oocytes that resist to cryodamage have the same chances to maintain their integrity after 48 h of culture.  相似文献   

2.
Unfertilized oocytes are one of the most desired germ cell stages for cryopreservation because these cryopreserved oocytes can be used for assisted reproductive technologies, including in vitro fertilization (IVF) and intracytoplasmic sperm injection. However, in general, the fertility and developmental ability of cryopreserved oocytes are still low. The aim of the present study was to improve vitrification of mouse oocytes. First, the effects of calcium and cryoprotectants, dimethyl sulfoxide and ethylene glycol (EG), in vitrification medium on survival and developmental ability of vitrified oocytes were evaluated. Oocytes were vitrified by a minimal volume cooling procedure using different cryoprotectants. Most of the vitrified oocytes were morphologically normal after warming, but their fertility and development were low independently of calcium and cryoprotectants. Second, the effect of cumulus cells on ability of oocytes to be fertilized and develop in vitro was examined. The fertility and developmental ability of denuded oocytes (DOs) after IVF were reduced compared with cumulus-oocyte complexes (COCs) both in fresh and cryopreserved groups. Vitrified COCs showed significantly (P<0.05) higher fertility and ability to develop to the 2-cell and blastocyst stages than those of vitrified DOs with cumulus cells and vitrified DOs alone. The vitrified COCs developed to term at a high success rate equivalent to the rate obtained with IVF using fresh COCs. Taken together, the current results clearly demonstrate that, in the presence of surrounding cumulus cells, matured mouse oocytes vitrified using calcium-free media and EG retain their developmental competence. These findings will contribute to improve oocyte vitrification in not only experimental animals but also clinical application for human infertility.  相似文献   

3.
Although cryopreservation of mammalian oocytes is an important technology, it is well known that unfertilized oocytes, especially in pigs, are highly sensitive to low temperature and that cryopreserved oocytes show low fertility and developmental ability. The aim of the present study was to clarify why porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage showed low fertility and developmental ability after vitrification. In vitro matured cumulus oocyte complexes (COCs) were vitrified with Cryotop and then evaluated for fertility through in vitro fertilization (IVF). Although sperm‐penetrated oocytes were observed to some extent (30–40%), the rate of pronuclear formation was low (9%) and none of them progressed to the two‐cell stage. The results suggest that activation ability of cryopreserved oocytes was decreased by vitrification. We examined the localization and expression level of the type 1 inositol 1,4,5 trisphosphate receptor (IP3R1), the channel responsible for Ca2+ release during IVF in porcine oocytes. Localization of IP3R1 close to the plasma membrane and total expression level of IP3R1 protein were both decreased by vitrification. In conclusion, our present study indicates that vitrified‐warmed porcine COCs showed a high survival rate but low fertility after IVF. This low fertility seems to be due to the decrease in IP3R1 by the vitrification procedure.  相似文献   

4.
This study was designed to compare the efficiency of the Cryotop method and that of two methods that employ a micro volume air cooling (MVAC) device by analyzing the survival and development of bovine oocytes and blastocysts vitrified using each method. In experiment I, in vitro-matured (IVM) oocytes were vitrified using an MVAC device without direct contact with liquid nitrogen (LN2; MVAC group) or directly plunged into LN2 (MVAC in LN2 group). A third group of IVM oocytes was vitrified using a Cryotop device (Cryotop group). After warming, vitrified oocytes were fertilized in vitro. There were no significant differences in cleavage and blastocyst formation rates among the three vitrified groups, with the rates ranging from 53.1% to 56.6% and 20.0% to 25.5%, respectively; however, the rates were significantly lower (P < 0.05) than those of the fresh control group (89.3% and 43.3%, respectively) and the solution control group (87.3% and 42.0%, respectively). In experiment II, in vitro-produced (IVP) expanded blastocysts were vitrified using the MVAC, MVAC in LN2 and Cryotop methods, warmed and cultured for survival analysis and then compared with the solution control group. The rate of development of vitrified-warmed expanded blastocysts to the hatched blastocyst stage after 24 h of culture was lower in the MVAC in LN2 group than in the solution control group; however, after 48–72 h of culture, the rates did not significantly differ between the groups. These results indicate that the MVAC method without direct LN2 contact is as effective as the standard Cryotop method for vitrification of bovine IVM oocytes and IVP expanded blastocysts.  相似文献   

5.
The objective of this study was to evaluate fertility and full‐term development of rat vitrified oocytes after in vitro fertilization (IVF) with cryopreserved sperm. Oocytes with or without surrounding cumulus cells were vitrified with 30% ethylene glycol + 0.5 mol/L sucrose + 20% fetal calf serum by using the Cryotop method. The warmed oocytes were co‐cultured with sperm. Although the denuded/vitrified oocytes were not fertilized, some of the oocytes vitrified with cumulus cells were fertilized (32.7%) after IVF with fresh sperm. When IVF was performed with cryopreserved sperm, vitrified or fresh oocytes with cumulus cells were fertilized (62.9% or 41.1%, respectively). In addition, to confirm the full‐term development of the vitrified oocytes with surrounding cumulus cells after IVF with cryopreserved sperm, 108 vitrified oocytes with two pronuclei (2PN) were transferred into eight pseudopregnant females, and eight pups were obtained from three recipients. The present work demonstrates that vitrified rat oocytes surrounded by cumulus cells can be fertilized in vitro with cryopreserved sperm, and that 2PN embryos derived from cryopreserved gametes can develop to term. To our knowledge, this is the first report of successful generation of rat offspring derived from vitrified oocytes that were fertilized in vitro with cryopreserved sperm.  相似文献   

6.
The aim of the present study was to compare the efficiency of the solid surface (SSV), cryotop (CT) vitrification methods and cytochalasin B (CB) pretreatment for cryopreservation of immature buffalo oocytes. Cumulus‐oocyte complexes (COCs) were placed for 1 min in TCM199 containing 10% dimethylsulfoxide (DMSO), 10% ethylene glycol (EG), and 20% fetal bovine serum, and then transferred for 30 s to base medium containing 20% DMSO, 20% EG and 0.5 mol/L sucrose. CB pretreated ((+)CB) or non‐pretreated ((?)CB) COCs were vitrified either by SSV or CT. Surviving vitrified COCs were selected for in vitro maturation (IVM) and in vitro fertilization (IVF). The rate of viable oocytes after vitrification in CT groups (82%) was significantly lower (P < 0.05) than that in a fresh control group (100%), but significantly higher (P < 0.05) than those in SSV groups (71–72%). Among vitrified groups, the highest maturation rate was obtained in the CT (?)CB group (32%). After IVF, the cleavage and blastocyst formation rates were similar among vitrified groups but significantly lower than those of the control group. In conclusion, a higher survival rate of oocytes after vitrification and IVM was obtained in the CT group compared with that in the SSV group, indicating the superiority of the CT method. Pretreatment with CB did not increase the viability, maturation or embryo development of vitrified oocytes.  相似文献   

7.
Ultrastructural morphological injuries and maturation rates were investigated in equine oocytes exposed to vitrification solutions (VS) containing synthetic ice blockers (SIBs) during different exposure times. In experiment 1, compact cumulus-oocyte complexes (COCs; n = 30) were randomly allocated to treatments: (1) fresh fixed (control); (2) VS-1 (1.4 M dimethyl sulfoxide [DMSO] + 1.8 M ethylene glycol [EG] + 1% SIB) for 3 minutes of equilibrium time and VS-2 (2.8 M DMSO + 3.6 M EG + 0.6 M sucrose + 1% SIB) for 1 minute (Eq-long); and (3) VS-1 for 1.5 minutes and VS-2 for 30 seconds (Eq-short). In experiment 2, compact (n = 248) and expanded (n = 264) COCs were evenly distributed to the following treatments: (1) immediate maturation in vitro (control); (2) vitrification using the Eq-short protocol as in experiment 1; and (3) vitrification using a stock solution containing 2.8 M formamide, 2.8 M DMSO, 2.7 M EG, 7% polyvinylpyrrolidone, and 1% SIB (Eq-short-mod). More (P < .02) oocytes with normal ultrastructural morphology were seen in fresh control and Eq-short groups than in Eq-long group. Metaphase-II (MII) rates were higher (P < .05) for oocytes with expanded cumulus than compact cumulus in the control group, and higher (P < .05) for oocytes with expanded cumulus than compact cumulus in Eq-short and Eq-short-mod groups. No difference in MII rates was detected among groups within each type of COC. In conclusion, reduction of exposure time to VS better preserved oocyte ultrastructural features, and MII rates were higher for vitrified oocytes with expanded cumulus. This study advances our knowledge on potential alternatives for vitrification of immature equine oocytes.  相似文献   

8.
Cryopreservation of ovarian cortex has important implications in the preservation of fertility and biodiversity in animal species. Slow freezing of cat ovarian tissue resulted in the preservation of follicular morphology and in the follicular development after xenografting. Vitrification has been recently applied to ovarian tissues of different species, but no information is available on the effect of this method on feline ovarian cortex. Moreover, meiotic competence of fully grown oocytes isolated from cryopreserved tissue has not been reported. The aim of this study was to evaluate the effect of vitrification of feline ovarian cortex on follicular morphology and oocyte integrity, as well as meiotic competence. A total of 352 fragments (1.5-2 mm(3) ) were obtained from ovarian cortical tissues: 176 were vitrified and 176 were used fresh as control. Histological evaluation of fresh and vitrified fragments showed intact follicles after cryopreservation procedures with no statistically significant destructive effect from primordial to antral follicles. After IVM, oocytes collected from vitrified ovarian fragment showed a higher proportion of gametes arrested at germinal vesicle (GV) stage compared to those isolated from fresh control tissue (33.8% vs 2.9%; p < 0.001). However, oocytes isolated from vitrified tissues were able to resume meiosis, albeit at lower rate than those collected from fresh tissues (39.8% vs 85.9%; p < 0.00001). Vitrification induced changes in the organization of cytoskeletal elements (actin microfilaments and microtubules) of oocytes, but significantly only for actin network (p < 0.001). Finally, chromatin configuration within the GV was not affected by the cryopreservation procedure. Our study demonstrated that vitrification preserves the integrity of ovarian follicles and that oocytes retrieved from cryopreserved tissue maintain the capability of resuming meiosis. To our knowledge, this has not previously been reported in the cat.  相似文献   

9.
The aim of this study was to investigate the effect of Taxol and Cytochalasin B on the spindle, chromosome configuration and development to blastocyst stage after parthenogenesis activation of in vivo matured rabbit oocytes after vitrification. Oocytes were randomized into four groups: oocytes treated with Cytochalasin B or Taxol before vitrification, oocytes without treatment before vitrification and fresh oocytes. Oocytes were vitrified using Cryotop method, and meiotic spindle and chromosomal distribution were assessed with a confocal laser scanning microscopy. To determine oocyte competence, in vitro development of oocytes was assessed with parthenogenesis activation. There were no significant differences in the frequencies of normal spindle (33.0%, 31.0% and 32.6%, for non‐treated, Taxol‐treated and Cytochalasin B‐treated oocytes, respectively) and chromosome (48.3%, 46.6% and 34.8%, for non‐treated, Taxol‐treated oocytes and Cytochalasin B‐treated oocytes respectively) in vitrified groups, but significantly lower than those of fresh group (89.7% and 90.2%, for normal spindle and chromosome organization, respectively). No statistical differences were found in the cleavage and blastocyst development rates between non‐treated and Taxol‐treated oocytes (7.7% and 1.5% and 13.7% and 4.6%, for non‐treated and Taxol‐treated oocytes, respectively), although they were significantly lower than in the fresh group (42.3% and 32.1%, for cleavage and blastocyst development, respectively). Oocytes treated with Cytochalasin B failed to reach blastocyst stage. Normal spindle, chromosome configuration and blastocyst development of in vivo matured rabbit oocytes were damaged in vitrification, which was not improved by Taxol and Cytochalasin B pre‐treatment before vitrification. Moreover, a detrimental effect on blastocyst development of Cytochalasin B pre‐treatment before vitrification was observed.  相似文献   

10.
Our aim was to optimize a cryoprotectant treatment for vitrification of immature porcine cumulus-oocyte complexes (COCs). Immature COCs were vitrified either in 35% ethylene glycol (EG), 35% propylene glycol (PG) or a combination of 17.5% EG and 17.5% PG. After warming, the COCs were in vitro matured (IVM), and surviving oocytes were in vitro fertilized (IVF) and cultured. The mean survival rate of vitrified oocytes in 35% PG (73.9%) was higher (P<0.05) than that in 35% EG (27.8%). Oocyte maturation rates did not differ among vitrified and non-vitrified control groups. Blastocyst formation in the vitrified EG group (10.8%) was higher (P<0.05) than that in the vitrified PG group (2.0%) but was lower than that in the control group (25.0%). Treatment of oocytes with 35% of each cryoprotectant without vitrification revealed a higher toxicity of PG on subsequent blastocyst development compared with EG. The combination of EG and PG resulted in 42.6% survival after vitrification. The maturation and fertilization rates of the surviving oocytes were similar in the vitrified, control and toxicity control (TC; treated with EG+PG combination without cooling) groups. Blastocyst development in the vitrified group was lower (P<0.05) than that in the control and TC groups, which in turn had similar development rates (10.7%, 18.1% and 23.3%, respectively). In conclusion, 35% PG enabled a higher oocyte survival rate after vitrification compared with 35% EG. However, PG was greatly toxic to oocytes. The combination of 17.5% EG and 17.5% PG yielded reasonable survival rates without toxic effects on embryo development.  相似文献   

11.
12.
13.
In vitro maturation of vitrified immature germinal vesicle (GV) oocytes is a promising fertility preservation option. We analyzed the ultrastructure of human GV oocytes after Cryotop vitrification (GVv) and compared it with fresh GV (GVc), fresh mature metaphase II (MIIc) and Cryotop-vitrified mature (MIIv) oocytes. By phase contrast microscopy and light microscopy, the oolemmal and cytoplasmic organization of fresh and vitrified oocytes did not show significant changes. GVv oocytes showed significant ultrastructural alterations of the microvilli in 40% of the samples; small vacuoles and occasional large/isolated vacuoles were abnormally present in the ooplasm periphery of 50% of samples. The ultrastructure of nuclei and mitochondria-vesicle (MV) complexes, as well as the distribution and characteristics of cortical granules (CGs), were comparable with those of GVc oocytes. MIIv oocytes showed an abnormal ultrastructure of microvilli in 30% of the samples and isolated large vacuoles in 70% of the samples. MV complexes were normal, but mitochondria-smooth endoplasmic reticulum aggregates appeared to be of reduced size. CGs were normally located under the oolemma but presented abnormalities in distribution and matrix electron density. In conclusion, Cryotop vitrification preserved main oocyte characteristics in the GV and MII stages, even if peculiar ultrastructural alterations appeared in both stages. This study also showed that the GV stage appears more suitable for vitrification than the MII stage, as indicated by the good ultrastructural preservation of important structures that are present only in immature oocytes, like the nucleus and migrating CGs.  相似文献   

14.
DNA fragmentation of cumulus cells could be used as an indicator of oocyte vitrification success as an indirect indicator of the quality of the oocyte. This study was designed to compare the DNA fragmentation of post‐mortem equine cumulus cells before or after vitrification in the absence of permeable cryoprotectant agents. Cumulus–oocyte complexes (COCs; n = 56) were recovered from slaughterhouse ovaries and subjected to in vitro maturation (42 hr/38.2°C/5%CO2) before (control group) or after a permeable cryoprotectant‐free vitrification method using 1 M sucrose (vitrification group). After in vitro maturation, COCs were denuded, and cumulus cells were washed and stored at ?80°C until thawing. Cumulus cell samples were processed with the chromatin dispersion test (Ovoselect, Halotech DNA, Spain). Low, high and total DNA fragmentation percentages of cumulus cells were recorded and compared between the two groups by Student's t test. Results were expressed as mean ± SEM. The vitrified group resulted in significantly higher (p < 0.05) percentages for low (16.81 ± 1.62 vs. 6.63 ± 0.77) and total (21.14 ± 1.84 vs. 12.76 ± 1.48) DNA fragmentation of cumulus cells. There were no significant differences between groups for high DNA fragmentation of cumulus cells. In conclusion, permeable cryoprotectant‐free vitrification of equine oocytes increased the total DNA fragmentation rate of cumulus cells but protected them against high DNA fragmentation rates. Further studies are needed to examine the relationship between DNA fragmentation of cumulus cells and the developmental competence of equine oocytes.  相似文献   

15.
The present study was conducted to investigate the effect of meiotic stages during in vitro maturation (IVM) on the survival of vitrified-warmed buffalo oocytes, vitrified at different stages of IVM. Cumulus oocyte complexes obtained from slaughterhouse ovaries were randomly divided into 6 groups: control (non-vitrified, matured for 24 h at 38 ± 1°C, 5% CO2 in humidified air), and those matured for 0 h (vitrified before IVM) or 6, 12, 18 and 24 h before vitrification. Cumulus oocyte complexes were vitrified in solution consisting of 40% w/v propylene glycol and 0.25 mol/L trehalose in phosphate-buffered saline supplemented with 4% w/v bovine serum albumin. Vitrified cumulus oocyte complexes were stored at −196C (liquid nitrogen) for at least 7 days and then thawed at 37°C; cryoprotectant was removed with 1 mol/L sucrose solution. Cumulus oocyte complexes in the 0, 6, 12, 18 and 24 h groups were then matured for an additional 24, 18, 12, 6 and 0 h, respectively, to complete 24 h of IVM. Among the five vitrification groups, 89–92% of cumulus oocyte complexes were recovered, after warming, of which 84–91% were morphologically normal. Overall survivability of vitrified cumulus oocyte complexes was lower (p < 0.05) than that of non-vitrified cumulus oocyte complexes (94.5%). Survival rates of cumulus oocyte complexes matured 24 h prior to vitrification (61.3%) were higher (p < 0.05) than those matured for 12 h (46.7%), 6 h (40.6%) and 0 h (37.6%). Nuclear status following 24 h IVM was assessed. A higher proportion of non-vitrified (control) oocytes (72.7%) reached metaphase II (M-II) stage in control than oocytes vitrified for 24 h (60.0%), 18 h (54.4), 12 h (42.3%), 6 h (33.3%) and 0 h (31.6%) (p < 0.05). The results suggest that length of time in maturation medium prior to vitrification influences post-thaw survivability of buffalo oocytes; longer intervals resulted in higher survival rates.  相似文献   

16.
We evaluated the effects of polyethylene glycol (PEG) and Supercool X‐1000 (SC) as supplements during the vitrification of immature cumulus‐enclosed porcine oocytes in a solution based on 17.5% ethylene glycol + 17.5% propylene glycol. After warming, the oocytes were subjected to in vitro maturation, fertilization and embryo culture. In Experiment 1, equilibration and vitrification solutions were supplemented with or without 2% (w/v) PEG (PEG+ and PEG‐, respectively). The survival rate, cleavage and blastocyst development were similar between PEG+ and PEG‐ groups; however, all values were lower than those in the non‐vitrified control. In Experiment 2, vitrification solution was supplemented with or without 1% (v/v) SC (SC+ and SC‐, respectively). The percentages of survival and blastocyst development were similar between SC+ and SC‐ groups but lower than those in the non‐vitrified control. The percentage of cleavage in the SC‐ group was significantly lower than the control and the SC+ groups, which were in turn similar to one another. In both experiments, the cell numbers in blastocysts were not significantly different among the non‐vitrified and vitrified groups. In conclusion, PEG did not improve oocyte survival and embryo development, whereas SC improved the ability of surviving oocytes to cleave but not to develop into blastocysts.  相似文献   

17.
Freezing technologies are very important to preserve gametes and embryos of animals with a good pedigree or those having high genetic value. The aim of this work was to compare immature and in vitro matured porcine oocytes regarding their morphology and ability to be fertilised after vitrification by the open pulled straw (OPS) method. In four experiments 830 oocytes were examined. To investigate the effect of cumulus cells on oocyte survival after OPS vitrification, both denuded and cumulus-enclosed oocytes were vitrified at the germinal vesicle (GV) stage, then after vitrification they were matured in vitro. Besides, in vitro matured oocytes surrounded with a cumulus and those without a cumulus were also vitrified. The survival of oocytes was evaluated by their morphology. After in vitro fertilisation the rates of oocytes penetrated by spermatozoa were compared. Our results suggest that the vitrification/warming procedure is the most effective in cumulus-enclosed oocytes (22.35 +/- 1.75%). There was no difference between the order of maturation and vitrification in cumulus-enclosed oocytes, which suggests the importance of cumulus cells in protecting the viability of oocytes during cryopreservation.  相似文献   

18.
19.
In the case of high valuable individuals with very precious genetic material, widening the genetic pool including gametes with poor morphological characteristics, as cumulus‐denuded oocytes (CDOs), could be an option. To improve the in vitro culture of low‐competence feline CDOs, an enriched three‐dimensional (3D) system in association with competent cumulus–oocyte complexes (COCs) was developed. For this purpose, domestic cat CDOs were cultured with or without companion COCs in the 3D barium alginate microcapsules. The overall viability and the meiotic progression of feline CDOs cocultured with COCs or cultured separately in 3D or in 2D (traditional microdrops) system were compared. The 3D system was able to support viability and meiotic resumption of the feline oocytes, as well as the 2D microdrops. In 3D microcapsules, the presence of COCs resulted in a higher viability of CDOs (91.1%, < .05), than that obtained without COCs or in 2D microdrops (71.2% and 67.3%, respectively), but the percentages of meiotic resumption were similar of those of CDOs cultured separately (55.4% vs. 40.4%, p > .05). It is notable that the presence of CDOs seemed to enhance the meiotic progression of the associated COCs. In conclusion, the 3D barium alginate microcapsules are a suitable system for feline oocytes in vitro culture, but more specific enriched conditions should be developed to improve the CDOs full competence in vitro.  相似文献   

20.
Joining immature gamete cryopreservation and germinal vesicle transplantation (GVT) technique could greatly improve assisted reproductive technologies in animal breeding and human medicine. The present work was aimed to assess the most suitable cryopreservation protocol between slow freezing and vitrification for immature denuded bovine oocytes, able to preserve both nuclear and cytoplasmic competence after thawing. In addition, the outcome of germinal vesicle transfer procedure and gamete reconstruction was tested on the most effective cryopreservation system. Oocytes, isolated from slaughterhouse ovaries, were stored after cumulus cells removal either by slow freezing or by vitrification in open pulled straws. After thawing, oocytes were matured for 24 h in co-culture with an equal number of just isolated intact cumulus enclosed oocytes, and fixed in order to evaluate the stage of meiotic progression and cytoskeleton organization. Our results showed that after warming, vitrified oocytes reached metaphase II (MII) in a percentage significantly higher than oocytes cryopreserved by slow freezing (76.2% and 36.5% respectively, p < 0.05). Moreover, vitrification process preserved the organization of cytoskeleton elements in a higher proportion of oocytes than slow freezing procedure. Therefore vitrification has been identified as the elective method for denuded immature oocytes banking and it has been applied in the second part of the study. Our results showed that 38.3% of oocytes reconstructed from vitrified gametes reached the MII of meiotic division, with efficiency not different from oocytes reconstructed with fresh gametes. We conclude that vitrification represents a suitable method of GV stage denuded oocyte banking since both nuclear and cytoplasmic components derived from cryopreserved immature oocytes can be utilized for GVT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号