首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate growth of C3 crops. Although barley is one of the important cereals of the world, little information exists about the effect of elevated [CO2] on grain yield of this crop, and realistic data from field experiments are lacking. Therefore, winter barley was grown within a crop rotation over two rotation cycles (2000 and 2003) at present and elevated [CO2](375 ppm and 550 ppm) and at two levels of nitrogen supply (adequate (N2): 262 kg ha−1 in 1st year and 179 kg ha−1 in 2nd year) and 50% of adequate (N1)). The experiments were carried out in a free air CO2 enrichment (FACE) system in Braunschweig, Germany. The reduction in nitrogen supply decreased seasonal radiation absorption of the green canopy under ambient [CO2] by 23%, while CO2 enrichment had a positive effect under low nitrogen (+8%). Radiation use efficiency was increased by CO2 elevation under both N levels (+12%). The CO2 effect on final above ground biomass was similar for both nitrogen treatments (N1: +16%; N2: +13%). CO2 enrichment did not affect leaf biomass, but increased ear and stem biomass. In addition, final stem dry weight was higher under low (+27%) than under high nitrogen (+13%). Similar findings were obtained for the amount of stem reserves available during grain filling. Relative CO2 response of grain yield was independent of nitrogen supply (N1: +13%; N2: +12%). The positive CO2 effect on grain yield was primarily due to a higher grain number, while changes of individual grain weight were small. This corresponds to the findings that under low nitrogen grain growth was unaffected by CO2 and that under adequate nitrogen the positive effect on grain filling rate was counterbalanced by shortening of grain filling duration.  相似文献   

2.
Hybrid indica rice (Oryza sativa L.) cultivars play an important role in rice production system due to its heterosis, resistance to environmental stress, large panicle and high yield potential. However, no attention has been given to its yield responses to rising atmospheric [CO2] in conjunction with nitrogen (N) availability. Therefore we conducted a free air CO2 enrichment (FACE) experiment at Yangzhou, Jiangsu, China (119°42′0′′E, 32°35′5′′N), in 2004–2006. A three-line hybrid indica rice cv. Shanyou 63 was grown at ambient and elevated (ca. 570 μmol mol−1) [CO2] under two levels of supplemental N (12.5 g Nm−2 and 25 g Nm−2). Elevated [CO2] had no effect on phenology, but substantially enhanced grain yield (+34%). The magnitude of yield response to [CO2] was independent of N fertilization, but varied among different years. On average, elevated [CO2] increased the panicle number per square meter by 10%, due to an increase in maximum tiller number under enrich [CO2], while productive tiller ratio remained unaffected. Spikelet number per panicle also showed an average increase of 10% due to elevated [CO2], which was supported by increased plant height and stem dry weight per tiller. Meanwhile, elevated [CO2] caused a significant enhancement in both filled spikelet percentage (+5%) and individual grain weight (+4%). Compared with the two prior FACE studies on rice, hybrid indica rice cultivar appears to profit much more from elevated [CO2] than japonica rice cultivar (ca. +13%), not only due to its stronger sink generation, but also enhanced capacity to utilize the carbon sources in a high [CO2] environment. The above data has significant implication with respect to N strategies and cultivar selection under projected future [CO2] levels.  相似文献   

3.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

4.
Over time, the relative effect of elevated [CO2] on the photosynthesis and dry matter (DM) production of rice crops is likely to be changed with increasing duration of CO2 exposure. However, there is no systemic information on interactive effects of elevated [CO2] and nitrogen (N) supply on seasonal changes in phosphorus (P) nutrient of rice crops. In order to investigate the interactive effects of these two factors on seasonal changes in plant P concentration, uptake, efficiency and allocation, a free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003. A japonica cultivar with large panicle was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significantly increased shoot P concentration (dry base) over the season, the average responses varied between 7.3% and 16.2%. Shoot P uptake responses to FACE declined gradually with crop development, with average responses of 57%, 51%, 37%, 26% and 11% on average during the growth periods from transplanting to early-tillering (Period I), early-tillering to mid-tillering (Period II), mid-tillering to panicle initiation (Period III), panicle initiation to heading (Period IV) and heading to grain maturity (Period V), respectively. Seasonal changes in shoot P uptake ratio (i.e., the ratio of shoot P uptake during a given growth period to final shoot P acquisition at grain maturity) responses to FACE followed a similar pattern to that of shoot P uptake, with average responses of 19%, 14%, 3%, −5% and −16% in Periods I, II, III, IV and V of the growth period, respectively. As a result, FACE enhanced shoot P uptake by 33% at grain maturity. P allocation patterns among above-ground organs were not altered by FACE before heading, but it was modified after heading, with a shift in P allocation patterns towards vegetative organ. FACE resulted in the significant decrease in P-use efficiency for biomass across the season and P-use efficiency for grain yield and P harvest index at grain maturity. Generally, there were no interactions between [CO2] and N supply on above P nutrient variables measured. Data from this study has important implications for P management in rice production systems under future elevated [CO2] conditions.  相似文献   

5.
Hybrid rice cultivar plays an important role in rice production system due to its high yield potential and resistance to environmental stress. Quantification of its responses to rising CO2 concentration ([CO2]) will reduce our uncertainty in predicting future food security and assist in development of adaptation strategies. Using free air CO2 enrichment (FACE), we measured seasonal changes in growth and nitrogen (N) uptake of an inter-subspecific hybrid rice cultivar Liangyoupeijiu grown under two levels of [CO2] (ambient and elevated by 200 μmol mol−1) and two levels of N fertilization in 2005–2006. Average across the 2 years, FACE increased crop growth rate similarly by 22%, 24% and 23% in the periods from transplanting to panicle initiation (PI), PI to heading and heading to maturity, which was mainly attributed to an increase in green leaf area index rather than the greater net assimilation rate. Grain yield increased greatly under FACE as a result of similar contributions by panicle number per unit area, grain number per panicle and individual grain yield. Final aboveground N acquisition showed a 10.4% increase under FACE, which resulted from enhanced N uptake at both vegetative and reproductive growth stages. Compared with previous FACE studies on final productivity of two inbred japonica cultivars, inter-subspecific hybrid cultivar appears to profit more from elevated [CO2], which mainly resulted from its greater enhancement in photosynthetic production during reproductive growth due to a lack of N limitations late in the season.  相似文献   

6.
ABSTRACT

The effects of elevated carbon dioxide concentration on the morphology of leaf blades in two Chinese yam lines under different temperature conditions were determined. Plants were grown under two [CO2] levels, ambient (about 400 µmol mol?1) and elevated (ambient + 200 µmol mol?1) in the daytime, and two mean air temperature regimes, approximately ambient temperature (22.2°C) and high temperature (25.6°C). The palisade layer was thicker under elevated [CO2] than under ambient [CO2] in both temperature regimes, and the whole yam leaf blade was thicker under elevated [CO2] than under ambient [CO2] in the approximately ambient temperature regime. The numbers of chloroplasts per palisade cell and spongy cell as well as per unit profile area of palisade cell, number of starch grains per chloroplast, profile area of the starch grain, and starch-to-chloroplast area ratio in both palisade and spongy cells were higher under elevated [CO2] than under ambient [CO2] in both temperature regimes. Furthermore, the stomatal density on the abaxial side of the leaf blade in Chinese yam was greater under elevated [CO2] than under ambient [CO2] under both temperature regimes, and stomatal-pore length was higher under elevated [CO2] than under ambient [CO2] in the approximately ambient temperature regime. These results indicate that elevated [CO2] positively affects the photosynthetic apparatus. The results of this study provide information for understanding the response characteristics of the leaf blade under elevated [CO2] and a possible explanation for the positive photosynthetic responses of Chinese yam to elevated [CO2] in our previous study.

List of Abbreviations:[CO2]: carbon dioxide concentration  相似文献   

7.
《Plant Production Science》2013,16(2):156-167
Abstract

We tested the hypothesis that elevated CO2 concentration [CO2]-induced enhancement of biomass production of soybean is greater in a genotype that has a higher nitrogen (N) fixation capacity. Furthermore, we analyzed theinteractive effects of N fertilization, temperature and [CO2] on biomass production. Three genetically related genotypes: Enrei (normally-nodulating genotype), Kanto 100 (supernodulating genotype), and En1282 (non-nodulating genotype) were grown in pots, with or without N fertilizer for two years (2004, 2005). They were then subjected to two different [CO2] (ambient and elevated (ambient + 200 ?mol mol-1)) × two temperature regimes (low,high (low + 4~5ºC)). Top dry weight at maturity was the greatest in the elevated [CO2] × high temperature regime, irrespective of genotype and N fertilization. The [CO2] elevation generally enhanced N acquisition and dry matter production during the vegetative growth stage, and the enhancement was more pronounced in the nodulating genotypes (Enrei and Kanto 100) than in the non-nodulating genotype (En1282), indicating that N supply through N fixation contributes to elevated [CO2]-induced biomass production in soybean. However, the relative responsiveness ofbiomass production to elevated [CO2] was not necessarily higher in the supernodulating genotype than the normally-nodulating genotype. The N utilization efficiency to produce biomass was inferior in the supernodulating genotype than in the normally-nodulating and non-nodulating genotypes. These results did not fully verify the hypothesis that elevated [CO2]-induced enhancement of biomass production of soybean is greater in a genotype with a higher N fixation capacity.  相似文献   

8.
Chinese yam (‘yam’) was grown at different carbon dioxide concentrations ([CO2]), namely, ambient and elevated (ambient + 200 μmol mol?1), under low- and high-temperature regimes in summer and autumn, separately. For comparison, rice was also grown under these conditions. Mean air temperatures in the low- and high-temperatures were respectively 24.1 and 29.1 °C in summer experiment and 20.2 and 24.9 °C in autumn experiment. In summer experiment, yam vine length, leaf area, leaf dry weight (DW), and total DW were significantly higher under elevated [CO2] than ambient [CO2] in both temperature regimes. Additionally, number of leaves, vine DW, and root DW were significantly higher under elevated [CO2] than under ambient [CO2] in the low-temperature regime. In autumn experiment, tuber DW was significantly higher under elevated [CO2] than under ambient [CO2] in the high-temperature regime. These results demonstrate that yam shows positive growth responses to elevated [CO2]. Analysis of variance revealed that significant effect of [CO2] × air temperature interaction on yam total DW was not detected. Elevated-to-ambient [CO2] ratios of all growth parameters in summer experiment were higher in yam than in rice. The results suggest that the contribution of elevated [CO2] is higher in yam than in rice under summer. Yam net photosynthetic rate was significantly higher under elevated [CO2] than under ambient [CO2] in both temperature regimes in summer. Elevated [CO2] significantly affected on the rate in yam but not in rice in both experiments. These findings indicate that photosynthesis responds more readily to elevated [CO2] in yam than in rice.  相似文献   

9.
The present study investigated the effects of elevated carbon dioxide concentration ([CO2]) and air temperature on the germination of seed bulbils and the seedling vigour of two Chinese yam lines. Plants were grown under two [CO2] levels, ambient and elevated (ambient + 200 μmol mol?1), and two mean air temperature regimes, 22.2 °C (ambient + 1.4 °C) and 25.6 °C (ambient + 5.2 °C). Elevated [CO2] did not affect bulbil germination under both air temperature regimes. During the early growth stage, the dry weight (DW) of leaves, vines, shoots, roots, belowground parts (roots + tubers) and whole plants were higher under elevated [CO2] than ambient [CO2] for both lines under the low- and high-temperature regimes. The values of vigour indexes (index I = germination % × seedling length and index II = germination % × seedling DW) were also higher under elevated [CO2] than ambient [CO2] for both lines. These results indicated that Chinese yam seedlings respond positively to elevated [CO2] during the early growth stage. The above:belowground DW ratios were lower under elevated [CO2] than ambient [CO2] in seedlings with very small new tubers for both yam lines, indicating that elevated [CO2] strongly affected the root growth in the early growth stage. The DWs of post-treatment seed bulbils were higher in the elevated [CO2] under both air temperature regimes. The results showed that Chinese yam used a smaller amount of the reserves in seed bulbils under elevated [CO2] than under ambient [CO2].  相似文献   

10.
《Journal of Crop Improvement》2013,27(1-2):377-392
SUMMARY

Two poplar clones, hybrid Populus deltoides Bartr. Ex Marsh X Populus nigra L. (Populus xeuramericana), clone I-214, and Populus deltoides, clone Lux, were grown from hardwood cuttings for one growing season in either ambient (360 μmol mol?1) or elevated (560 μmol mol?1) [CO2] in FACE-systemrings at Rapolano Terme (Siena, Italy). Both clones I-214 and Lux exhibited a higher aboveground bio-mass, photosynthesis at light saturation and instantaneous transpiration efficiency (ITE) in CO2-enriched air. The elevated [CO2]-induced responses of clone I-214 included increased investment in branch and leaf biomass, and enhanced stem volume. The elevated [CO2]-induced responses of clone Lux included an increase in the number of branches (and foliage area). Indication of photosynthetic acclimation under elevated [CO2] was found during the early morning, but only in clone I-214. Stomatal conductance decreased under elevated [CO2] particularly in clone Lux. Clone differences in response to elevated [CO2] should be taken in account when planning future poplar plantations in forecast warmer and drier Mediterranean sites.  相似文献   

11.
《Plant Production Science》2013,16(3):307-315
Abstract

The effects of elevated carbon dioxide concentration ([CO2]) on silica deposition on husk epidermis of rice (Oryza sativa L. cv. Akitakomachi) during the flowering stage were investigated in this study. The study was motivated by the concept that the rice yield maybe affected by global warming as a result of elevated [CO2] environment since sterility of rice is related to the panicle silica content that influences transpiration, and elevated [CO2] could affect plant transpiration. Silica deposition analysis was focused on the flowering stage of the rice crop grown hydroponically under two [CO2] conditions: 350 μmol mol-1 (ambient) and 700 μmol mol-1 (elevated). Silica deposition on the husk epidermis from three parts of the panicle at four flowering stages were examined using a scanning electron microscope (SEM) combined with an energy dispersive X-ray microanalyzer (EDX). The results demonstrated that elevated [CO2] significantly suppressed silica deposition on the husk epidermis at the lower part of the panicle, and at the early flowering stage when 1/3 of the panicle emerged from the leaf sheath. In the transverse section analysis of the husk, silica deposition on the husk epidermis under elevated [CO2] was less than that under ambient [CO2] at the late flowering stage. The less silica deposition observed on the husks at the late flowering stage under elevated [CO2] might be related to the suppressed transpiration from the panicle by elevated [CO2] found in a previous study.  相似文献   

12.
Four field experiments comparing 24 durum wheat varieties grown at different periods during the 20th century in Italy and Spain were carried out to assess the changes caused by breeding activities on the number of grains per main spike and its determinants: number of spikelets per spike, number of grains per spikelet, fertile flowering and grain setting. Increases of 0.14 grains spike−1 year−1 (0.43% year−1 in relative terms) and 0.08 grains spike−1 year−1 (0.22% year−1) were observed in Italian and Spanish varieties, respectively. The overall change in the number of grains per spike in Italian germplasm (29.5%) was due to increases in both, the number of spikelets per spike (7.5%) and the number of grains per spikelet (20.3%), while in Spanish varieties the increase in the number of grains per spike (19.5%) was only attributed to the improvement of the number of grains per spikelet. The increase in the number of fertile florets per spike (about 12%) was similar in both countries, but while it explained more than 70% of the changes in the number of grains per spike in Spanish varieties, grain setting was responsible for most of the improvement in the number of grains per spike in the Italian germplasm. The percentage of florets setting grains was 68 and 64% in modern Italian and Spanish varieties, respectively. Most of the changes in the number of grains per spikelet were found in the upper part of the spike on Italian varieties, whilst they were more evenly distributed in the Spanish ones. The main achievement derived from the introduction of the Rht-B1 dwarfing gene was an increase in the number of grains per spikelet, but it did not have any effect on the number of spikelets on the main spike. The lack of genetic associations between grain setting and both the number of spikelets per spike and the number of fertile florets per spike suggests that future yield gains may be obtained through increases in the three components independently.  相似文献   

13.
14.
《Plant Production Science》2013,16(3):238-245
Abstract

Waterlogging is a major predicted agricultural problem for crop production in some areas under current climate change, but no studies are available on the interactive effects of waterlogging and elevated atmospheric CO2 concentration ([CO2]). We hypothesized that elevated [CO2] could alleviate the damage caused by waterlogging, and tested the hypothesis using vegetative growth of soybean (Glycine max) in 10 experiments (different sowing time and different soil type) conducted at Morioka and Tsukuba for three years. The 2-week-old plants grown under elevated and ambient [CO2] were exposed to waterlogging for 2 weeks. Total dry weight at the end of the treatment was higher under elevated [CO2] than under ambient [CO2], and it was significantly reduced by waterlogging under both levels of [CO2], without significant [CO2]×waterlogging interactions, at both locations. The negative effects of the waterlogging were greater in root dry weight than in top dry weight, and the root exudation per unit root dry weight was also reduced by waterlogging, without a [CO2] ×waterlogging interaction. Therefore, the hypothesis of a [CO2]×waterlogging interaction can be rejected, and provide an important basis for predicting future damage caused by waterlogging under elevated [CO2] conditions.  相似文献   

15.
SUMMARY

Increasing atmospheric CO2 concentrations [CO2] have the potential to enhance growth and yield of agricultural plants. Con-comitantly plants grown under high [CO2] show significant changes of the chemical composition of their foliage and of other plant parts. Particularly, high [CO2] result in a decrease of plant nitrogen (N) concentration, which may have serious consequences for crop quality. This presentation summarizes the results of a variety of CO2 enrichment studies with pasture plants (Lolium spp., Trifolium repens) and cereal species (Triticum aestivum, Hordeum vulgare) which were conducted at our laboratory under different growth and CO2 exposure conditions ranging from controlled environment studies to investigations under free air carbon dioxide enrichment (FACE). With the exception of clover in all experiments a CO2-induced decline of forage and grain N concentration was observed. The magnitude of this reduction differed between species, cultivars, management conditions (N fertilization) and CO2 exposure conditions. No unambiguous evidence was obtained whether N fertilization can contribute to meet the quality requirements for cereals and grass monocultures with respect to tissue N concentrations in a future high-CO2 world. As shown in the FACE experiments current application rates of N fertilizers are inadequate to achieve quality standards.  相似文献   

16.
《Journal of Crop Improvement》2013,27(1-2):217-244
SUMMARY

Since CO2 is a primary input for crop growth, there is interest in how increasing atmospheric CO2 will affect crop productivity and alter cropping system management. Effects of elevated CO2 on grain and residue production will be influenced by crop selection. This field study evaluated soybean [C3; Glycine max(L.) Merr.] and grain sorghum [C4; Sorghum bicolor (L.) Moench.] cropping systems managed under conservation tillage practices and two atmospheric CO2 concentrations (ambient and twice ambient) for three growing seasons. Elevated CO2 increased soybean and sorghum yield by 53% and 17% increase, respectively; reductions in whole plant water use were also greater for soybean than sorghum. These findings suggest that increasing CO2 could improve future food security, especially in soybean production systems. Elevated CO2 increased aboveground residue production by > 35% for both crops; such shifts could complement conservation management by increasing soil surface cover, thereby reducing soil erosion. However, increased residue could negatively impact crop stand establishment and implement effectiveness during tillage operations. Elevated CO2 increased total belowground dry weight for both crops; increased root proliferation may alter soil structural characteristics (e.g., due to increased number and extent of root channels) which could lead to increases in porosity, infiltration rates, and subsequent soil water storage. Nitrate leaching was reduced during the growing season (due to increased N capture by high CO2-grown crops), and also during the fallow period (likely a result of altered decomposition patterns due to increased C:N ratios of the high CO2-grown material). Enhanced crop growth (both above-and be-lowground) under elevated CO2 suggests greater delivery of C to soil, more soil surface residue, and greater percent ground coverage which could reduce soil C losses, increase soil C storage, and help ameliorate the rise in atmospheric CO2. Results from this study suggests that the biodegradability of crop residues and soil C storage may not only be affected by the environment they were produced in but may also be species dependent. To more fully elucidate the relationships between crop productivity, nutrient cycling, and decomposition of plant materials produced in elevated CO2 environments, future studies must address species effects (including use of genetically modified crops) and must also consider other factors such as cover crops, crop rotations, soil series, tillage practices, weed management, and regional climatic differences.  相似文献   

17.
Nitrogen uptake,fixation and response to fertilizer N in soybeans: A review   总被引:2,自引:0,他引:2  
Although relationships among soybean (Glycine max [L.] Merr) seed yield, nitrogen (N) uptake, biological N2 fixation (BNF), and response to N fertilization have received considerable coverage in the scientific literature, a comprehensive summary and interpretation of these interactions with specific emphasis on high yield environments is lacking. Six hundred and thirty-seven data sets (site–year–treatment combinations) were analyzed from field studies that had examined these variables and had been published in refereed journals from 1966 to 2006. A mean linear increase of 0.013 Mg soybean seed yield per kg increase in N accumulation in aboveground biomass was evident in these data. The lower (maximum N accumulation) and upper (maximum N dilution) boundaries for this relationship had slopes of 0.0064 and 0.0188 Mg grain kg−1 N, respectively. On an average, 50–60% of soybean N demand was met by biological N2 fixation. In most situations the amount of N fixed was not sufficient to replace N export from the field in harvested seed. The partial N balance (fixed N in aboveground biomass − N in seeds) was negative in 80% of all data sets, with a mean net soil N mining of −40 kg N ha−1. However, when an average estimated belowground N contribution of 24% of total plant N was included, the average N balance was close to neutral (−4 kg N ha−1). The gap between crop N uptake and N supplied by BNF tended to increase at higher seed yields for which the associated crop N demand is higher. Soybean yield was more likely to respond to N fertilization in high-yield (>4.5 Mg ha−1) environments. A negative exponential relationship was observed between N fertilizer rate and N2 fixation when N was applied on the surface or incorporated in the topmost soil layers. Deep placement of slow-release fertilizer below the nodulation zone, or late N applications during reproductive stages, may be promising alternatives for achieving a yield response to N fertilization in high-yielding environments. The results from many N fertilization studies are often confounded by insufficiently optimized BNF or other management factors that may have precluded achieving BNF-mediated yields near the yield potential ceiling. More studies will be needed to fully understand the extent to which the N requirements of soybean grown at potential yields levels can be met by optimizing BNF alone as opposed to supplementing BNF with applied N. Such optimization will require evaluating new inoculant technologies, greater temporal precision in crop and soil management, and most importantly, detailed measurements of the contributions of soil N, BNF, and the efficiency of fertilizer N uptake throughout the crop cycle. Such information is required to develop more reliable guidelines for managing both BNF and fertilizer N in high-yielding environments, and also to improve soybean simulation models.  相似文献   

18.
《Field Crops Research》1995,40(1):29-37
Forage crops are frequently subjected to stress conditions resulting from inadequate supplies of water and N. Because forages grown under these stress conditions constitute an important resource in animal agriculture, this study was undertaken to assess possible changes in the nutritive value and productivity of forage crops as a consequence of global environment change. A relatively simple, mechanistic model of wheat was extended to simulate growth and important determinants of feed quality ([N], leaf:stem, dry matter digestibility) in an annual, temperate climate C3 forage grass. Weather data for a semiarid region and different levels of applied N were used to examine the response of forage productivity to various levels of water and N availability. Not surprisingly, responses to global environment change were highly dependent on the availability of both water and N. When either resource was available at low levels, production of digestible dry matter was nearly unchanged by elevated [CO2] or increased temperature. When compared at equivalent development stages, small increases in forage quality were simulated, mainly because higher temperature resulted in achievement of the initiation of grain fill at an earlier date. As N availability increased, differences in forage characteristics and productivity became more prominent. Elevated ambient [CO2] increased vegetative mass, digestible dry matter, and concentration of digestible dry matter but decreased leaf:stem and [N]. Increased temperature generally had an effect on forage traits that was opposite to the elevated [CO2] response. The combined effects of both factors sometimes cancelled each other, but usually one of the factors was dominant. Negative effects of temperature tended to be aggravated by dry conditions. At crop maturity, positive effects of elevated atmospheric [CO2] on forage productivity and quality were severely decreased by nutrient and physiological constraints. These simulations indicate that when forage crops are grown under irrigation in semiarid regions, there may be substantial and complex changes in productivity and feed quality as a consequence of warmer temperature and elevated atmospheric [CO2]. Under rainfed conditions, these differences could be quite erratic and virtually unpredictable within the current range of interannual variation in forage productivity and quality.  相似文献   

19.
A field study was carried out to quantify the compensation capacity of Bacillus thuringiensis (Bt)-transgenic cotton to simulated damage by manually removing squares during the early growing season in 2004 and 2005 in combination with CO2 levels (ambient CO2 and elevated CO2). Treatments included: initial squares were wholly (100%) removed manually for 1 week (i.e., SR1 treatment) and for 2 consecutive weeks (i.e., SR2 treatment). Plant leaf area was measured every 2 weeks, and plant root, stem, leaf, shatters, boll dry weight and lint yield and maturity were measured at harvest. Significantly higher leaf area per plant was observed on each sampling date for SR1 and SR2 treatments compared with control (SR0) treatment in 2004 and 2005 under elevated CO2. Significantly higher lint yield and maturity were observed for SR0, SR1 and SR2 treatments under elevated CO2 in 2004 and 2005. CO2 concentration and square removal significantly affected plant lint yield and maturity. Moreover, the interaction between CO2 concentration × square removal had a significant effect on plant leaf dry weight, lint yield and maturity. Our results indicated that transgenic cotton plants can compensate for the manual removal of 100% of the initial squares for 1 and 2 weeks under ambient and elevated CO2.  相似文献   

20.
《Field Crops Research》2006,98(1):12-19
It is reported that stimulating effect of elevated atmospheric [CO2] on photosynthesis of rice (Oryza sativa L.) is likely to be reduced during the plant growth period. However, there is little information on seasonal changes in dry matter (DM) production and distribution of rice under elevated atmospheric [CO2]. A free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003, using Wuxiangging 14, a japonica cultivar. The rice was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with 25 g N m2, which is the normal N application rate for local farmers. DM accumulation of rice in FACE plots was significantly increased by 40, 30, 22, 26 and 16% on average at tillering, panicle initiation (PI), heading, mid-ripening and grain maturity, respectively. Rice DM production under FACE was significantly enhanced by 41, 27, 15 and 38% on average during the growth periods from transplanting to tillering (Period 1), tillering to PI (Period 2), PI to heading (Period 3) and heading to mid-ripening (Period 4), respectively, but significantly decreased by 25% in the period from mid-ripening to grain maturity (Period 5). In general, seasonal changes in crop response to FACE in both green leaf area index (GLAI) and net assimilation rate (NAR) followed a similar pattern to that of the DM production. Under FACE the leaves decreased significantly in proportion to the total above-ground DM over the season, the stems showed an opposite trend, while the spikes depended on crop development stage: showing no change at heading, significant increase (+4%) at mid-ripening and significant decrease (−3%) at grain maturity. Grain yield was stimulated by an average of 13% by FACE, due to increased total DM production rather than any changes in partitioning to the grain. We conclude that the gradual acclimation of rice growth to elevated [CO2] do not occur inevitably, and it could also be altered by environmental conditions (e.g., cultivation technique).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号