首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leaf nitrogen nutrition of hinoki cypress (Chamaecyparis obtusa Endlicher) was investigated at three positions along a slope over a period of 3 years. At each slope position, nitrogen properties were compared in patch-cut plots (0.06–0.09 ha) and uncut control plots (0.04 ha). Nitrogen cycling at the lower slope was characterized by a higher rate of soil nitrogen mineralization, and higher nitrogen concentration in fresh leaves and leaf-litter. The soil nitrogen mineralization rate and fresh-leaf nitrogen concentration in the patch-cut plots were higher than those in the control plots. However, leaf-litter nitrogen concentration did not differ between the patch-cut and control plots. The results suggest that slope position strongly affects leaf nitrogen nutrition of hinoki cypress and soil nitrogen availability. By contrast, patch cutting does not affect leaf-litter nitrogen concentration. These findings indicated that hinoki cypress would not enhance forest nitrogen cycling through changes in leaf-litter nitrogen concentration after patch cutting.  相似文献   

2.
Forest soils are important components of the global carbon cycle because they both store and release carbon. Carbon dioxide is released from soil to the atmosphere as a result of plant root and microbial respiration. Additionally, soils in dry forests are often sinks of methane from the atmosphere. Both carbon dioxide and methane are greenhouse gases whose increasing concentration in the atmosphere contributes to climate warming. Thinning treatments are being implemented in ponderosa pine forests across the southwestern United States to restore historic forest structure and reduce the risk of severe wildfire. This study addresses how thinning alters fluxes of carbon dioxide and methane in ponderosa pine forest soils within one year of management and examines mechanisms of change. Carbon dioxide and methane fluxes, soil temperature, soil water content, forest floor mass, root mass, understory plant biomass, and soil microbial biomass carbon were measured before and after the implementation of a thinning and in an unthinned forest. Carbon dioxide efflux from soil decreased as a result of thinning in two of three summer months. Average summer carbon dioxide efflux declined by an average of 34 mg C m−2 hr−1 in the first year after thinning. Methane oxidation did not change in response to thinning. Thinning had no significant short-term effect on total forest floor mass, total root biomass, or microbial biomass carbon in the mineral soil. Understory plant biomass increased after thinning. Thinning increased carbon available for decomposition by killing tree roots, but our results suggest that thinning reduced carbon dioxide emissions from the soil because the reduction in belowground autotrophic respiration was larger than the stimulation of heterotrophic respiration. Methane oxidation was probably not affected by thinning because thinning did not alter the forest floor mass enough to affect methane diffusion from the atmosphere into the soil.  相似文献   

3.
In a transect study involving 15 mature seasonally dry tropical forests growing on uniform geological substrate in the Yucatan Peninsula, Mexico, we analyzed the influence of a large reduction in mean annual precipitation (1,036–537 mm year?1) on carbon (C) and nitrogen (N) pools in soils. We investigated the C content in organic soil and in active fraction pools (organic matter and microbial biomass) and analyzed the dependence of these pools on precipitation. Carbon (total, inorganic and organic, and in microbial biomass) and N (total) concentrations in bulk soil decreased as rainfall increased from <600 mm year?1 >1,000 mm year?1. Additionally, in all organic matter fractions, C and N concentrations generally decreased with greater precipitation. Soil average C mineralization decreased by 61 % from the wettest to the driest region. Reduced precipitation during the dry season increased microbial biomass C and water-extractable C concentrations and decreased the C concentration in organic matter fractions. No other significant changes were observed between seasons in C concentrations, N concentrations or C mineralization. Overall, we conclude that physical (macroclimate) and biological processes are more active in soils in the wettest region, resulting in a faster turnover of organic matter.  相似文献   

4.
Fast growth tree plantations and secondary forests are considered highly efficient carbon sinks. In northwest Patagonia, more than 2 million ha of rangelands are suitable for forestry, and tree plantation or native forest restoration could largely contribute to climate change mitigation. The commonest baseline is the heavily grazed gramineous steppe of Festuca pallescens (St. Yves) Parodi. To assess the carbon sequestration potential of ponderosa pine (Pinus ponderosa (Dougl.) Laws) plantations and native cypress (Austrocedrus chilensis (Don) Flor. et Boutl.), individual above and below ground biomass models were developed, and scaled to stand level in forests between 600 and 1500 annual rainfall. To calculate the carbon sequestration baseline, the pasture biomass was simulated. Also, soil carbon at two depths was assessed in paired pine-cypress-pasture sample plots, the same as the litter carbon content of both forest types. Individual stem, foliage, branch and root log linear equations adjusted for pine and cypress trees presented similar slopes (P>0.05), although some differed in the elevations. Biomass carbon was 52.3 Mg ha−1 (S.D.=30.6) for pine stands and 73.2 Mg ha−1 (S.D.=95.4) for cypress forests, given stand volumes of 148.1 and 168.4 m3 ha−1, respectively. Soil carbon (litter included) was 86.3 Mg ha−1 (S.D.=46.5) for pine stands and 116.5 Mg ha−1 (S.D.=38.5) for cypress. Root/shoot ratio was 19.5 and 11.4%, respectively. The low r/s value for cypress may account for differences in nutrient cycling and water uptake potential. At stand level, differences in foliage, taproot and soil carbon compartments were highly significative (P<0.01) between both forest types. In pine stands, both biomass and soil carbon were highly explained by the rainfall gradient (r2=0.94). Nevertheless, such a relationship was not found for cypress, possibly due to stand and soil disturbances in sample plots. The carbon baseline estimated in pasture biomass, including litter, was 2.6 Mg ha−1 (S.D.=0.8). Since no differences in soil carbon were found between pasture and both forest types, additionality should be accounted only by biomass. However, the replacement of pasture by pine plantations may decrease the soil carbon storage, at least during the first years. On the other hand, the soil may be a more relevant compartment of sequestered carbon in cypress forests, and if pine plantation replaces cypress forests, soil carbon losses could cause a negative balance.  相似文献   

5.
The effects of three postharvest organic matter removal treatments on fermentation-humus (FH) layer and soil characteristics were compared in replicated trials in four second rotation New Zealand Pinus radiata plantation forests, planted 8–16 years prior to sampling. All sites were sampled in early 2002 and 2003. Increasing organic matter removal significantly decreased the mass of the FH layer in the treatment plots, the moisture content in the FH layer and mineral soil, the concentration of carbon in the FH layer and mineral soil, the pool of carbon stored in the FH layer, the concentration of nitrogen in the mineral soil and the pool of nitrogen stored in the FH layer. Mineral soil pH was significantly increased with increasing organic matter removal. The persistence of the significant differences in the FH layer and mineral soil characteristics strongly suggested that variations in organic matter removal have long-term effects on forest floor properties, and significantly influences carbon storage over the life of the rotation.  相似文献   

6.
The effects of nitrogenous fertilisation on litter fall, FH layer and soil characteristics were investigated in replicated trials in six second rotation New Zealand Pinus radiata plantation forests. Four trial sites also incorporated three different post-harvest organic matter removal treatments. All sites were sampled in early 2002 and 2003. Fertilisation significantly increased the nitrogen content and decreased the carbon:nitrogen ratio of the litter fall. Fertilisation significantly increased the mass of the FH layer in the treatment plots, moisture content in the FH layer, the concentration of nitrogen in the FH layer and the pool of carbon and nitrogen stored in the FH layer. Fertilisation significantly increased the nitrogen concentration of the mineral soil, and decreased the mineral soil carbon:nitrogen ratio and pH. Several significant site × fertilisation interaction terms indicated that variations in the fertilisation regimes and site characteristics substantially influenced the effects of fertilisation. Fertilisation did not significantly decrease the relative differences between the organic matter removal treatments. The significant differences in the litter fall, FH layer and mineral soil characteristics strongly suggest that nitrogenous fertilisation has the capacity to significantly alter the forest floor environment, and may be able to increase carbon storage over the life of the rotation.  相似文献   

7.
【目的】研究土壤养分和地被层凋落物养分含量的差异,为马尾松人工林营林措施及地力维持提供科学依据。【方法】以鼎湖山两种典型林型(马尾松纯林和马尾松-黧蒴混交林)为研究对象,对比分析0~60 cm土层的土壤养分含量及地被层凋落物养分含量的差异,探索凋落物质量如何影响土壤养分。【结果】1)林型对土壤有机质、全氮和硫酸根含量有显著影响(P<0.05),对土壤全磷、交换性K+、Ca2+和Mg2+有极显著影响(P<0.01),混交林土壤养分含量(除硝态氮含量和交换性H+含量以外)均高于纯林。2)相同林型不同土层间土壤养分含量差异极显著(P<0.01),其中,土壤有机质和全氮含量随土层的加深而递减,且主要聚集在0~10 cm土层,表聚效应十分明显。3)纯林凋落物有机碳、全氮、C/N和全磷等含量高于混交林;相同林型不同分解层凋落物有机碳、全钙和全镁含量有显著差异(P<0.05),均表现为未分解层>半分解层>腐殖质层。4)土壤养分与地被层凋落物质量的RDA分析表明,0~10 cm土层土壤养分与腐殖质层有机碳呈极显著负相关(P<0.01),与腐殖质层C/N呈显著负相关(P<0.05);在10~20 cm土层,土壤养分与腐殖质层有机碳呈极显著负相关(P<0.05)。【结论】纯林的土壤养分低于混交林的主要原因是纯林凋落物具有较高的C/N和有机碳含量。  相似文献   

8.
Precipitation of mineral phosphate is often recognized as a factor of limiting the availability of P in acidic soils of tropical and subtropical forests. For this paper, we studied the extractable P pools and their transformation rates in soils of a tropical evergreen forest at Xishuangbanna and a subtropical montane wet forest at the Ailao Mountains in order to understand the biogeochemical processes regulating P availability in acidic soils. The two forests differ in forest humus layer; it is deep in the Ailao forest while little is present in the Xishuangbanna forest. The extractable P pools by resin and sodium-bicarbonate decreased when soil organic carbon content was reduced. The lowest levels of extractable P pools occurred in the surface (0–10 cm) mineral soils of the Xishuangbanna forest. However, microbial P in the mineral soil of the Xishuangbanna forest was twice that in the Ailao forest. Potential rates of microbial P immobilization were greater than those of organic P mineralization in mineral soils for both forests. We suggest that microbial P immobilization plays an essential role in avoiding mineral P precipitation and retaining available P of plant in tropical acidic soils, whereas both floor mass accumulation and microbial P immobilization function benefit retaining plant available P in subtropical montane wet forests. Translated from Acta Ecologica Sinica, 2006, 26(7): 2,294–2,300 [译自: 生态学报]  相似文献   

9.
Chinese fir (Cunninghamia lanceolata), a type of subtropical fast-growing conifer tree, is widely distributed in South China. Its plantation area covers more than 7 × 106 hm2, accounting for 24% of the total area of plantation forests in the country. In recent decades, the system of successive plantation of Chinese fir has been widely used in southern China due to anticipated high economic return. However, recent studies have documented that the practice of this system has led to dramatic decreases in soil fertility and forest environment as well as in productivity. Some forest ecologists and managers recognize the ecological role performed by broadleaf trees growing in mixtures with conifers, and a great deal of studies on mixture effects have been conducted, particularly on mixture species of temperate and boreal forests, but these research results were not completely consistent. Possibilities include dependence of the mixture effects in large part to specific site conditions, the interactions among species in mixtures and biological characteristics of species. Although some researchers also studied the effects of mixtures of Chinese fir and broadleaf tree species on soil fertility, forest environment and tree growth status, little information is available about the effects of Chinese fir and its mixtures with broadleaves on carbon and nitrogen stocks. The experimental site is situated at the Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences, Hunan Province (26°40′–27°09′ N, 109°26′–110°08′ E). It is located at the transition zone from the Yunnan-Guizhou Plateau to the low mountains and hills of the southern bank of the Yangtze River at an altitude of 300–1,100 m above mean sea level. At the same time, the site is also a member of the Chinese Ecosystem Research Network (CERN), sponsored by the Chinese Academy of Sciences (CAS). This region has a humid mid-subtropical monsoon climate with a mean annual precipitation of 1,200–1,400 mm, most of the rain falling between April and August, and a mean temperature of 16.5°C with a mean minimum of 4.9°C in January and a mean maximum of 26.6°C in July. The experimental field has red-yellow soil. After a clear-cutting of the first generation Chinese fir (Cunninghamia lanceolata) plantation forest in 1982, three different plantation forest ecosystems, viz. mixture of Michelia macclurei and Chinese fir (MCM), pure Michelia macclurei stand (PMS) and pure Chinese fir stand (PCS), were established in the spring of 1983. A comparative study on C and N stocks under these three plantation forest ecosystems was conducted in 2004. Results showed that carbon stocks were greater under the mixtures than under the pure Chinese fir forest and the pure broad-leaved forest, and the broadleaves and the mixtures showed higher values in nitrogen stocks compared with the pure Chinese fir forest. The spatial distribution of carbon and nitrogen stocks was basically consistent, the value being greater in soil layer, followed by tree layer, roots, understory and litter layer. The carbon and nitrogen stocks in soil layer were both highly correlated with the biomass in understory and litter layer, indicating that understory and forest litterfall exerted a profound effect on soil carbon and nitrogen stocks under plantation ecosystems. However, correlations among soil carbon, nitrogen stocks and below ground biomass of stand have not been observed in this study. Translated from Acta Ecologica Sinica, 2005, 25(12): 3,146–3,154 [译自: 生态学报]  相似文献   

10.
Heavy thinning may provide a feasible means to convert single-species coniferous plantations to broadleaved or mixed forests. To assess this possibility, we monitored tree seedling dynamics of other tree species, the understory microenvironment, and seed availability following heavy thinning (50 % by volume) in two hinoki (Chamaecyparis obtusa) plantations in Shikoku, southwestern Japan. Conventional (35 % by volume) and row thinning (50 % by volume) treatments were also applied at one of the sites. Diffuse transmittance in the understory dramatically increased after all thinning treatments then rapidly decreased, except after row thinning. Heavy thinning accelerated recruitment of small seedlings (with stems <30 cm high) at one of the sites. However, the densities of these seedlings declined sharply, and increases in the densities of larger seedlings recorded in subsequent surveys were very small. Furthermore, at the other site, recruitment of small seedlings under heavy thinning was equivalent to that under conventional thinning and lower than that under row thinning. Abundant species in the recruited seedlings were pioneer or subcanopy species found in the soil seed bank. Low seed rain density at both sites appeared to be responsible for the poor recruitment of canopy tree species. Our results suggest that heavy thinning had limited effects on the seedling recruitment of other tree species in these hinoki plantations due to insufficient seed rain and rapid canopy closure.  相似文献   

11.
川西亚高山天然次生林是西南亚高山林区水源涵养林的主要森林类型,在该区域森林生态系统的碳收支上有重要的作用.本文采用干筛法和重铬酸钾氧化-外加热法对不同演替阶段的次生林土壤结构及有机碳分布特征进行了研究,研究发现本区域各演替阶段次生林的土壤团聚性均比较强,大团聚体的含量为冷杉+桦木混交林最高,且大团聚体的形成与有机质含量...  相似文献   

12.
Interception loss represents an important factor of water balance. The reduction of interception loss through silvicultural treatments to the benefit of water yield is very important for countries with large periods of limited rainfall like Greece. In the context of climate change and its possible effects on water availability, oak ecosystems can play a significant role in water production, as they comprise the largest part of the forested area in Greece. The objective of this study is to investigate the relationships between water interception changes, as a result of different forest management treatments, and water yield. For this reason, experimental watersheds have been established for the study of the hydrological impacts of thinning and clearcutting in an oak ecosystem in northern Greece. Two watersheds were used as control while different combinations of thinning (removal 50% of basal area) and clearcutting treatments were used in the other three study watersheds. Canopy annual interception amounted for 9.0%, 6.7% and 1.8% of the total precipitation in the untreated, thinned and clearcut plots respectively. The practiced thinning and clearcutting operations increased the available amount of water by a mean annual average of 13.2 mm and 42.8 mm respectively compared to the control watersheds. The total water surplus represented 29.5%, 30.9% and 33.9% of the average annual precipitation for the control, thinned and clearcut plot respectively. Surface flow was very low even during large rainfall events, possibly due to the soil and bedrock attributes and the topography of the area. Analogous silvicultural treatments can increase water availability but they should incorporate reduced-impact logging and skidding practices and thus cause the least possible soil disturbance, by carefully selecting the best suited wood harvesting systems and methods.  相似文献   

13.
晋西黄土区三种林地土壤养分随林分生长的变化   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]研究不同林分类型以及林龄对晋西黄土区土壤养分的改良效应,以期为森林可持续经营提供参考、丰富该区域的生态服务评估资料。[方法]采用林分调查、土壤取样和室内分析方法,于2011年和2016年7—8月对3种不同林龄(山杨中龄林、油松幼龄林、侧柏中龄林)林地内的不同土层有机碳、全氮、全磷含量进行分析,并研究林内各土层间的C、N、P化学计量关系。[结果]表明:各林地土壤养分都有极强的表聚性,0~30 cm土层内有机质、全氮、全磷含量占0~100 cm土层的70%以上;经过5年时间,山杨、油松和侧柏林地0~50 cm土层内平均全氮含量分别增长了9.4%、7.4%、7.5%,全磷含量分别增长了11.6%、12.2%、21.4%;0~100 cm土层内碳储量分别增加了21.17、23.74、2.21 t·hm-2。不同林地之间土壤C:N值随土层深度逐渐减小,而N:P、C:P值随土层变化并没有规律;随着林龄的增加,土壤表层(0~10 cm)的N:P和C:P值明显减小,而C:N值变化不明显。[结论]根据全国土壤养分分级标准,试验林地内碳和氮含量较为丰富,而全磷平均含量为0.36~0.46 g·kg-1、为4~5级标准。在试验林地内,对土壤碳储量、全氮、全磷改良效果相对较好的分别为油松林、山杨林和侧柏林。  相似文献   

14.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

15.
以思茅松人工林中龄林、近熟林和过熟林及附近区域思茅松天然林和常绿阔叶林为研究对象,探讨造林对思茅松人工林土壤有机碳和氮储量大小与空间分布的影响。结果表明:各林地类型土壤有机碳、氮含量与C:N随着土层厚度增加而减少,过熟林土壤有机碳和氮含量随土层加深则显著高于其它林地类型,近熟林土壤表层有机碳和氮含量显著低于中龄林和过熟林。思茅松人工林乔木层碳储量随林龄增大而增加,过熟林乔木层碳储量最高。造林对思茅松人工林土壤氮储量的影响不显著,而土壤有机碳储量随林龄增大先减少后增加至过熟林恢复至常绿阔叶林和思茅松天然林水平,土壤有机碳与氮储量随土层加深而减少。与常绿阔叶林和思茅松天然林相比,思茅松人工林的中龄林与过熟林土壤有机碳和氮储量的年变化量高于近熟林,近熟林年变化量呈净减少;在思茅松天然林中,人工更新与在常绿阔叶林中造林相比,思茅松人工林可以累积更多的土壤有机碳和氮储量。此外,土壤含水量越大,土壤有机碳储量则越高。  相似文献   

16.
The species composition and diversities, and soil properties under canopy gaps in broad-leaved Pinus koraiensis forests were studied in the Changbai Mountains. The results indicated that the species composition and diversities in gap were different from those under canopy. The Shannon-Wiener index, evenness index, and abundance index in gap were higher than those under canopy in the seedling layer, while the community dominance in the seedling layer increased in closed canopy. The physicochemical properties of soil changed with the change of space and resource availability in gaps. The thickness, standing crop, and water holding capacity of the litter layer under canopy were significantly (p<0.01) higher than those in gap. The content of total nitrogen and total potassium of litter in gap were 10.47% and 20.73% higher than those under canopy, however, the content of total phosphorus and organic carbon under canopy were 15.23% and 12.66% more than those under canopy. The water content of 0–10 cm and 10–20 cm of soil layer in gap were 17.65% and 16.17% more than those under canopy. The soil buck density of 0–10 cm were slightly higher under canopy than that in gaps, but there was no significant difference in the soil buck density of the 10–20 cm soil layer. The soil pH values were 5.80 and 5.85 in gap and under canopy, respectively, and were not significantly different. The content of soil organic matter, total nitrogen, and total potassium in gap were 12.85%, 7.67%, and 2.38% higher than those under canopy. The content of NH4 +-N, available phosphorus, available potassium, and total phosphorus in soil under canopy were 13.33%, 20.04%, 16.52%, and 4.30% higher than those in gap. __________ Translated from Forest Research, 2006, 19(3): 347–352 [译自: 林业科学研究]  相似文献   

17.
Japanese cypress (Chamaecyparis obtusa Endl.) and Japanese cedar (Cryptomeria japonica D. Don) are common species for plantation forestry in Japan. Cypress is conventionally planted on sites of low fertility whereas for cedar high fertility sites are used. Objectives of this study were to compare the productivities of cypress and cedar plantations grown on adjacent sites where common properties of soils, such as pH values and C and N contents, were similar, and to relate the N cycling at their site with productivities. The stem diameter of trees, aboveground litter production and fine root biomass were measured as indices of forest productivity. Parameters of N cycling included pools of total N and mineral N (ammonium + nitrate), annual N leaching, and potentially mineralizable N. The radial stem increment of the two tree species was similar. However, cedar site had higher total basal area and annual basal increment than cypress site reflecting higher tree density on the cedar site. Aboveground litter, fine root biomass, soil organic matter, and N turnover were higher on the cedar site than on the cypress site. However, litter production and fine root biomass per unit basal area was greater at the cypress site. Phenological pattern of stem growth and periodical litter production were similar for both species during the study period (1992–2000), but showed distinct annual variations caused by the fluctuation in the ambient temperature and precipitation. Mineral N content and the N mineralization potential were greater on the cedar site, indicating greater N availability and higher total tree productivity at the cedar site than those at the cypress site. When provided with more space in the canopy to expand more needles and in the soil to develop more fine roots to exploit sufficient resources, the individual cypress trees have the potential to grow faster. On fertile site and at lower tree density, thicker logs of cypress might be yielded.  相似文献   

18.
笔者分析了川西米亚罗林区典型低效林经不同强度的抚育间伐后,对5种处理的2个土层(0 cm~15 cm,15 cm~30 cm)的土壤总有机碳、微生物量碳含量的变化进行了动态监测,并分析了土壤总有机碳和微生物量碳含量的季节变化。结果表明,5种处理的土壤总有机碳和微生物量碳含量均是上层高于下层;在观测的4个季节内,上层、下层土壤总有机碳均是夏季春季冬季秋季,土壤总有机碳含量的上、下层均值是F3F2F1F4CK;土壤微生物量碳含量均是秋季冬季春季夏季;土壤微生物量碳含量的上、下层均值表现为F3F2F1CKF4,而且30%的间伐强度样地土壤总有机碳含量和微生物量碳含量均最高。  相似文献   

19.
Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in unmanaged units. Prescribed fire (either in the spring or in the fall) in addition to thinning, had no measurable effect on the mid-term physiological performance and wood growth of second growth ponderosa pine.  相似文献   

20.
不同海拔梯度川滇高山栎林土壤颗粒组成及养分含量   总被引:3,自引:0,他引:3  
分析卧龙自然保护区皮条河上游巴郎山3个海拔梯度川滇高山栎林的土壤颗粒组成、总有机碳含量和全氮含量.结果表明:巴郎山川滇高山栎林土壤颗粒组成以粉粒为主,属中质地土壤;3个海拔梯度表层土(0~15cm)土壤总有机碳和全氮含量均高于亚层土(15~30cm);在表层土壤中总有机碳含量随海拔增加呈现由低到高,再变低的趋势,亚层土则随海拔升高呈增加趋势;表层和亚层土壤全氮含量均随海拔降低而减少;巴郎山高山栎林土壤碳氮比值较小,平均为12.77;在2个土层中,总有机碳含量与全氮含量的相关性随海拔梯度递减由极显著正相关(P<0.01)到不相关;表层土壤中总有机碳和全氮含量在海拔3549m处与粗粉粒含量呈极显著正相关(P<0.01),与粘粒呈显著负相关(P<0.05),3091m处与粗粉粒含量正相关性显著(P<0.05),2551m处与细砂粒含量呈显著正相关(P<0.05);亚层土壤全氮含量只在海拔2551m处与细粉粒含量呈显著负相关(P<0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号