首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
《Plant Production Science》2013,16(3):238-245
Abstract

Waterlogging is a major predicted agricultural problem for crop production in some areas under current climate change, but no studies are available on the interactive effects of waterlogging and elevated atmospheric CO2 concentration ([CO2]). We hypothesized that elevated [CO2] could alleviate the damage caused by waterlogging, and tested the hypothesis using vegetative growth of soybean (Glycine max) in 10 experiments (different sowing time and different soil type) conducted at Morioka and Tsukuba for three years. The 2-week-old plants grown under elevated and ambient [CO2] were exposed to waterlogging for 2 weeks. Total dry weight at the end of the treatment was higher under elevated [CO2] than under ambient [CO2], and it was significantly reduced by waterlogging under both levels of [CO2], without significant [CO2]×waterlogging interactions, at both locations. The negative effects of the waterlogging were greater in root dry weight than in top dry weight, and the root exudation per unit root dry weight was also reduced by waterlogging, without a [CO2] ×waterlogging interaction. Therefore, the hypothesis of a [CO2]×waterlogging interaction can be rejected, and provide an important basis for predicting future damage caused by waterlogging under elevated [CO2] conditions.  相似文献   

2.
《Field Crops Research》1998,58(2):109-127
Average yield of most crops in many countries increased significantly during the past 50 to 100 years. Although atmospheric CO2 concentration, [CO2]a, also increased during that time period, and although crop growth and yield can respond positively to [CO2]a increase, yield increases were due mainly to factors other than increasing [CO2]a. Similarly, some yield increases prior to 1900 were also associated primarily with factors other than changes in [CO2]a. In particular, past national average yield increases were the result chiefly of technological advances such as nitrogen fertilization; selection of genotypes with increased harvest index and disease resistance; mechanization of planting, cultivation, and harvesting; and chemical weed and pest control. If technology continues to increase average yields at recent rates, near-future increases in [CO2]a will have only small impacts on yield in comparison to technology in many countries. Conversely, if future increases in [CO2]a are the main drivers of future yield increases, those yield increases will be small. These points are demonstrated through a comparison of (i) long-term records of yield, (ii) data from key controlled-[CO2] experiments, and (iii) records of past [CO2]a. Finally, it is noted that continued [CO2]a increase may bring with it climatic changes that could have negative or positive impacts on future yield.  相似文献   

3.
Climate changes due to global warming may affect paddy cultivation considerably. Climate changes directly affect rice plant growth, and within paddy cultivation catchments, alter the hydrological regime including flood patterns and water availability for irrigation, and drainage. Although increased atmospheric CO2 concentrations in the future may enhance plant growth through the CO2 fertilization effect, impacts of climate change on agriculture are complicated and difficult to predict precisely. This is especially the case for assessing impacts on paddy cultivation, where basin hydrological behavior needs to be understood in detail. Possible adaptations to reduce negative impacts should be tailored to local conditions, which modify climate change impacts on paddy cultivation. In this article, climate change impacts on paddy cultivation are reviewed and a general adaptation strategy is discussed with special reference to the Japanese context.  相似文献   

4.
In order to investigate the intra-specific variation of wheat grain quality response to elevated atmospheric CO2 concentration (e[CO2]), eight wheat (Triticum aestivum L.)cultivars were grown at two CO2 concentrations ([CO2]) (current atmospheric, 389 CO2 μmol mol−1vs. e[CO2], FACE (Free-Air CO2 Enrichment), 550  ±  10% CO2 μmol mol−1), at two water levels (rain-fed vs. irrigated) and at two times of sowing (TOS1, vs. TOS2). The TOS treatment was mainly imposed to understand whether e[CO2] could modify the effects of timing of higher grain filling temperatures on grain quality. When plants were grown at TOS1, TKW (thousand kernel weight), grain test weight, hardness index, P, Ca, Na and phytate were not significantly changed under e[CO2]. On the other hand, e[CO2] increased TKW (16%), hardness index (9%), kernel diameter (6%), test weight (2%) but decreased grain protein (10%) and grain phytate (11%) at TOS2. In regard to grain Zn, Mn and Cu concentrations and some flour rheological properties, cultivar specific responses to e[CO2] were observed at both sowing times. Observed genetic variability in response to e[CO2] in terms of grain minerals and flour rheological properties could be easily incorporated into future wheat breeding programs to enable adaptation to climate change.  相似文献   

5.
The present field experiment was conducted during two consecutive cropping seasons in central Portugal to study the effects of simultaneous elevation of carbon dioxide concentration ([CO2]) (550 μmol mol?1) and air temperature (+2–3 °C) on japonica rice (Oryza sativa L. “Ariete”) yield, crop duration, and SPAD-values across the seasons compared with the open-field condition. Open-top chambers were used in the field to assess the effect of elevated air temperature alone or the combined effect of elevated air temperature and atmospheric [CO2]. Open-field condition was assessed with randomized plots under ambient air temperature and actual atmospheric [CO2] (average 382 μmol mol?1). Results obtained showed that the rice “Ariete” had a moderate high yielding under open-field condition, but was susceptible to air temperature rise of +2–3 °C under controlled conditions resulting in reduction of grain yield. The combined increase of atmospheric [CO2] with elevated air temperature compensated for the negative effect of temperature rise alone and crop yield was higher than in the open-field. SPAD-readings at reproductive stage explained by more than 60 % variation the straw dry matter, but this finding requires further studies for consolidation. It can be concluded that potential increase in air temperature may limit rice yield in the near future under Mediterranean areas where climate change scenario poses a serious threat, but long term field experiments are required.  相似文献   

6.
Explorations of the impact of climate change on potential potato yields were obtained by downscaling the projections of six different coupled climate models to high spatial resolution over southern Africa. The simulations of daily maximum and minimum temperatures, precipitation, wind speed, and solar radiation were used as input to run the crop growth model LINTUL-Potato. Pixels representative for potato growing areas were selected for four globally occurring agro-ecosystems: rainy and dry winter and summer crops. The simulated inter-annual variability is much greater for rainfall than for temperature. Reference evapotranspiration and radiation are projected to hardly decline over the 90-year period, whilst temperatures are projected to rise significantly by about 1.9 °C. From literature, it was found that radiation use efficiency of potato increased with elevated CO2 concentrations by almost 0.002 g?MJ?1?ppm?1. This ratio was used to calculate the CO2 effect on yields between 1960 and 2050, when CO2 concentration increases from 315 to 550 ppm. Within this range, evapotranspiration by the potato crop was reduced by about 13% according to literature. Simulated yield increase was strongest in the Mediterranean-type winter crop (+37%) and least under Mediterranean summer (+12%) and relatively warm winter conditions (+14%) closer to the equator. Water use efficiency also increased most in the cool rainy Mediterranean winter (+45%) and least so in the winter crop closer to the equator (+14%). It is concluded from the simulations that for all four agro-ecosystems possible negative effects of rising temperatures and reduced availability of water for potato are more than compensated for by the positive effect of increased CO2 levels on water use efficiency and crop productivity.  相似文献   

7.
Global climate change is expected to alter carbon dioxide concentration ([CO2]) and water availability, with uncertain impacts on agriculture. Forage quality and quantity in grazing systems are of particular concern because C3 and C4 plants respond differently to altered environmental conditions. In a growth chamber, we compared crude protein content, biomass recovery and total crude protein across a set of perennial C3 and C4 grasses from the northern U.S. Great Plains under elevated [CO2] and simulated drought. Simulated 95% confidence intervals indicate both C3 and C4 grasses increased forage quality and quantity under elevated [CO2]. C4 grasses were generally resistant to water limitation while forage quality and quantity of C3 grasses declined under simulated drought. Our results are consistent with literature on forage quantity responses to elevated [CO2] and drought, but forage quality responses contradict expectations. We suggest measuring plant functional traits might better elucidate response mechanisms and ameliorate methodological differences even if traits are not directly applicable to grazing management.  相似文献   

8.
《Journal of Crop Improvement》2013,27(1-2):291-331
SUMMARY

The vulnerability and adaptation of major agricultural crops to different soils in Austria and Bulgaria under a changing climate and elevated air CO2 were investigated. Several incremental and transient GCM climate change scenarios were created and applied. Warming will decrease the crop-growing duration of the selected crops in the regions of interest. All GCM scenarios, including the climate change effect only, projected reductions in grain yield of winter wheat and spring barley, caused by a shorter crop-growing period. However, when the direct effect of an increased CO2 level was assumed, most GCM climate change scenarios projected an increase in wheat and barley yield and especially in soybean yield. An increased level of CO2 alone had no significant impact on the simulated maize yield reductions under climate change.  相似文献   

9.
《Plant Production Science》2013,16(3):307-315
Abstract

The effects of elevated carbon dioxide concentration ([CO2]) on silica deposition on husk epidermis of rice (Oryza sativa L. cv. Akitakomachi) during the flowering stage were investigated in this study. The study was motivated by the concept that the rice yield maybe affected by global warming as a result of elevated [CO2] environment since sterility of rice is related to the panicle silica content that influences transpiration, and elevated [CO2] could affect plant transpiration. Silica deposition analysis was focused on the flowering stage of the rice crop grown hydroponically under two [CO2] conditions: 350 μmol mol-1 (ambient) and 700 μmol mol-1 (elevated). Silica deposition on the husk epidermis from three parts of the panicle at four flowering stages were examined using a scanning electron microscope (SEM) combined with an energy dispersive X-ray microanalyzer (EDX). The results demonstrated that elevated [CO2] significantly suppressed silica deposition on the husk epidermis at the lower part of the panicle, and at the early flowering stage when 1/3 of the panicle emerged from the leaf sheath. In the transverse section analysis of the husk, silica deposition on the husk epidermis under elevated [CO2] was less than that under ambient [CO2] at the late flowering stage. The less silica deposition observed on the husks at the late flowering stage under elevated [CO2] might be related to the suppressed transpiration from the panicle by elevated [CO2] found in a previous study.  相似文献   

10.
SUMMARY

Increasing atmospheric CO2 concentrations [CO2] have the potential to enhance growth and yield of agricultural plants. Con-comitantly plants grown under high [CO2] show significant changes of the chemical composition of their foliage and of other plant parts. Particularly, high [CO2] result in a decrease of plant nitrogen (N) concentration, which may have serious consequences for crop quality. This presentation summarizes the results of a variety of CO2 enrichment studies with pasture plants (Lolium spp., Trifolium repens) and cereal species (Triticum aestivum, Hordeum vulgare) which were conducted at our laboratory under different growth and CO2 exposure conditions ranging from controlled environment studies to investigations under free air carbon dioxide enrichment (FACE). With the exception of clover in all experiments a CO2-induced decline of forage and grain N concentration was observed. The magnitude of this reduction differed between species, cultivars, management conditions (N fertilization) and CO2 exposure conditions. No unambiguous evidence was obtained whether N fertilization can contribute to meet the quality requirements for cereals and grass monocultures with respect to tissue N concentrations in a future high-CO2 world. As shown in the FACE experiments current application rates of N fertilizers are inadequate to achieve quality standards.  相似文献   

11.
The impact of rising carbon dioxide concentration ([CO2]) in the atmosphere on wheat grain protein concentration and proteome was investigated in this study. Wheat genotypes (H45, SB003, SB062 and Yitpi) were grown in the Australian Grains Free-Air CO2 Enrichment (AGFACE) facility, Horsham, Victoria, Australia under ambient [CO2] (a[CO2], 391 μmol mol−1) and elevated [CO2] (e[CO2], 550 ± 20 μmol mol−1). Grain yield and grain protein concentration were measured. Global grain proteome comparison was carried out using stable isotope dimethyl labelling followed by liquid chromatography - mass spectrometry (LC-MS/MS). Grain yield was significantly increased at e[CO2], whereas protein concentration was significantly decreased and responses varied between genotypes. Proteome-wide analysis revealed that protein composition was also altered under e[CO2]. Grain protein concentration and composition of SB003 was very responsive to e[CO2]. Mainly storage proteins were decreased at e[CO2] and the responses varied between genotypes. These findings suggest that e[CO2] may have a major impact on grain protein quality and thus bread quality and human and animal nutrition. Further, these findings suggest that [CO2] insensitive cultivars can be identified for grain quality improvement under changing climate.  相似文献   

12.
《Journal of Crop Improvement》2013,27(1-2):377-392
SUMMARY

Two poplar clones, hybrid Populus deltoides Bartr. Ex Marsh X Populus nigra L. (Populus xeuramericana), clone I-214, and Populus deltoides, clone Lux, were grown from hardwood cuttings for one growing season in either ambient (360 μmol mol?1) or elevated (560 μmol mol?1) [CO2] in FACE-systemrings at Rapolano Terme (Siena, Italy). Both clones I-214 and Lux exhibited a higher aboveground bio-mass, photosynthesis at light saturation and instantaneous transpiration efficiency (ITE) in CO2-enriched air. The elevated [CO2]-induced responses of clone I-214 included increased investment in branch and leaf biomass, and enhanced stem volume. The elevated [CO2]-induced responses of clone Lux included an increase in the number of branches (and foliage area). Indication of photosynthetic acclimation under elevated [CO2] was found during the early morning, but only in clone I-214. Stomatal conductance decreased under elevated [CO2] particularly in clone Lux. Clone differences in response to elevated [CO2] should be taken in account when planning future poplar plantations in forecast warmer and drier Mediterranean sites.  相似文献   

13.
Hybrid rice cultivar plays an important role in rice production system due to its high yield potential and resistance to environmental stress. Quantification of its responses to rising CO2 concentration ([CO2]) will reduce our uncertainty in predicting future food security and assist in development of adaptation strategies. Using free air CO2 enrichment (FACE), we measured seasonal changes in growth and nitrogen (N) uptake of an inter-subspecific hybrid rice cultivar Liangyoupeijiu grown under two levels of [CO2] (ambient and elevated by 200 μmol mol−1) and two levels of N fertilization in 2005–2006. Average across the 2 years, FACE increased crop growth rate similarly by 22%, 24% and 23% in the periods from transplanting to panicle initiation (PI), PI to heading and heading to maturity, which was mainly attributed to an increase in green leaf area index rather than the greater net assimilation rate. Grain yield increased greatly under FACE as a result of similar contributions by panicle number per unit area, grain number per panicle and individual grain yield. Final aboveground N acquisition showed a 10.4% increase under FACE, which resulted from enhanced N uptake at both vegetative and reproductive growth stages. Compared with previous FACE studies on final productivity of two inbred japonica cultivars, inter-subspecific hybrid cultivar appears to profit more from elevated [CO2], which mainly resulted from its greater enhancement in photosynthetic production during reproductive growth due to a lack of N limitations late in the season.  相似文献   

14.
The present study investigated the effects of elevated carbon dioxide concentration ([CO2]) and air temperature on the germination of seed bulbils and the seedling vigour of two Chinese yam lines. Plants were grown under two [CO2] levels, ambient and elevated (ambient + 200 μmol mol?1), and two mean air temperature regimes, 22.2 °C (ambient + 1.4 °C) and 25.6 °C (ambient + 5.2 °C). Elevated [CO2] did not affect bulbil germination under both air temperature regimes. During the early growth stage, the dry weight (DW) of leaves, vines, shoots, roots, belowground parts (roots + tubers) and whole plants were higher under elevated [CO2] than ambient [CO2] for both lines under the low- and high-temperature regimes. The values of vigour indexes (index I = germination % × seedling length and index II = germination % × seedling DW) were also higher under elevated [CO2] than ambient [CO2] for both lines. These results indicated that Chinese yam seedlings respond positively to elevated [CO2] during the early growth stage. The above:belowground DW ratios were lower under elevated [CO2] than ambient [CO2] in seedlings with very small new tubers for both yam lines, indicating that elevated [CO2] strongly affected the root growth in the early growth stage. The DWs of post-treatment seed bulbils were higher in the elevated [CO2] under both air temperature regimes. The results showed that Chinese yam used a smaller amount of the reserves in seed bulbils under elevated [CO2] than under ambient [CO2].  相似文献   

15.
Chinese yam (‘yam’) was grown at different carbon dioxide concentrations ([CO2]), namely, ambient and elevated (ambient + 200 μmol mol?1), under low- and high-temperature regimes in summer and autumn, separately. For comparison, rice was also grown under these conditions. Mean air temperatures in the low- and high-temperatures were respectively 24.1 and 29.1 °C in summer experiment and 20.2 and 24.9 °C in autumn experiment. In summer experiment, yam vine length, leaf area, leaf dry weight (DW), and total DW were significantly higher under elevated [CO2] than ambient [CO2] in both temperature regimes. Additionally, number of leaves, vine DW, and root DW were significantly higher under elevated [CO2] than under ambient [CO2] in the low-temperature regime. In autumn experiment, tuber DW was significantly higher under elevated [CO2] than under ambient [CO2] in the high-temperature regime. These results demonstrate that yam shows positive growth responses to elevated [CO2]. Analysis of variance revealed that significant effect of [CO2] × air temperature interaction on yam total DW was not detected. Elevated-to-ambient [CO2] ratios of all growth parameters in summer experiment were higher in yam than in rice. The results suggest that the contribution of elevated [CO2] is higher in yam than in rice under summer. Yam net photosynthetic rate was significantly higher under elevated [CO2] than under ambient [CO2] in both temperature regimes in summer. Elevated [CO2] significantly affected on the rate in yam but not in rice in both experiments. These findings indicate that photosynthesis responds more readily to elevated [CO2] in yam than in rice.  相似文献   

16.
ABSTRACT

The effects of elevated carbon dioxide concentration on the morphology of leaf blades in two Chinese yam lines under different temperature conditions were determined. Plants were grown under two [CO2] levels, ambient (about 400 µmol mol?1) and elevated (ambient + 200 µmol mol?1) in the daytime, and two mean air temperature regimes, approximately ambient temperature (22.2°C) and high temperature (25.6°C). The palisade layer was thicker under elevated [CO2] than under ambient [CO2] in both temperature regimes, and the whole yam leaf blade was thicker under elevated [CO2] than under ambient [CO2] in the approximately ambient temperature regime. The numbers of chloroplasts per palisade cell and spongy cell as well as per unit profile area of palisade cell, number of starch grains per chloroplast, profile area of the starch grain, and starch-to-chloroplast area ratio in both palisade and spongy cells were higher under elevated [CO2] than under ambient [CO2] in both temperature regimes. Furthermore, the stomatal density on the abaxial side of the leaf blade in Chinese yam was greater under elevated [CO2] than under ambient [CO2] under both temperature regimes, and stomatal-pore length was higher under elevated [CO2] than under ambient [CO2] in the approximately ambient temperature regime. These results indicate that elevated [CO2] positively affects the photosynthetic apparatus. The results of this study provide information for understanding the response characteristics of the leaf blade under elevated [CO2] and a possible explanation for the positive photosynthetic responses of Chinese yam to elevated [CO2] in our previous study.

List of Abbreviations:[CO2]: carbon dioxide concentration  相似文献   

17.
This study aims to assess the risks and opportunities posed by climate change to potato growers in South Africa and to evaluate adaptation measures in the form of changes in planting time growers could adopt to optimise land and water use efficiencies in potato, using a climate model of past, present-day and future climate over southern Africa and the LINTUL crop growth model. This was done for distinct agro-ecosystems in South Africa: the southern Mediterranean area where potato still is grown year round with a doubling of the number of hot days between 1960 and 2050, the Eastern Free State with summer crops only and Limpopo with currently autumn, winter and spring crops where the number of hot days increases sevenfold and in future the crop will mainly be grown in winter. A benefit here will be a drastic reduction of frost days from 0.9 days per winter to 0. Potato crops in the agro-ecosystems will benefit considerably from increased CO2 levels such as increased tuber yield and reduced water use by the crop, if planting is shifted to appropriate times of the year. When the crop is grown in hot periods, however, these benefits are counteracted by an increased incidence of heat stress and increased evapotranspiration, leading in some instances to considerably lower yields and water use efficiencies. Therefore year-round total production at the Sandveld stabilizes at around 140 Mg?ha?1 (yield reduction in summer and yield increase in winter), increases by about 30% in the Free State and stays at about 95 t?ha?1 at Limpopo where yield increase due to CO2 is annulled by a shorter growing season. When the crop is grown in a cool period, there is an additional benefit of a reduced incidence of cold stress and a more rapid canopy development in the early stages of crop growth. In all three areas, potato growers are likely to respond to climate change by advancing planting. In Limpopo, a major benefit of climate change is a reduction in the risk of frost damage in winter. The relevance of these findings for potato grown in agro-ecosystems elsewhere in the world is discussed.  相似文献   

18.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate growth of C3 crops. Although barley is one of the important cereals of the world, little information exists about the effect of elevated [CO2] on grain yield of this crop, and realistic data from field experiments are lacking. Therefore, winter barley was grown within a crop rotation over two rotation cycles (2000 and 2003) at present and elevated [CO2](375 ppm and 550 ppm) and at two levels of nitrogen supply (adequate (N2): 262 kg ha−1 in 1st year and 179 kg ha−1 in 2nd year) and 50% of adequate (N1)). The experiments were carried out in a free air CO2 enrichment (FACE) system in Braunschweig, Germany. The reduction in nitrogen supply decreased seasonal radiation absorption of the green canopy under ambient [CO2] by 23%, while CO2 enrichment had a positive effect under low nitrogen (+8%). Radiation use efficiency was increased by CO2 elevation under both N levels (+12%). The CO2 effect on final above ground biomass was similar for both nitrogen treatments (N1: +16%; N2: +13%). CO2 enrichment did not affect leaf biomass, but increased ear and stem biomass. In addition, final stem dry weight was higher under low (+27%) than under high nitrogen (+13%). Similar findings were obtained for the amount of stem reserves available during grain filling. Relative CO2 response of grain yield was independent of nitrogen supply (N1: +13%; N2: +12%). The positive CO2 effect on grain yield was primarily due to a higher grain number, while changes of individual grain weight were small. This corresponds to the findings that under low nitrogen grain growth was unaffected by CO2 and that under adequate nitrogen the positive effect on grain filling rate was counterbalanced by shortening of grain filling duration.  相似文献   

19.
The objective of this study was to identify physiological processes that result in genotypic and N fertilization effects on rice yield response to elevated atmospheric CO2 concentrations ([CO2]). This study conducted growth and yield simulations for 9 rice genotypes grown at 4 climatically different sites in Asia, assuming the current atmospheric [CO2] (360 ppm) and elevated [CO2] (700 ppm) using 5 levels of N fertilizer (4, 8, 12, 16, 20 g m−2 N fertilizer). A rice growth model that was developed and already validated for 9 different genotypes grown under 7 sites in Asia was used for the simulation, integrating additional components into the model to explain the direct effect of [CO2] on several physiological processes. The model predicted that the relative yield response to elevated [CO2] (RY, the ratio of yield under 700 ppm [CO2] to that under 360 ppm [CO2]) increased with increasing N fertilizer, ranging from 1.12 at 4 g m−2 N fertilizer to 1.22 at 20 g m−2 N fertilizer, averaged overall genotypes and locations. The model also predicted a large genotypic variation in RY at the 20 g N treatment, ranging from 1.08 for ‘WAB450-I-B-P-38-HB’ to 1.41 for ‘Takanari’ averaged overall locations. Combining all genotypes grown at the 5N fertilization conditions, a close 1:1 relationship was predicted between RY and the relative [CO2] response in spikelet number for crops with a small number of spikelets (less than 30,000 m−2) under the current atmospheric [CO2] (n = 18, r = 0.89***). In contrast, crops with a large number of spikelets under the current atmospheric [CO2] showed a significantly larger RY than the relative [CO2] response for spikelet number per unit area. The model predicted that crops with a larger number of spikelets under the current atmospheric [CO2] derived great benefit from elevated [CO2] by directly allocating increased carbohydrate to their large, vacant sink, whereas crops with a smaller number of spikelets primarily required an increased spikelet number to use the increased carbohydrate to fill grains. The simulation analyses suggested that rice with a larger sink capacity relative to source availability under the current atmospheric [CO2] showed a larger yield response to elevated [CO2], irrespective of whether genotype or N availability was the major factor for the large sink capacity under the current [CO2]. The model predicted that the RY response to nitrogen was brought about through the N effects on spikelet number and non-structural carbohydrate accumulation. The genotypic variation in RY was related to differences in spikelet differentiation efficiency per unit plant N content. Further model validation about the effects of [CO2] on growth processes is required to confirm these findings considering data from experimental studies.  相似文献   

20.
《Field Crops Research》1995,41(1):13-23
The objectives of this study were to evaluate effects of ambient and double ambient [CO2] at a range of growing temperatures on photosynthesis, respiration, transpiration, water-use efficiency and dry matter accumulation of cotton plants (Gossypium hirsutum L., cv. DPL 50). In Experiment I, plants were grown outdoors until first bloom, then transferred into naturally lit growth chambers and grown for 22 days at 30/18°C with five CO2 concentrations varying from 350 to 900 μl l−1. In Experiment II, air temperatures were maintained at 20/12, 25/17, 30/22, and 35/27°C day/night during a 70-day experimental period with [CO2] of 350 and 700 μl l−1 at each temperature. Photosynthesis increased with [CO2] from 350 to 700 μl l−1 and with temperature. Plants grown at 35/27°C produced fewer bolls due to abscission compared with plants grown at optimum temperatures (30/20°C). At higher [CO2], water-use efficiency increased at all temperatures due mainly to increased canopy photosynthesis but also to more limited extent to reduced canopy transpiration. Increased photosynthesis at higher [CO2] resulted in greater dry matter accumulation at all temperatures except at 20/12°C. Respiration increased as dry matter and temperature increased. Plants grown at higher [CO2] had less respiration per unit dry matter but more per unit area. These results indicate that future increases in [CO2] are likely to benefit cotton production by increasing carbon assimilation under temperatures favorable for cotton growth. Reduced fruit weights at higher temperatures indicate potential negative effects on production if air temperatures increase as projected in a high-CO2 world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号