首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative importance of the genotype × year (G × Y), genotype × location (G × L) and genotype × location × year (G × L × Y) interactions has significant implications on the testing strategy of crop breeding lines. The goal of this study was to examine the dynamic patterns of these three interactions for pod yield of peanut using a crop simulation model. Pod yields of 17 peanut lines in the early-rainy, mid-rainy and dry seasons at 112 locations covering all peanut production areas in Thailand were simulated for 30 years (1972–2002) with the Cropping System Model (CSM)-CROPGRO-Peanut. Combined analyses of variance were preformed for individual seasons and for overall seasons, with the number of year incrementally increasing from 2 to 30, and the relative contributions of the individual sources of variation were determined. This procedure was repeated four times with different starting years. The results showed that the environmental effects accounted for the major proportion of the total yield variation, followed by the genotype effects, while the genotype × environment (G × E) effects were rather small. The contributions of the individual sources changed as the number of years in the analysis changed. Increasing number of years in the analyses resulted in an increase in the magnitude of the G × Y and G × L × Y interactions, but a decline in the G × L contribution. The contributions of the G × Y and G × L interactions were greater and more fluctuated in the dry season, while those of the G × L × Y interactions were greater in the mid-rainy season. Notable increases in the G × Y interaction in the dry season were observed in certain years. The decline in the G × L interaction with increasing number of years was closely associated with the increase in the G × L × Y interaction, and both became stable when 6 or more years were included. Several cross-over in the ranks of peanut lines for mean pod yield in two contrasting years were also observed for the mid-rainy season. These results raise a question on the effectiveness of the strategy for using locations to replace years in varietal testing that is normally employed by breeders. The practical limit of multi-year evaluation of crop breeding lines could be overcome by the use of a crop simulation model.  相似文献   

2.
Zinc and iron are important micronutrients for human health for which widespread deficiency occurs in many regions of the world including South Asia. Breeding efforts for enriching wheat grains with more zinc and iron are in progress in India, Pakistan and CIMMYT (International Maize and Wheat Improvement Centre). Further knowledge on genotype × environment interaction of these nutrients in the grain is expected to contribute to better understand the magnitude of this interaction and the potential identification of more stable genotypes for this trait. Elite lines from CIMMYT were evaluated in a multilocation trial in the eastern Gangetic plains (EGP) of India to determine genotype × environment (GE) interactions for agronomic and nutrient traits. Agronomic (yield and days to heading) data were available for 14 environments, while zinc and iron concentration of grains for 10 environments. Soil and meteorological data of each of the locations were also used. GE was significant for all the four traits. Locations showed contrasting response to grain iron and zinc. Compared to iron, zinc showed greater variation across locations. Maximum temperature was the major determinant for the four traits. Zinc content in 30–60 cm soil depth was also a significant determinant for grain zinc as well as iron concentration. The results suggest that the GE was substantial for grain iron and zinc and established varieties of eastern Gangetic plains India are not inferior to the CIMMYT germplasm tested. Hence, greater efforts taking care of GE interactions are needed to breed iron and zinc rich wheat lines.  相似文献   

3.
Grain and stover yield are key traits for the improvement of rabi sorghum varieties and hybrids in India. Large genotype-by-environment interactions (GEI) were identified for both grain and stover yield based on 10 years’ data available from the All India Coordinated Sorghum Improvement Program (AICSIP) experiments conducted from 1986/87 to 1996/97. From the estimates of the genotypic, GEI and residual components of variance for the four traits, a multi-environment testing strategy based on 15–20 locations, 2–3 years, and two replicates per trial would be required to achieve estimates of repeatability of approximately 0.70 for grain yield, 0.45 for stover yield, 0.70 for flowering time, and 0.85 for plant height.  相似文献   

4.
Genotype-by-environment interactions (GEI) have been identified as an important component of the genotypic variation for grain and stover yield traits of rabi sorghum varieties and hybrids in India. It has been argued that obtaining an understanding of the causes of these GEI is an important step to identify the scope for genetic improvement of grain and stover yield by conventional breeding. Pattern analysis was used to investigate the regional structure of the GEI for the four traits grain yield, stover yield, days-to-flower, and plant height, measured on the varieties and hybrids tested over 10 years in the All India Coordinated Sorghum Improvement Program (AICSIP). There was evidence that regional differences accounted for part of the GEI for grain yield and days-to-flower but not for stover yield and plant height. Cluster analysis was used to group the locations included in the ACSIP experiments. The five-group level was chosen to examine the causes of GEI among the location groups. Hypotheses were proposed for the observed regional grouping of trials for grain yield. One group of trials consisted of predominantly irrigated trials, the other four groups differed in the timing and intensity of drought stress imposed on the entries. This retrospective analysis provides a basis for testing the hypothesised contributions of environmental variation in water availability to regional GEI for grain and stover yield. If these hypotheses are substantiated, the current multi-environment testing strategy used for the AICSIP trials could be modified to ensure adequate sampling of the five regional groups identified by the retrospective pattern analysis.  相似文献   

5.
Wheat kernel size and shape influence its flour yield and market price. A hexaploid wheat population of 185 recombinant inbred lines was evaluated for five kernel morphometric traits namely, 1000-kernel weight, kernel length, width, length–width ratio and factor form density in two diverse agro-climatic regions in India in five to eight year–location combinations. Additive main effects and multiplicative interaction analysis revealed significant contributions from genotype (G) and genotype × environment (G × E) effects for these traits. Quantitative trait locus (QTL) analysis by composite interval mapping (CIM) was performed using a linkage map of 251 SSR markers and 59 QTLs distributed on 16 chromosomes were identified. The majority of the QTLs were located on the D genome (44.07%) and the homeologous chromosomes of Group 2 (38.98%). Stable QTLs detected in three or more year–location combinations were identified for four traits. Multi-trait CIM showed 10 chromosomal regions harboring putative pleiotropic loci. Complexity in the genetic effects was further revealed by QTL analysis based on mixed-linear model that indicated 19 QTLs with significant individual effects (main-effect QTLs) and 14 QTL × QTL interactions. Five of these nineteen main-effect QTLs and one of the fourteen QTL × QTL interactions showed environmental influence.  相似文献   

6.
Miscanthus × giganteus bark was subjected to mild fractionation with peroxyformic acid by a two stage process. A factorial experimental design was used to study and quantify the effect of the variables (formic acid concentration (80-90%), hydrogen peroxide concentration (0.2-0.4%), temperature of the first stage (60-80 °C), and treatment time of the second stage (60-120 min)) on the main parameters of fractionation: pulp yield, remaining lignin and total polysaccharides in pulp. The dependence of lignin precipitation rate on hydrogen peroxide concentration in liquor was also studied. Hydrogen peroxide concentrations inferior to 0.5% seems to be suitable to recover high percentages of lignin. The isolated lignin was analysed by 2D-HSQC, 13C- and 31P NMR spectroscopy, FTIR spectroscopy, size-exclusion chromatography and chemical analysis. The most important chemical modifications taken place in the lignin during the fractionation were identified: β-O-4′ cleavage and hydrolysis of LC-bond structures. The C9-formula was also determined: C9H6.81O2.90(OCH3)0.68(COOH)0.07(OHPh)0.38(OHAl)0.33.  相似文献   

7.
A Box-Behnken experimental design and response surface methodology were employed to optimize the pretreatment parameters of a formic/acetic acid delignification treatment of Miscanthus × giganteus for enzymatic hydrolysis. The effects of three independent variables, namely cooking time (1, 2 and 3 h), formic acid/acetic acid/water ratio (20/60/20, 30/50/20 and 40/40/20) and temperature (80, 90 and 107 °C) on pulp yield, residual Klason lignin content, concentration of degradation products (furfural and hydroxymethylfurfural) in the black liquor, and enzymatic digestibility of the pulps were investigated. The major parameter influencing was the temperature for pulp yield, delignification degree, furfural production and enzymatic digestibility. According to the response surface analysis the optimum conditions predicted for a maximum enzymatic digestibility of the glucan (75.3%) would be obtained using a cooking time of 3 h, at 107 °C and with a formic acid/acetic acid/water ratio of 40/40/20%. Glucan digestibility was highly dependent on the delignification degree.  相似文献   

8.
This study presents the characteristics of four Salix viminalis × Populus tremula hybrids, produced for the first time in the world grown in a three-year field experiment. Shoot weight per plant and major biomass yield components, including plant height, number of shoots per rootstock and shoot diameter, were determined. The infection severity caused by leaf rust (Melampsora sp.) was also evaluated. The biomass of three-year-old hybrid plants was subjected to chemical analyses and calorimetric tests to determine the energy value of biomass as solid fuel. Among the studied genotypes the highest yield was achieved by one of the studied hybrids. Its biometric parameters did not differ significantly from the standard genotype, and they were superior to the parameters of the maternal form. All Salix × Populus hybrids were more susceptible to rust infections than their maternal form and one hybrid was more resistant to infections caused by fungi of the genus Melampsora. Two hybrids have optimal biomass parameters as regards both calorific value and amount of carbon, hydrogen, sulfur and nitrogen.  相似文献   

9.
Resource-poor farmers in India cultivate upland rice as a subsistence crop in poor soil with minimum inputs, often applying little or no fertilizer and controlling weeds by hand. Consequently, upland rice yields are very low. In our study, the response to management intensification of fertilizer application at rates of 40 N ha−1, 13 P ha−1, and 16.7 K ha−1 and two weed control treatments as compared with no fertilizer, and one hand weeding practice commonly followed by farmers in rainfed upland areas was examined with a large set of advanced breeding lines and adapted upland varieties tested over 3 years in multi-location trials. Highly significant genotype × environment interaction was observed in combined analyses across environments, leading to sub-grouping of sites into the high-yielding or favorable and low-yielding or unfavorable upland environment groups. A significant effect of management regime was observed. Averaged over 15 environments, the moderate-input treatment out-yielded the low-input treatment by nearly 65% or 0.8 t ha−1 under favorable environments and by nearly 48% (0.3 t ha−1) in unfavorable environments. A significant genotype effect and genotype × input management interaction for yield at favorable sites was observed. However, the same was not significant at unfavorable sites. Varietal differences were relatively small at unfavorable sites across input levels. The heritability estimates for grain yield were moderately high in both moderate- and low-input conditions in favorable environments. The genetic correlation between yields in moderate- and low-input conditions was high in both favorable and unfavorable environments. The study indicated that improved varieties performed well relative to landraces under low-input management. Improved varieties along with modestly intensified management offer an attractive option to increase the productivity of rainfed upland environments. For both favorable and unfavorable environments, indirect selection under moderate-input conditions was less efficient than direct selection for grain yield in low-input conditions, indicating upland breeding programs to adopt selection for grain yield under both moderate- and low-input conditions.  相似文献   

10.
The aim of this work was to find new sources of resistance to chocolate spot disease, and to validate their stability across different environments. In order to do so, a collection of 307 accessions of Vicia faba was screened for resistance to Botrytis fabae under field conditions; stability of resistance of the 40 most-resistant accessions was tested in a multi-location experiment in Austria, Chile, Egypt, France and Spain over two field seasons. Although complete resistance was not found, nine accessions showed interesting levels of incomplete resistance (ranging from 10 to 20% of average severity across environments, maximum average severity being 47.9%). Genotype × environment interaction accounted for 22% of the sum of squares of the multi-environment evaluation, revealing instability of the phenotypic expression across environments. This usually hampers the efficiency of selection and reduces the adaptability of the plant material. Three accessions stand out for their consistent resistance, both in terms of reduced disease severity and high stability, which make them good candidates for breeding programs. As for environments, those with the highest total severity mean were the most discriminant between accessions. In contrast, those with lower severity means were the most representative of the whole range of environments. It can be concluded that validation of resistance to chocolate spot in different environments is an essential step when screening for material of interest and should be taken into account for further works.  相似文献   

11.
Bean fly is a significant pest of common bean in semi-arid areas of East Africa. Apart from inadequate moisture in the dry land, bean fly simultaneously contributes negatively thereby adversely affecting bean productivity. The objectives of this study were to (1) identify sources of resistance to bean fly available in landraces, (2) confirm stability of host plant resistance in drought stress and (3) determine the effect of drought stress and seasonal variation on common bean genotypes in relation to bean fly attack for adaptability to the semi-arid areas of East Africa. Sixty four genotypes including landraces, bean fly resistant lines and local checks were evaluated for seed yield, 100-seed weight, days to maturity, plant mortality and pupae in stem in an alpha lattice design with two replications. This was under drought stressed (DS) and non-stressed (NS) environments and two treatments (insecticide sprayed and natural infestation) for three cropping seasons between 2008 and 2009. Genotypes differed in their reaction to natural bean fly attack under drought stressed (DS) and non-stressed (NS) environments over different cropping seasons. However, the effect of bean fly appeared to vary between the long rains (LR) and short rains (SR). It was observed that an increase in number of pupae per stem resulted in a higher plant mortality. The range of seed yield was from 345 to 1704 kg ha−1 under natural infestation and from 591 to 2659 kg ha−1 under insecticide protection. Seed yield loss ranged from 3 to 69%. The resistance of most of the bean fly resistant lines seemed to break down in presence of DS owing to their dismal performance. Screening of genetic resources in common bean to breed for host plant resistance to bean fly offers high potential of success if researchers take full advantage of the diversity available within the landraces.  相似文献   

12.
Plant performance under drought stress is not solely defined by an inadequate water supply but by an interaction among many factors, including climatic, edaphic, and biological factors. An important interacting factor affecting root growth, and therefore the ability of a plant to access and take up water, is the soil physical environment. Soil penetration resistance can restrict, or even halt, root system growth. For rice, a soil penetration resistance of 1.4 MPa is sufficient to inhibit root system expansion. This review describes the effects of the soil physical environment on root growth and its interaction with drought stress. A large variation in soil penetration resistance exists among rainfed rice-growing areas of South and Southeast Asia and within experimental stations used for managed-drought field phenotyping. This variability may influence genotypic performance across experimental sites/countries and the response of crop genotypes to drought stress. A case study is presented in which differences in the soil physical environment may partially elucidate differences in experimental results between two field studies conducted at different locations. These results highlight the need for increased knowledge of environmental interactions to allow the outputs of genomics to increase drought tolerance at the field level.  相似文献   

13.
A collection of 191 durum wheat accessions representing Mediterranean Basin genetic diversity was grown in nine different environments in four countries, with productivities ranging from 0.99 to 6.78 t ha−1. The population breeding structure comprised eight genetic subpopulations (GSPs) using data derived from 97 evenly distributed SSR markers. The phenotypic structure was assessed: (i) from the mean values of six agronomic traits across environments (multivariate), and (ii) from data representing each trait in each environment (univariate). Mean daily maximum temperature from emergence to heading was significantly (P < 0.05) and negatively associated to yield, accounting for 59% of yield variations. Significant but weak relationships were obtained between the genetic similarities among accessions and their overall agronomic performance (r = 0.15, P < 0.001), plant height (r = 0.12, P < 0.001), spike–peduncle length (r = 0.06, P < 0.01) and thousand kernel weight (r = 0.03, P < 0.05), suggesting a very low possibility of prediction of the agronomic performance based on random SSR markers. The percentage of variability (measured by sum of squares) explained by the environment varied between 76.3 and 98.5% depending on the trait, while that explained by genotypes ranged between 0.4 and 12.6%, and that explained by the GE interaction ranged from 1.1 to 12.5%. The clustering of the accessions based on multivariate phenotypic data offered the best explanation of genotypic differences, accounting for 30.3% (for yield) to 75.1% (for kernel weight) of the observed variation. The genotype × environment interaction was best explained by the phenotypic univariate clustering procedure, which explained from 28.5% (for kernel weight) to 74.9% (for days to heading) of variation. The only accessions that clustered both in the genetic dissimilarities tree and the tree obtained using Euclidean distances based on standardized phenotypic data across environments were those closely related to the CIMMYT hallmark founder ‘Altar 84’, the ICARDA accessions adapted to continental-dryland areas, and the landraces, suggesting that genetic proximity corresponded to agronomic performance in only a few cases.  相似文献   

14.
Plant breeders are interested in rationally reducing the number of testing environments for breeding new genotypes adapted to diverse conditions. One way to characterize the adaptation of a genotype is to use the joint regression model. Our objectives were to estimate the stability for grain yield (GY), grain protein yield (GPY) and grain protein content (GPC) of a set of wheat genotypes grown under varying nitrogen conditions and then to determine optimal numbers of environments for assessing the slopes of joint regression.  相似文献   

15.
Consumer demand regarding the impacts of conventional agriculture on the environment and human health have spurred the growth of organic farming systems; however, organic agriculture is often criticized as low-yielding and unable to produce enough food to supply the world's population. Using wheat as a model crop species, we show that poorly adapted cultivars are partially responsible for the lower yields often found in organic farming systems when compared with conventional farming systems. Our results demonstrate that the highest yielding soft white winter wheat genotypes in conventional systems are not the highest yielding genotypes in organic systems. An analysis of variance for yield among 35 genotypes between paired organic and conventional systems showed highly significant (P < 0.001) genotype × system interactions in four of five locations. Genotypic ranking analysis using Spearman's rank correlation coefficient (RS) showed no correlation between genotypic rankings for yield in four of five locations; however, the ranks were correlated for test weight at all five locations. This indicates that increasing yield in organic systems through breeding will require direct selection within organic systems rather than indirect selection in conventional systems. Direct selection in organic systems produced yields 15%, 7%, 31% and 5% higher than the yields resulting from indirect selection for locations 1–4, respectively. With crop cultivars bred in and adapted to the unique conditions inherent in organic systems, organic agriculture will be better able to realize its full potential as a high-yielding alternative to conventional agriculture.  相似文献   

16.
Specific breeding for organic systems may help reduce their yield gap relative to conventional systems by exploiting genotype × system (GS) interaction. Likewise, specific breeding for distinct subregions within a region could capitalize on genotype × location (GL) interaction. Grain yield and test weight of common wheat varieties were evaluated under organic and conventional systems in ten locations spanning from northern to southern Italy, with the objectives of: (i) comparing production systems; (ii) investigating the extent of GS and GL interactions and their relationship with genotypic and environmental characteristics; and (iii) preliminarily comparing, in terms of predicted selection gains, different strategies to cope with GS and GL effects. These effects were investigated in the 2-year Data set 1 including seven genotypes. GS effects were also assessed in the annual Data sets 2 and 3 including 13 and 11 genotypes, respectively. The yield reduction of organic systems relative to conventional ones averaged 28% in Data set 1, 29% in Data set 2 and 14% in Data set 3. Organic systems also tended to a modest test weight reduction. Genetic correlations between systems ranged from high to very high (0.88 ≤ rg ≤ 0.98) for yield and test weight, owing to nil or limited GS interaction. Broad-sense heritability tended to be higher in conventional systems than organic ones for yield in two data sets (mainly due to lower experimental error) while being similar in the two systems in the other cases. Predicted selection gains suggested nil (yield) or very modest (test weight) advantage of direct selection in organic systems relative to indirect selection in conventional systems, when targeting organic systems. The scope for selection only in conventional systems was reinforced when comparing predicted gains for selection scenarios which target both systems in relation to their foreseeable marketing importance. GL effects for yield and test weight were significant and were modeled by additive main effects and multiplicative interaction analysis. Site classification based on GL effects for yield revealed a larger subregion A including northern and central Italy and a smaller subregion B comprising southern Italy, accordingly with previous, independent studies. Yield selection only in subregion A (with indirect selection gain for subregion B) implied slightly higher predicted gain for A (+4%) and much lower gain for B (−24%) relative to independent, direct selection in each subregion. Selection for specific geoclimatic subregions may have greater importance than selection for specific production systems.  相似文献   

17.
A pea breeding strategy is required to cope with the large climatic variation featuring south-European environments. Thirty-seven recent cultivars bred by 21 European or Australian institutions were grown in two climatically contrasting Italian sites (Lodi, subcontinental; Foggia, Mediterranean), two cropping years per site and two sowing times per year, to define various elements of this strategy. The study assessed: (i) the impact of genotype × environment (GE) interaction due to spatial and temporal factors on the consistency of top-yielding cultivars; (ii) the similarity between environments for GE effects and its implications on adaptation strategies; (iii) the extent of genotypic and GE interaction effects, and the relationship with adaptive responses, for various morphophysiological traits; (iv) the adaptation pattern and the combination of adaptive traits featuring three germplasm types, i.e. European spring and winter types, and germplasm selected in Mediterranean environments; (v) the predicted efficiency of direct and indirect selection procedures for grain yield. The geoclimatic area had a major impact on crop yield (5.15 t/ha in Lodi vs. 2.52 t/ha in Foggia) but tended to affect GE interaction less than time or year of autumn sowing, suggesting to breed for wide adaptation. Top-yielding cultivars as modeled by additive main effects and multiplicative interaction were environment-specific. On average, spring and winter materials outyielded the Mediterranean germplasm but the spring type, characterized by wide entry variation, included most widely- and specifically-adapted top-yielding cultivars. Cold-tolerant spring-type germplasm is preferable to breed for wide adaptation as it may combine high yield potential with adaptation to winter cold and terminal drought and heat stress. Lodging susceptibility, harvest index, onset and duration of flowering, and canopy height at maturity assessed in individual environments showed moderate to fairly high broad-sense heritability on a plot basis (h2 > 0.20) and tended to correlation with yield over test environments (r ≥ 0.20). An indirect selection index including harvest index and canopy height exhibited about 20% greater predicted efficiency than direct selection for yield when using one selection environment and could be preferred for early selection stages. Direct yield selection in late selection stages should ideally be performed across 2 years in two environments that contrast for geoclimatic area and time of autumn sowing.  相似文献   

18.
The aim of this work was to identify Vicia faba germplasm resistant both to rust and chocolate spot. A collection of 43 accessions of V. faba previously identified as chocolate-spot resistant was evaluated for rust and chocolate spot resistance in Egypt and in Spain. The genotype and genotype × environment (GGE) biplot analyses allowed the selection of 11 accessions resistant to both diseases in those locations. These 11 accessions were evaluated for rust in an additional field trial in Spain, all performing better than the susceptible check. The joint analysis of the 11 accessions in the four field trials where they had been evaluated revealed no significant effects either for genotype, environment or the genotype × environment interaction. They are hence promising sources of resistance, both for their low severities and their stable responses across the studied environments. This collection was also tested under controlled conditions against the Egyptian and the Spanish isolates of rust present in the field trials further underlining the stable performance of these genotypes. Finally, the effect of previous infection with chocolate spot on rust resistance was assessed under controlled conditions and no influence of it was found.  相似文献   

19.
Analysis of multi-environment trials (METs) of genotypes (G) and genotype × environment (GE) interactions for yield performance across environments, and selection of the best genotypes is an important routine in maize breeding programs. Analysis and interpretation of METs data have been limited to analysis of variance and mean comparison among genotypes. This type of analysis has not been effective in exploiting GE interactions encountered in METs data sets. The objectives of this study were to exploit METs data sets from maize regional trails using G plus GE interaction (GGE) biplot based on the site regression (SREG) model. The GGE biplots displays graphically the relationship among test environments, genotypes and GE interactions. Grain yield data of 35 early to medium maturing open pollinated maize varieties (OPVs) from five seasons (1999–2003) across 59 locations in Southern African Development Community (SADC) were analyzed. The GGE biplots based on the SREG model indicated that yield performance of maize OPVs were under major environments and of GE interactions. The construction of GGE biplots based on SREG model analysis showed the ideal test environments that discriminate well performing maize OPVs from poor ones, the performance of each OPV in specific year, the discrimativiness versus representativeness view of the GGE biplot of the test locations across the years, the relation among OPVs relative to grain yield, the stability of OPVs across environments and which OPVs is best for what.  相似文献   

20.
Lucerne (Medicago sativa L.) can enhance the economic and environmental sustainability of crop-livestock systems in the western Mediterranean basin, but requires improved adaptation to stressful environments because of a predicted shortage of irrigation water and climate change. This study reports on three-year dry matter yields of five landraces from Morocco, Italy and Tunisia and seven varieties from France, Italy, Australia and USA assessed across 10 agricultural environments of Algeria, Tunisia, Morocco and Italy of which four were rainfed, one was continuously irrigated (oasis management), and five were irrigated but adopted a nine-week suspension of irrigation during summer. Our objectives were targeting cultivars to specific environments, and assisting regional breeding programmes in defining adaptation strategies, genetic resources and opportunities for international co-operation. The crop persisted well in all environments, but environment mean yield was strictly associated (P < 0.01) with annual and spring-summer (April–September) water available. Rainfed cropping implied 42% lower yield with 61% less spring-summer water available relative to irrigation with withheld summer water across three sites hosting both managements. All of these sites showed genotype × management interaction (at least P < 0.10). Cross-over genotype × environment (GE) interaction between top-yielding cultivars occurred across the 10 environments. Total number of harvests (range: 9–23), soil salinity as measured by electrical conductivity (range: 0.20–6.0 dS m−1), and average spring-summer water available (range: 102–932 mm) were selected as significant (P < 0.05) environmental covariates in a factorial regression model explaining 53% of GE interaction variation. This model was exploited for targeting cultivars as a function of site-specific levels of these factors. Its indications agreed largely with those of an additive main effects and multiplicative interaction model with two GE interaction principal components. An Italian landrace exhibited specific adaptation to severely drought-prone environments, whereas landraces from north Africa were not adapted to such environments. One Moroccan landrace was specifically adapted to high number of harvests (partly reflecting frequent mowing). One variety selected for salt tolerance, and one Moroccan landrace, were specifically adapted to salt-stress environments. Environment classification as a function of GE interaction effects indicated three groups which may be object of specific breeding: (i) rainfed or irrigated environments featuring limited spring-summer water available (<350 mm), nil or low soil salinity, and moderate to low number of harvests; (ii) salt-stress environments; and (iii) environments characterized by high number of harvests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号