首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retention and/or reincorporation of plant residues increases soil organic nitrogen (N) levels over the long-term is associated with increased crop yields. There is still uncertainty, however, about the interaction between crop residue (straw) retention and N fertilizer rates and sources. The objective of the study was to assess the influence of straw management (straw removed [SRem] and straw retained [SRet]), N fertilizer rate (0, 25, 50 and 75 kg N ha−1) and N source (urea and polymer-coated urea [called ESN]) under conventional tillage on seed yield, straw yield, total N uptake in seed + straw and N balance sheet. Field experiments with barley monoculture (1983-1996), and wheat/barley-canola-triticale-pea rotation (1997-2009) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Argicryoll] silty clay loam at Ellerslie) in north-central Alberta, Canada. On the average, SRet produced greater seed yield (by 205-220 kg ha−1), straw yield (by 154-160 kg ha−1) and total N uptake in seed + straw (by 5.2 kg N ha−1) than SRem in almost all cases in both periods at Ellerslie, and only in the 1997-2009 period at Breton (by 102 kg seed ha−1, 196 kg straw ha−1 and by 3.7 kg N ha−1) for both N sources. There was generally a considerable increase in seed yield, straw yield and total N uptake in seed + straw from applied N up to 75 kg N ha−1 rate for both N sources at both sites and more so at Breton, but the response to applied N decreased with increasing N rate. The ESN was superior to urea in increasing seed yield (by 109 kg ha−1), straw yield (by 80 kg ha−1) and total N uptake in seed + straw (by 2.4 kg N ha−1) in the 1983-1996 period at Breton (mainly at the 25 and 50 kg N ha−1 rates). But, urea produced greater straw yield (by 95 kg ha−1) and total N uptake in seed + straw (by 3.3 kg N ha−1) than ESN in the 1983-1996 period at Ellerslie. The N balance sheets over the 1983-2009 study duration indicated large amounts of applied N unaccounted for (ranged from 740 to 1518 kg N ha−1 at Breton and from 696 to 1334 kg N ha−1 at Ellerslie), suggesting a great potential for N loss from the soil-plant system through denitrification and/or nitrate leaching, and from the soil mineral N pool by N immobilization. In conclusion, the findings suggest that long-term retention of crop residue may gradually improve soil productivity. The effectiveness of N source varied with soil type.  相似文献   

2.
In the framework of the E.U. project Fair CT 96-1913 “Environmental studies on sweet and fibre sorghum, sustainable crops for biomass and energy”, a research has been carried out with the aim to study the water and nitrogen balance and determine the critical N dilution curve of sweet sorghum cv. Keller. A field experiment was performed, where three irrigation treatments (I0 = dry control, I50 = 50% ETm restoration, I100 = 100% ETm restoration) and four nitrogen fertilization levels (N0 = no nitrogen control, N60 = 60 kg ha−1, N120 = 120 kg ha−1; N180 = 180 kg ha−1) were studied. The final yield was significantly affected by the amount of water distributed but not by the nitrogen level. The treatments watered up to crop establishment (I0) produced, in the average, 7.5 t ha−1 of dry matter, against 21.1 and 27.1 t ha−1 of I50 and I100, respectively. The crop determined a great reduction in nitrate concentration of soil water, irrespective of nitrogen supplied. The variation between N output and input (Δ) was negative in N0, N60 and N120 and positive in N180. The critical value of nitrogen uptake change in relation to the water availability. The amount of nitrogen supplied did not determine significant differences upon WUE. The crop seems to have a great potentiality in Mediterranean environment in terms of yield production.  相似文献   

3.
Nitrogen uptake,fixation and response to fertilizer N in soybeans: A review   总被引:2,自引:0,他引:2  
Although relationships among soybean (Glycine max [L.] Merr) seed yield, nitrogen (N) uptake, biological N2 fixation (BNF), and response to N fertilization have received considerable coverage in the scientific literature, a comprehensive summary and interpretation of these interactions with specific emphasis on high yield environments is lacking. Six hundred and thirty-seven data sets (site–year–treatment combinations) were analyzed from field studies that had examined these variables and had been published in refereed journals from 1966 to 2006. A mean linear increase of 0.013 Mg soybean seed yield per kg increase in N accumulation in aboveground biomass was evident in these data. The lower (maximum N accumulation) and upper (maximum N dilution) boundaries for this relationship had slopes of 0.0064 and 0.0188 Mg grain kg−1 N, respectively. On an average, 50–60% of soybean N demand was met by biological N2 fixation. In most situations the amount of N fixed was not sufficient to replace N export from the field in harvested seed. The partial N balance (fixed N in aboveground biomass − N in seeds) was negative in 80% of all data sets, with a mean net soil N mining of −40 kg N ha−1. However, when an average estimated belowground N contribution of 24% of total plant N was included, the average N balance was close to neutral (−4 kg N ha−1). The gap between crop N uptake and N supplied by BNF tended to increase at higher seed yields for which the associated crop N demand is higher. Soybean yield was more likely to respond to N fertilization in high-yield (>4.5 Mg ha−1) environments. A negative exponential relationship was observed between N fertilizer rate and N2 fixation when N was applied on the surface or incorporated in the topmost soil layers. Deep placement of slow-release fertilizer below the nodulation zone, or late N applications during reproductive stages, may be promising alternatives for achieving a yield response to N fertilization in high-yielding environments. The results from many N fertilization studies are often confounded by insufficiently optimized BNF or other management factors that may have precluded achieving BNF-mediated yields near the yield potential ceiling. More studies will be needed to fully understand the extent to which the N requirements of soybean grown at potential yields levels can be met by optimizing BNF alone as opposed to supplementing BNF with applied N. Such optimization will require evaluating new inoculant technologies, greater temporal precision in crop and soil management, and most importantly, detailed measurements of the contributions of soil N, BNF, and the efficiency of fertilizer N uptake throughout the crop cycle. Such information is required to develop more reliable guidelines for managing both BNF and fertilizer N in high-yielding environments, and also to improve soybean simulation models.  相似文献   

4.
Farmers have adopted alternate wetting and drying (AWD) irrigation to cope with water scarcity in rice production. This practice shifts rice land away from being continuously anaerobic to being partly aerobic, thus affecting nutrient availability to the rice plant, and requiring some adjustment in nutrient management. The use of a chlorophyll meter (also known as a SPAD meter) has been proven effective in increasing nitrogen-use efficiency (NUE) in continuously flooded (CF) rice, but its use has not been investigated under AWD irrigation. This study aimed at testing the hypotheses that (i) SPAD-based N management can be applied to AWD in the same way it is used in CF rice, and (ii) combining chlorophyll meter-based nitrogen management and AWD can enhance NUE, save water, and maintain high rice yield. Experiments were conducted in a split-plot design with four replications in the 2004 and 2005 dry seasons (DS) at IRRI. The main plots were three water treatments: CF, AWD that involved irrigation application when the soil dried to soil water potential at 15-cm depth of −20 kPa (AWD−20) and −80 kPa (AWD−80) in 2004, and AWD−10 and AWD−50 were used in 2005. The subplots were five N management treatments: zero N (N0), 180 kg N ha−1 in four splits (N180), and three SPAD-based N-management treatments in which N was applied when the SPAD reading of the youngest fully extended leaf was less than or equaled 35 (NSPAD35), 38 (NSPAD38), and 41 (NSPAD41). In 2005, NSPAD32 was tested instead of NSPAD41. A good correlation between leaf N content per unit leaf area and the SPAD reading was observed for all water treatments, suggesting that the SPAD reading can be used to estimate leaf N of rice grown under AWD in a way similar to that under CF. SPAD readings and leaf color chart (LCC) values also showed a good correlation. There were no water × nitrogen interactive effects on rice yield, water input, water productivity, and N-use efficiency. Rice yield in AWD−10 was similar to those of CF; yields of other AWD treatments were significantly lower than those of CF. AWD−10 reduced irrigation water input by 20% and significantly increased water productivity compared with CF. The apparent nitrogen recovery and agronomic N-use efficiency (ANUE) of AWD−10 and AWD−20 were similar to those of CF. The ANUE of NSPAD38 and NSPAD35 was consistently higher than that of N180 in all water treatments. NSPAD38 consistently gave yield similar to that of N180 in all water treatments, while yield of NSPAD35 about 90% of that of CF. We conclude that a combination of AWD−10 and SPAD-based N management, using critical value 38, can save irrigation water and N fertilizer while maintaining high yield as in CF conditions with fixed time and rate of nitrogen application of 180 kg ha−1. Treatments AWD−20 and NSPAD35 may be accepted by farmers when water and N fertilizer are scarce and costly. The findings also suggested LCC can also be a practical tool for N-fertilizer management of rice grown under AWD, but this needs further field validation.  相似文献   

5.
The nitrogen (N) requirement of dedicated crops for bioenergy production is a particularly significant issue, since N fertilisers are energy-intensive to make and have environmental impacts on the local level (NO3 leaching) and global level (N2O gas emissions). Nitrogen nutrition of Miscanthus × giganteus aboveground organs is assumed to be dependent on N stocks in belowground organs, but the precise quantities involved are unknown. A kinetic study was carried out on the effect of harvest date (early harvest in October or late harvest in February) and nitrogen fertilisation (0 or 120 kg N ha−1) on aboveground and belowground biomass production and N accumulation in established crops. Apparent N fluxes within the crop and their variability were also studied.Aboveground biomass varied between 24 and 28 t DM ha−1 in early harvest treatments, and between 19 and 21 t DM ha−1 in late harvest treatments. Nitrogen fertilisation had no effect on crop yield in late harvest treatments, but enhanced crop yield in early harvest treatments due to lower belowground biomass nitrogen content. Spring remobilisation, i.e. nitrogen flux from belowground to aboveground biomass, varied between 36 and 175 kg N ha−1, due to the variability of initial belowground nitrogen stocks in the different treatments. Autumn remobilisation, i.e. nitrogen flux from aboveground to belowground organs, varied between 107 and 145 kg N ha−1 in late harvest treatments, and between 39 and 93 kg N ha−1 in early harvest treatments. Autumn remobilisation for a given harvest date was linked to aboveground nitrogen accumulation in the different treatments. Nitrogen accumulation in aboveground biomass was shown to be dependent firstly on initial belowground biomass nitrogen stocks and secondly on nitrogen uptake by the whole crop.The study demonstrated the key role of belowground nitrogen stocks on aboveground biomass nitrogen requirements. Early harvest depletes belowground nitrogen stocks and thus increases the need for nitrogen fertiliser.  相似文献   

6.
Biological nitrogen fixation (BNF) as a result of the legumes–rhizobia symbioses is the main source of nitrogen in organic farming systems. Lucerne (Medicago sativa L.), used as green manure or as forage legume, is important on arable farms under dry site conditions. In a field experiment on organically managed agricultural fields, we examined the impacts of the utilisation system (harvested = forage production versus mulched = green manure) and the crop composition (pure lucerne crops versus lucerne–grass mixtures) on yield, biological nitrogen fixation (BNF), soil inorganic N content, N balance and water consumption of autumn-cultivated lucerne crops. The study was conducted at the University of Natural Resources and Applied Life Sciences, Vienna, in eastern Austria—a region characterized by pannonian site conditions (9.8 °C mean annual temperature, 545 mm average total precipitation) and stockless farming systems. Our results indicate that the utilisation system and the crop composition had no marked influence on above- and below-ground dry matter (DM) and N yield, soil inorganic N contents, BNF, or water use efficiency of lucerne. The level of symbiotically fixed N2 in harvested lucerne was 89–125 kg N ha−1 (27–33% Ndfa = nitrogen derived from atmosphere) in the first year and 161–175 kg N ha−1 (47–49% Ndfa) in the second year of the study. The high soil inorganic N supply in the first year increased the N uptake from soil by lucerne and led to a reduced BNF. Under the dry and unfavourable conditions in both study years, the nitrogen release from the legume mulch was retarded and BNF in mulched lucerne was not reduced. Assuming low gaseous N losses by mulching (15–30 kg N ha−1), the green manure system reached a positive N balance (+137 to +186 kg N ha−1) for the subsequent crops because abundant residues remained on the field.  相似文献   

7.
In the low-input rice–wheat production systems of Nepal, the N nutrition of both crops is largely based on the supply from soil pools. Declining yield trends call for management interventions aiming at the avoidance of native soil N losses. A field study was conducted at two sites in the lowland and the upper mid-hills of Nepal with contrasting temperature regimes and durations of the dry-to-wet season transition period between the harvest of wheat and the transplanting of lowland rice. Technical options included the return of the straw of the preceding wheat crop, the cultivation of short-cycled crops during the transition season, and combinations of both. Dynamics of soil Nmin, nitrate leaching, nitrous oxide emissions, and crop N uptake were studied throughout the year between 2004 and 2005 and partial N balances of the cropping systems were established. In the traditional system (bare fallow between wheat and rice) a large accumulation of soil nitrate N and its subsequent disappearance upon soil saturation occurred during the transition season. This nitrate loss was associated with nitrate leaching (6.3 and 12.8 kg ha−1 at the low and high altitude sites, respectively) and peaks of nitrous oxide emissions (120 and 480 mg m−2 h−1 at the low and high altitude sites, respectively). Incorporation of wheat straw at 3 Mg ha−1 and/or cultivation of a nitrate catch crop during the transition season significantly reduced the build up of soil nitrate and subsequent N losses at the low altitude site. At the high altitude site, cumulative grain yields increased from 2.35 Mg ha−1 with bare fallow during the transition season to 3.44 Mg ha−1 when wheat straw was incorporated. At the low altitude site, the cumulative yield significantly increased from 2.85 Mg ha−1 (bare fallow) to between 3.63 and 6.63 Mg ha−1, depending on the transition season option applied. Irrespective of the site and the land use option applied during the transition season, systems N balances remained largely negative, ranging from −37 to −84 kg N ha−1. We conclude that despite reduced N losses and increased grain yields the proposed options need to be complemented with additional N inputs to sustain long-term productivity.  相似文献   

8.
Nitrogen (N) dynamics in plants during their development in agricultural crops has to be well understood in order to design management practices that lead to maximum productivity with minimum N loss from the system. In a labeled fertilizer field study 15N accumulation in different plant parts of mature coffee was observed over time. The objective was to ascertain the time of greatest crop N demand as a scientific basis for designing fertigation schedules. Coffee plantations of central Brazil are routinely fertigated only with extremely high applications of N. Good coffee bean production should be sustainable by applying lower N quantities at those frequencies designated by additional scientific criteria. The experiment was carried out over a complete coffee cropping cycle (2008/2009) in a field of low soil fertility in the Brazilian savanna “cerrado”. Rates of 0, 200, 400, 600 and 800 kg N ha−1 year−1 as 15N-labeled urea were applied via fertigation, divided equally over the year into 26 portions, distributed every 14 days. Changes of N absorption in various plant compartments indicated that fertilizer use could be improved if a lower rate is applied only up to the beginning of fruit maturation, focusing on the stage before fruit filling. This specific stage was found to be the period of greatest N consumption by leaf and fruit. 15N absorption data showed that it is possible to decrease the routine fertilization rate of 600 to a much lower value, of order of 200 kg N ha−1 without decreasing the production of coffee beans.  相似文献   

9.
Nitrogen (N) fertilizer represents a significant cost for the grower and may also have environmental impacts through nitrate leaching and N2O (a greenhouse gas) emissions associated with denitrification. The objectives of this study were to analyze the genetic variability in N-use efficiency (grain dry matter (DM) yield per unit N available from soil and fertilizer; NUE) in winter wheat and identify traits for improved NUE for application in breeding. Fourteen UK and French cultivars and two French advanced breeding lines were tested in a 2 year/four site network comprising different locations in France and in the UK. Detailed growth analysis was conducted at anthesis and harvest in experiments including DM and N partitioning. Senescence of either the flag leaf or the whole leaf canopy was assessed from a visual score every 3-4 days from anthesis to complete canopy senescence. The senescence score was fitted against thermal time using a five parameters monomolecular-logistic equation allowing the estimation of the timing of the onset and the rate of post-anthesis senescence. In each experiment, grain yield was reduced under low N (LN), with an average reduction of 2.2 t ha−1 (29%). Significant N × genotype level interaction was observed for NUE. Crop N uptake at harvest on average was reduced from 227 kg N ha−1 under high N (HN) to 109 kg N ha−1 under LN conditions while N-utilization efficiency (grain DM yield per unit crop N uptake at harvest; NUtE) increased from 34.0 to 52.1 kg DM kg−1 N. Overall genetic variability in NUE under LN related mainly to differences in NUtE rather than N-uptake efficiency (crop N uptake at harvest per unit N available from soil and fertilizer; NUpE). However, at one site there was also a positive correlation between NUpE and NUE at LN in both years. Moreover, across the 2 year/four site network, the N × genotype effect for NUpE partly explained the N × genotype effect for grain yield and NUE. Averaging across the 16 genotypes, the timing of onset of senescence explained 86% of the variation in NUtE amongst site-season-N treatment combinations. The linear regression of onset of senescence on NutE amongst genoytpes was not significant under HN, but at three of the four sites was significant under LN explaining 32-70% of the phenotypic variation amongst genotypes in NutE. Onset of senescence amongst genotypes was negatively correlated with the efficiency with which above-ground N at anthesis was remobilized to the grain under LN. It is concluded that delaying the onset of post-anthesis senescence may be an important trait for increasing grain yield of wheat grown under low N supply.  相似文献   

10.
An active crop canopy reflectance sensor could be used to increase N-use efficiency in maize (Zea mays L.), if temporal and spatial variability in soil N availability and plant demand are adequately accounted for with an in-season N application. Our objective was to evaluate the success of using an active canopy sensor for developing maize N recommendations. This study was conducted in 21 farmers’ fields from 2007 to 2009, representing the maize production regions of east central and southeastern Pennsylvania, USA. Four blocks at each site included seven sidedress N rates (0–280 kg N ha−1) and one at-planting N rate of 280 kg N ha−1. Canopy reflectance in the 590 nm and 880 nm wavelengths, soil samples, chlorophyll meter (SPAD) measurements and above-ground biomass were collected at the 6th–7th-leaf growth stage (V6–V7). Relative amber normalized difference vegetative index (ANDVIrelative) and relative SPAD (SPADrelative) were determined based on the relative measurements from the zero sidedress treatment to the 280 kg N ha−1 at-planting treatment. Observations from the current study were compared to relationships between economic optimum N rate (EONR) and ANDVIrelative, presidedress NO3 test (PSNT), or SPADrelative that were developed from a previous study. These comparisons were based on an absolute mean difference (AMD) between observed EONR and the previously determined predicted relationships. The AMD for the relationship between EONR and ANDVIrelative in the current study was 46 kg N ha−1. Neither the PSNT (AMD = 66 kg N ha−1) nor the SPADrelative (AMD = 72 kg N ha−1) provided as good an indicator of EONR. When using all the observations from the two studies for the relationships between EONR and the various measurements, ANDVIrelative (R2 = 0.65) provided a better estimate of EONR than PSNT (R2 = 0.49) or SPADrelative (not significant). Crop reflectance captured similar information as the PSNT and SPADrelative, as reflected in strong relationships (R2 > 0.60) among these variables. Crop canopy reflectance using an active sensor (i.e. ANDVIrelative) provided as good or better an indicator of EONR than PSNT or SPADrelative, and provides an opportunity to easily adjust in-season N applications spatially.  相似文献   

11.
Long-term (over 15 years) winter wheat (Triticum aestivum L.)–maize (Zea mays L.) crop rotation experiments were conducted to investigate phosphorus (P) fertilizer utilization efficiency, including the physiological efficiency, recovery efficiency and the mass (the input–output) balance, at five sites across different soil types and climate zones in China. The five treatments used were control, N, NP, NK and NPK, representing various combinations of N, P and K fertilizer applications. Phosphorus fertilization increased average crop yield over 15 years and the increases were greater with wheat (206%) than maize (85%) across all five sites. The wheat yield also significantly increased over time for the NPK treatments at two sites (Xinjiang and Shanxi), but decreased at one site (Hunan). The P content in wheat was less than 3.00 g kg−1 (and 2.10 g kg−1 for maize) for the N and NK treatments with higher values for the Control, NP and NPK treatments. To produce 1 t of grain, crops require 4.2 kg P for wheat and 3.1 kg P for maize. The P physiological use efficiency was 214 kg grain kg−1 P for wheat and 240 kg grain kg−1 P for maize with over 62% of the P from P fertilizer. Applying P fertilizer at 60–80 kg P ha−1 year−1 could maintain 3–4 t ha−1 yields for wheat and 5–6 t ha−1 yields for maize for the five study sites across China. The P recovery efficiency and fertilizer use efficiency averaged 47% and 29%, respectively. For every 100 kg P ha−1 year−1 P surplus (amount of fertilizer applied in excess of crop removal), Olsen-P in soil was increased by 3.4 mg P kg−1. Our study suggests that in order to achieve higher crop yields, the long-term P input–output balance, soil P supplying capacity and yield targets should be considered when making P fertilizer recommendations and developing strategies for intensively managed wheat–maize cropping systems.  相似文献   

12.
The N contribution of alfalfa (Medicago sativa L.) to the succeeding corn (Zea mays L.) crop (FYC) is widely recognized. However, there is less information regarding the optimum N fertilization rates (ONR) for a second-year corn (SYC) following alfalfa. Thus, the objective of this study was to evaluate the response of SYC after alfalfa to N fertilization under irrigated semiarid conditions. Three field experiments of SYC following alfalfa were conducted between 2007 and 2009 in Northeast Spain. Treatments included the combination of six N rates applied to FYC (0, 50, 100, 150, 200, and 300 kg N ha−1) with four N rates applied to SYC (0, 100, 200, and 300 kg N ha−1). In one of the three fields, high SYC yields (16.8 Mg ha−1) were obtained in plots that remained unfertilized during two consecutive years after alfalfa. On the other two fields, 81-100% of the maximum corn yields were obtained with application of 200 kg N ha−1 to SYC. Results suggest that the typical N fertilizer rates applied to SYC after alfalfa in irrigated semiarid areas (300 kg N ha−1) could be reduced by at least 100 kg N ha−1, with small or no economic penalties and important reductions in N losses.  相似文献   

13.
Competition for soil resources plays a key role in the outcome of intercropping systems. In cereal–legume intercrops, competition for soil nitrogen during the vegetative phase greatly influences the final performance of the intercropped species. However, there is a lack of knowledge on the main factors involved in interspecific soil N competitive interactions between species. The dominance of cereals over legumes is often attributed to their faster growing rooting system. Nevertheless, using only field experimental approaches makes it difficult to isolate the effect of one factor because of the strong interactions between processes and the environment. Given the complexity of intercropping systems, dynamic simulation models can be especially helpful for testing hypotheses about the key factors driving competition between species. The present work was designed to investigate, under non-limiting water conditions, through an experimental and modelling approach, whether differences in root depth penetration among pea and barley grown together determined competition for soil N and dry matter accumulation (DM) by each species during the vegetative phase. This hypothesis was tested through several simulated scenarios generated using the STICS crop model. The model was first used to compare competition for soil N according to differences in root depth penetration rates between species. This rooting depth penetration effect was then studied at three levels of soil N supply leading to different degrees of N demand and N stress. A field experiment carried out in 2003 including pea–barley intercrops grown either with 130 kg N ha−1 or without any fertilizer was used to test the model. Experimental results of aboveground biomass, nitrogen accumulation, N2 fixation and rooting depth monitored regularly during the crop cycle were compared to simulated results. The simulated responses of the intercrops were in agreement with the observations from the experimental dataset. Using the model, it is clear that faster root growth in barley gives it access to more soil nitrogen than pea during the vegetative phase. However, this advantage, which is limited to the vegetative phase, only affects the outcome of the intercrop when soil N supply is low. With higher soil N supplies, soil N sharing is not affected by the differences in rooting depth penetration between species. It appears that with higher N supplies, the differences in N demand between species have more influence on species dominance than differences in rooting depth.  相似文献   

14.
Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming Experimental Station in northern China during 2003–2008. The experiment was set-up using a split-plot design with 3 tillage/crop residue methods as main treatments: conventional, reduced (till with crop residue incorporated in fall but no-till in spring), and no-till (with crop residue mulching in fall). Sub-treatments were 3 NP fertilizer rates: 105–46, 179–78 and 210–92 kg N and P ha−1. Maize grain yields were greatly influenced by the growing season rainfall and soil water contents at sowing. Mean grain yields over the 6-year period in response to tillage/crop residue treatments were 5604, 5347 and 5185 kg ha−1, under reduced, no-till and conventional tillage, respectively. Grain yields under no-till, were generally higher (+19%) in dry years but lower (−7%) in wet years. Mean WUE was 13.7, 13.6 and 12.6 kg ha−1 mm−1 under reduced, no-till, and conventional tillage, respectively. The no-till treatment had 8–12% more water in the soil profiles than the conventional and reduced tillage treatments at sowing and harvest time. Grain yields, WUE and NAE were highest with the lowest NP fertilizer application rates (at 105 kg N and 46 kg P ha−1) under reduced tillage, while yields and WUE tended to be higher with additional NP fertilizer rates under conventional tillage, however, there was no significant yield increase above the optimum fertilizer rate. In conclusion, maize grain yields, WUE and NAE were highest under reduced tillage at modest NP fertilizer application rates of 105 kg N and 46 kg P ha−1. No-till increased soil water storage by 8–12% and improved WUE compared to conventional tillage, thus showing potentials for drought mitigation and economic use of fertilizers in drought-prone rainfed conditions in northern China.  相似文献   

15.
Soil acidity is a limiting factor affecting the growth and yield of many crops all over the world. It is recognized that liming is the most common management practice of profitable crop production on acid soils. On the other hand, it is well-known that the form of nitrogen may affect tobacco yield and quality. In this work, the impact of the interaction between three hydrated lime (HL, Ca(OH)2) rates (0, 1.5 and 3 t HL ha−1) and three nitrogen fertilizer forms (NO3-N 100%, NH4-N 100% and NO3-N 50% plus NH4-N 50%) on growth, yield and quality characteristics of Virginia (flue-cured) tobacco was investigated in a 4-year (1995–1998) field experiment established in an acid soil (pHwater 1:1 5.3) located in Northern Greece. Lime was applied only once in December 1994, while nitrogen fertilizer was applied annually before transplanting. The results showed that the effect of liming on tobacco growth was not dependent on time, weather conditions and form of nitrogen fertilizer. Liming increased soil pH, enhanced the early growth of tobacco (within 30 days after transplanting (DAT)) and finally increased the total gross and trade yield of tobacco proportionally to the amount of HL added. However, the quality index (organoleptic characteristics) of the cured product was improved only at the HL application rate of 3 t HL ha−1. Furthermore, liming significantly increased Ca and P concentrations but decreased K concentration in cured tobacco leaves. Tobacco yield increase was attributed to the increase of P uptake. Liming also increased the ash content of cured leaves, whereas it did not significantly affect nicotine, total nitrogen and reducing sugars. The use of ammonium N in fertilizer delayed the early growth of tobacco, reduced the nicotine concentration and increased the reducing sugars concentration of the cured product. Total-N, P, K and Mg concentrations of cured leaves were not significantly affected by the form of nitrogen fertilizer used. The results suggested that an initial application of hydrated lime at a rate of 3 t HL ha−1 may ameliorate soil acidity and increase the yield and quality characteristics of Virginia tobacco at least over a 4-year period after application, independent of the form of N fertilizer used.  相似文献   

16.
In maize, the effects of nitrogen (N) deficiencies on the determination of kernel number per plant (KNP) have been described only by changes in plant growth rate during the critical period for kernel set (PGRcp). We hypothesize that N availability affects KNP also through variations in biomass allocation to the ear, which determines a stable N concentration in this organ. Six maize hybrids of different breeding origin were evaluated in field experiments at two N levels (0 and 400 kg N ha−1 applied). Traits included were KNP and per apical ear (KNE1), and the allometric estimation of PGRcp, ear growth rate during the critical period (EGRcp), and N content and N concentration in different plant organs. We demonstrated that (i) N availability promoted differences among genotypes (G) in the response of EGRcp and KNP to PGRcp, (ii) variations in KNE1 were explained by EGRcp (r2 = 0.64) and by ear N content at silking + 12 d (r2 = 0.64), and (iii) ear N concentration was a highly conservative trait (range between 10.47 and 15.98 mg N g biomass−1) as compared to N concentration in vegetative tissues (range between 4.94 and 18.04 mg N g biomass−1). Three response patterns were detected among hybrids, one for which the relationship between EGRcp and PGRcp did not vary between N levels and experiments, a second one for which N availability affected this relationship, and a third one for which the response was affected by the year (Y) effect. These results, together with the high correlation between EGRcp and ear N content (r2 = 0.88), evidenced the importance of both photo-assimilate and N availability on EGRcp and KNP determination. Values of 1.5–2.3 g ear−1 d−1 during the critical period and 0.49–0.70 g of N ear−1 at silking + 12 d were determined as thresholds for maximizing KNE1, and both could be easily estimated by means of allometric models.  相似文献   

17.
Poor seed yield of soybean in Mediterranean-type environments may result from insufficient iron (Fe) uptake and poor biological nitrogen (N) fixation due to high bicarbonate and pH in soils. This study was conducted to evaluate the effects of N and Fe fertilization on growth and yield of double cropped soybean (cv. SA 88, MG III) in a Mediterranean-type environment in Turkey during 2003 and 2004. The soil of the experimental plots was a Vertisol with 176 g CaCO3 kg−1 and pH 7.7 and 17 g organic matter kg−1 soil. Soybean seeds were inoculated prior to planting with commercial peat inoculants. N fertilizer rates were 0, 40, 80, and 120 kg N ha−1 of which half was applied before planting and the other half at full blooming stage (R2). Fe fertilizer rates were 0, 200 and 400 g Fe EDTA (5.5% Fe and 2% EDTA) ha−1. It was sprayed as two equal portions at two trifoliate (V2) and at five trifoliate stages (V5). Plants were sampled at flower initiation (R1), at full pod (R4) and at full seed (R6) stages. Application of starter N increased biomass and leaf area index at R1 stage whereas Fe fertilization did not affect early growth parameters. N application continued to have a positive effect on growth parameters at later stages and on seed yield. Fe fertilization increased growth parameters at R4 and R6 stages, and final seed yield in both years. This study demonstrated an interactive effect of N and Fe fertilization on growth and yield of soybean in the soil having high bicarbonate and pH. There was a positive interaction between N and Fe at the N rates up to 80 kg N ha−1. However, further increase in N rate produced a negative interaction. Fertilization of soybean with 80 kg N ha−1 and 400 g Fe ha−1 resulted in the highest seed yield in both years. We concluded that application of starter and top dressed N in combination with two split FeEDTA fertilization can be beneficial to improve early growth and final yield of inoculated soybean in Mediterranean-type soils.  相似文献   

18.
Simple plant-based diagnostic tools can be used to determine crop P status. Our objectives were to establish the relationships between P and N concentrations of the uppermost collared leaf (PL and NL) of spring wheat (Triticum aestivum L.) and maize (Zea mays L.) during the growing season and, in particular, to determine the critical leaf P concentrations required to diagnose P deficiencies. Various N applications were evaluated over six site-years for wheat and eight site-years for maize (2004-2006) with adequate soil P for growth. Phosphorus and N concentrations of the uppermost collared leaf were determined weekly and the relationships between leaf N and P concentrations were established using only the sampling dates from the stem elongation stage for wheat and from the V8 stage of development for maize. Leaf P concentration generally decreased with decreasing N fertilization. Relationships between PL and NL concentrations (mg g−1 DM) using all site-years and sampling dates were described by significant linear-plateau functions in both maize (PL = 0.82 + 0.089 NL if NL ≤ 32.1 and PL = 3.7 if NL > 32.1; R2 = 0.41; P < 0.001) and wheat (PL = 0.02 + 0.106 NL if NL ≤ 33.2 and PL = 3.5 if NL > 33.2; R2 = 0.42; P < 0.001). Variation among sampling dates in the relationships were noted. By restricting the sampling dates [413-496 growing degree days (5 °C basis) in wheat (i.e., stem elongation) and 1494-1579 crop heat units in maize (i.e., silking), relationships for wheat (PL = 0.29 + 0.073 NL, R2 = 0.66; P < 0.001) and maize (PL = 1.04 + 0.084 NL, R2 = 0.66; P < 0.001) were improved. In maize, expressing P and N concentrations on a leaf area basis (PLA and NLA) at silking further improved the relationship (PLA = 0.002 + 0.101 NLA, R2 = 0.80; P < 0.001). Predictive models of critical P concentration as a function of N concentration in the uppermost collared leaf of wheat and maize were established which could be used for diagnostic purposes.  相似文献   

19.
Groundnut as a pre-rice crop is usually harvested 1–2 months before rice transplanting. During this lag phase much of N in groundnut residues could be lost due to rapid N mineralization. Mixing of abundantly available rice straw with groundnut residues may be a means for reducing N and improve subsequent crop yields. The objectives of this experiment were to investigate the effect of mixing groundnut residues and rice straw in different proportions on (a) growth and yield of succeeding rice, (b) groundnut residue N use efficiency and (c) N lost (15N balance) from the plant–soil system and fate of residue N in soil fractions. The experiment consisted of six treatments: (i) control (no residues), (ii) NPK (at recommended rate, 38 kg N ha−1), (iii) groundnut residues 5 Mg ha−1 (120 kg N ha−1), (iv) rice straw 5 Mg ha−1 (25 kg N ha−1), (v) 1:0.5 mixed (groundnut residues 5 Mg: rice straw 2.5 Mg ha−1), and (vi) 1:1 mixed (groundnut residues 5 Mg: rice straw 5 Mg ha−1). After rice transplanting, samples of the lowland rice cultivar KDML 105 were periodically collected to determine growth and nutrient uptake. At final harvest, dry weight, nutrient contents and 15N recovery of labeled groundnut residues were evaluated.  相似文献   

20.
Application of organic manures and composts in crop production has been strongly encouraged in many places but often without due consideration to their quality and price. Since organic amendments can vary greatly in composition and mineralization rate, a framework is needed to make rational choices on their use as replacements of inorganic fertilizer, especially when considering poor quality organic materials. A field experiment was carried out with maize grown annually for 5 years on a Rhodic Kandiustox in Thailand to test response to mineral fertilizer (at 0-0 to 125-55 kg N-P ha−1 yr−1), compost (0.59% N, 0.31% P and 0.55% K at 0-7500 kg ha−1 yr−1) and stubble removal. The DSSAT model was calibrated to predict yields using the first year's trial data and then used to predict treatment yields for the following 4 years. The Seasonal Analysis module of DSSAT using Dominance Analysis showed that mineral fertilizer (125-55 kg N-P ha−1 yr−1) with stubble return gave the highest net profit whereas the highest rate of compost without mineral fertilizer gave the biggest loss. The yield response was attributed primarily to N supply rather than P. Effects of compost, mineral fertilizer, stubble management, and their interactions on yield and profit were not related to bulk density or soil available water capacity even though soil organic matter (SOM) levels increased. With stubble return, the highest rate of mineral fertilizer increased SOM whereas with compost application or stubble removal it did not. The DSSAT simulation of yield indicated that the low quality compost would only be as profitable as mineral fertilizer if the N concentrations are 3-4 times higher than the present compost (1.8-2.4% N) or if the compost price is greatly reduced. The DSSAT yield simulation and Seasonal Analysis provided a framework whereby the suitability of compost as a N fertilizer replacement for maize could be determined based on its composition, rate of application and price. Further validation of this approach is needed where the organic amendments have significant effects on soil physical properties and where other nutrients besides N are a significant factor in the crop yield response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号