首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
上海郊区园艺土壤氮素的生物形成动态变化   总被引:3,自引:0,他引:3  
Dissolved organic nitrogen (DON) represents a significant pool of soluble nitrogen (N) in soil ecosystems. Soil samples under three different horticultural management practices were collected from the Xiaxiyang Organic Vegetable and Fruit Farm, Shanghai, China, to investigate the dynamics of N speciation during 2 months of aerobic incubation, to compare the effects of different soils on the mineralization of 14C-labeled amino acids and peptides, and to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant blockage in soil N supply. The dynamics of N speciation was found to be significantly affected by mineralization and immobilization. DON, total free amino acids, and NH4+-N were maintained at very low levels and did not accumulate, whereas NO3--N gradually accumulated in these soils. The conversion of insoluble organic N to low-molecular-weight (LMW) DON represented a main constraint to N supply, while conversions of LMW DON to NH4+-N and NH4+-N to NO3--N did not. Free amino acids and peptides were rapidly mineralized in the soils by the microbial community and consequently did not accumulate in soil. Turnover rates of the additional amino acids and peptides were soil-dependent and generally followed the order of organic soil > transitional soil > conventional soil. The turnover of high-molecular-weight DON was very slow and represented the major DON loss. Further studies are needed to investigate the pathways and bottlenecks of organic N degradation.  相似文献   

2.
Components of the organic matter have been studied in three soils from adjacent sites with different long-term treatments: soil I, prolonged arable cultivation; soil II, 17 years under grass after prolonged arable cultivation; and soil III, old pasture. Contents of total organic C in the top 15cm were 0.9% in soil I. 1.7% in soil II and 4.8% in soil III. The light fraction, comprising partially decomposed materials with a specific gravity < 2.06, represented greater proportions of the organic C in soils II and III (20–23 per cent) than in soil I (8.5 per cent). The light fraction of soil III had a relatively high N content.The proportions of the soil organic C released, by hydrolysis, as neutral sugars, uronic acids, amino sugars, amino acids and phenolic acids were generally similar in the three soils, although uronic acids and phenolic acids constituted somewhat greater proportions in soils II and III than in I.The light fractions contained greater proportions of neutral sugars and phenolic acids, and smaller proportions of amino sugars and amino acids than the whole soils.  相似文献   

3.
Following addition of either the d- or the l-isomers of alanine, glutamine or glutamic acid or d-glucose, the CO2 production from an arable and a forest soil was measured until the pulses of CO2 production associated with substrate addition subsided. The maximum rate of additional CO2 production from the d-glucose amended soils occurred within the first 48 h for both soils. The greatest rates of additional CO2 production from l-amino acid amended soils occurred within 108 h for the forest soil and 60 h for the arable soil. Following addition of d-amino acids to the forest soil, the maximum rate of additional CO2 production was less than that following addition of the corresponding l-amino acid addition. However, for this soil the pulse of additional CO2 production following d-amino acid amendment lasted longer and by the time it had subsided (360 h), the total additional CO2 production did not differ between isomeric forms of the same amino acid. Following d-amino acid addition to the arable soil, there were delays of between about 24 and 48 h before the onset of rapid additional CO2 production and the CO2 pulse subsided relatively rapidly. The total additional CO2 produced from the arable soil was significantly less for the d-amino acid than for the corresponding l-amino acid treatments. Successive additions of d-glucose led to significant increases in the subsequent rates of additional CO2 production from the forest soil, but not from the arable soil. Each successive l-amino acid amendment led to increases in the rate of additional CO2 production from both soils, as did successive additions of the d-amino acids to the forest soil. However, successive additions of the d-amino acids to the arable soil did not lead to consistent responses in the additional rate of CO2 production.  相似文献   

4.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   

5.
Nitrogen biomarkers and their fate in soil   总被引:3,自引:0,他引:3  
More than 90 % of the nitrogen (N) in soils can be organically bound, but the mechanisms and rates by which it is cycled have eluded researchers. The objective of this research was to contribute to a better understanding of the origin and transformation of soil organic N (SON) by using amino sugars and the enantiomers of amino acids as markers for microbial residues and/or aging processes. Studied samples presented here comprised (1) soil transects across different climates, (2) arable soils with different duration of cropping, and (3) radiocarbon‐dated soil profiles. The results suggested that increased microbial alteration of SON temporarily results in a sequestration of N in microbial residues, which are mineralized at later stages of SON decomposition. Microorganisms increasingly sequestered N within intact cell wall residues as frost periods shortened. At a mean annual temperature above 12–15 °C, these residues were mineralized, probably due to limitations in additional substrates. Breaking the grassland for cropping caused rapid SON losses. Microbial residues were decomposed in preference to total N, this effect being enhanced at higher temperatures. Hence, climate and cultivation interactively affected SON dynamics. Nevertheless, not all SON was available to soil microorganisms. In soil profiles, L‐aspartic acid and L‐lysine slowly converted into their D‐form, for lysine even at a similar rate in soils of different microbial activity. Formation of D‐aspartate with time was, therefore, induced by microorganisms while that of D‐lysine was not. The racemization of the two amino acids indicates that SON not available to microorganisms ages biotically and abiotically. In native soils, the latter is conserved for centuries, despite N deficiency frequently occurring in living terrestrial environments. Climate was not found to affect the fate of old protein constituents in surface soil. When native grassland was broken for cropping, however, old SON constituents had become available to microorganisms and were degraded.  相似文献   

6.
l-isomeric amino acids and oligopeptides are thought to represent a key nitrogen (N) source for plants and soil microorganisms, bypassing the need to take up inorganic N, whilst self-cycling of d-enantiomers within peptidoglycan-containing bacteria may provide a further short circuit within the N cycle. Here we use stable isotope profiling (SIP) to identify the fate of organic N within soil microbial communities. We followed the incorporation of 13C-labelled d- or l-labelled amino acids/peptides into phospholipid fatty acids (PLFAs). l-alanine and its peptides were taken up more rapidly than d-enantiomers by Gram-positive bacteria with 13C incorporation being predominantly into anteiso- and iso-fatty acids typically associated with Gram-positive bacteria. d-enantiomer uptake was found not to differ significantly between the microbial groups, providing little support for the view that soil bacteria may self-cycle d-forms of amino acids and peptides. There was no consistent association between peptide chain length and incorporation. The concentrations of l- and d-isomeric amino acids in soil solution were 866 nM and 72 nM, respectively. We conclude that Gram-positive bacteria appear to be the primary competitors for l-enantiomeric forms of amino acids and their peptides, but that both d- and l-enantiomers are available N and C sources for bacteria and fungi.  相似文献   

7.
The objective of the investigation was to identify the most important organic N-containing fractions extracted from soils by electroultrafiltration (EUF) or a CaCl2 solution, respectively, and their importance for nitrogen mineralization. The investigation comprised 19 agricultural and one forest top soil. Net N mineralization was tested in Mitscherlich pot experiments with three treatments: (1) fallow soil without N fertilizer, (2) soil cultivated with rye grass without N fertilizer, (3) soil cultivated with rye grass with N fertilizer. The highest proportion of N in the extracts was the amino N fraction (amino acids + peptides) amounting to approximately 60% of the total N extracted by CaCl2 and to about 40% of the total N extracted by EUF. The proportion of amino sugars from total N extracted was in average 10% for the CaCl2 and 5.2% for the EUF extracts. The proportion of heterocyclic N bases derived from nucleic acids amounted in average to 4.8% and 3.6% for the CaCl2 and EUF extract, respectively. Amino N (amino acids + peptides) were correlated best with net N mineralization (EUF, r = 0.81***, CaCl2, r = 0.86***). The correlation between amino sugars and net N mineralization was r = 0.55* for the EUF extract and r = 0.49* for the CaCl2 extract. The heterocyclic N bases did not correlate with net N mineralization. Correlations between Norg extracted by CaCl2 versus net N mineralization were higher than those obtained by the EUF extract. Net N mineralization was about four times higher in the fallow soils than in the treatment with grass and no N fertilizer. In the treatment with grass + N fertilizer on average no net N mineralization occurred, moreover there was a tendency of N immobilization. It is assumend that in the treatments with grass cultivation, organic C released by roots stimulated the assimilation of mineral N and amino acids by soil microorganisms resulting in a low net N mineralization. Net N mineralization led to a highly significant depletion in the Norg pools and particularly in the amino N and amino sugar pools in the treatment with grass and without N fertilizer. This depletion was particularly evident in the CaCl2 extracts. The results justify the conclusion that the Norg obtained with both extraction methods originates from a dynamic N pool into which N flows in and out. The amino N extractable with EUF or CaCl2 is a reliable indicator for the net N mineralization potential of soils.  相似文献   

8.
[目的]覆盖作物影响果园土壤的微生物和线虫群落,研究不同覆盖作物对土壤微生物和线虫群落的影响特征可为生态果园管理提供理论依据.[方法]试验于2016年在湖北十堰的猕猴桃园内进行,供试品种为美味猕猴桃(Actinidia deliciosa),2015年定植.覆盖作物处理为白三叶草、鼠茅草,以清耕为对照(CK).连续进行...  相似文献   

9.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

10.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   

11.
We report the first simultaneous measurements of δ15N and δ13C of DNA extracted from surface soils. The isotopic composition of DNA differed significantly among nine different soils. The δ13C and δ15N of DNA was correlated with δ13C and δ15N of soil, respectively, suggesting that the isotopic composition of DNA is strongly influenced by the isotopic composition of soil organic matter. However, in all samples DNA was enriched in 13C relative to soil, indicating microorganisms fractionated C during assimilation or preferentially used 13C enriched substrates. Enrichment of DNA in 15N relative to soil was not consistently observed, but there were significant differences between δ15N of DNA and δ15N of soil for three different sites, suggesting microorganisms are fractionating N or preferentially using N substrates at different rates across these contrasting ecosystems. There was a strong linear correlation between δ15N of DNA and δ15N of the microbial biomass, which indicated DNA was depleted in 15N relative to the microbial biomass by approximately 3.4‰. Our results show that accurate and precise isotopic measurements of C and N in DNA extracted from the soil are feasible, and that these analyses may provide powerful tools for elucidating C and N cycling processes through soil microorganisms.  相似文献   

12.
Climate and litter quality have been identified as major drivers of litter decomposition, but our knowledge of how soil characteristics (e.g. microbial community and chemical properties) determine carbon (C) and nitrogen (N) availability derived from the decomposition of litter of different qualities is still scarce. We conducted a microcosm experiment to evaluate how soils with contrasting microbial communities and soil properties (denoted Soils A and B hereafter, where Soil B has higher bacterial and fungal abundance, fungal:bacterial ratio, and organic C than Soil A) determine the availability of soil C (carbohydrates, proteins, amino acids and phenols) and N (dissolved organic and inorganic N, microbial biomass N and available N) during the decomposition of litter of contrasting quality (C:N ratios ranging from 20 to 102). We also evaluated the relative importance of soil characteristics and litter quality as drivers of C and N inputs to the soil during this process. Overall, higher soil C and N availability after litter decomposition was found in Soil B than in Soil A. Soil characteristics had a higher positive effect on soil C and N contents than litter quality during litter decomposition. We also found that changes in N availability and organic matter quality registered after litter decomposition, linked to different soil characteristics, were able to promote dissimilarities in the potential mineralization rates. In conclusion, our study provides evidence that soil characteristics (e.g. microbial communities and chemical properties) can be more important than litter quality in determining soil C and equally important for N availability during the decomposition of leaf litter.  相似文献   

13.
Biochar additions to soil have been reported to enhance soil fertility whilst simultaneously storing carbon (C). We tested whether either fresh or field-conditioned (aged) biochar amendment to two contrasting agricultural soils would alter the mineralisation of organic N compounds. The mineralisation of 14C-labelled amino acids and peptides were determined over 20 days within each soil. An exponential kinetic decay model was subsequently fitted to the mineralisation data. Overall, statistical analysis revealed significant but small differences between the two biochar treatments and the unamended control treatment. We conclude that biochar has very limited impact on the mineralisation rate of low molecular weight dissolved organic N compounds in these agro-ecosystems.  相似文献   

14.
Annual grasses are stronger competitors for available soil N than blue oak seedlings and soil microorganisms. However, little is known about the dynamics of N competition during annual grass senescence. We conducted a field experiment in a California oak woodland to study effects of annual grass senescence on N uptake by grasses, blue oak seedlings and soil microorganisms. Labeled N was applied at the beginning of April, May and of June in the form of 15NH4+ or 15N-glycine. Plants and soils were harvested after 5 days (15NH4+ and 15N-glycine treatments) and after 26 days (15NH4+ treatment only). We evaluated effects of N form, season and labeling period on N competition among oak seedlings, annual grasses and soil microorganisms. N forms did not affect competition among grasses, oak seedlings and soil microorganisms, but more 15N was incorporated into the soil organic N pool in the 15N-glycine treatments than in the 15NH4+ treatments. There were no seasonal (May vs June) effects on 15N recovery in blue oak seedlings and soil microorganisms. Plant samples from April harvest were lost. In June, when grasses were senescing, more 15N was found in the soil inorganic pool than in May. Extremely dry soils in June may have limited inorganic N availability to oak seedlings and soil microorganisms. After 26-day labeling period, 15N recovery in blue oak seedlings and the soil organic N pool significantly increased, while 15N recovery in both the soil microbial and inorganic N pools decreased compared to the 5-day labeling period. Although blue oak seedling biomass changed little from early May to late June, N concentrations in oak roots increased 53%. In contrast, annual grass biomass peaked in May, and then decreased rapidly. Our results suggest that blue oak seedlings and annual grasses have different temporal competitive abilities. Blue oak seedlings appear to have a long-term strategy for N competition. Blue oaks take up N slowly but steadily, increasing N uptake from 5 to 26 days. This extended time period has a greater positive effect on N uptake than does reduced grass uptake caused by senescence.  相似文献   

15.
The availability of inorganic N has been shown to be one of the major factors limiting primary productivity in high latitude ecosystems. The factors regulating the rate of transformation of organic N to nitrate and ammonium, however, remain poorly understood. The aim of this study was to investigate the nature of the soluble N pool in forest soils and to determine the relative rate of inorganic N production from high and low molecular weight (MW) dissolved organic nitrogen (DON) compounds in black spruce forest soils. DON was found to be the dominant N form in soil solution, however, most of this DON was of high MW of which >75% remained unidentified. Free amino acids constituted less than 5% of the total DON pool. The concentration of NO3 and NH4+ was low in all soils but significantly greater than the concentration of free amino acids. Incubations of low MW DON with soil indicated a rapid processing of amino acids, di- and tri-peptides to NH4+ followed by a slower transformation of the NH4+ pool to NO3. The rate of protein transformation to NH4+ was slower than for amino acids and peptides suggesting that the block in N mineralization in taiga forest soils is the transformation of high MW DON to low MW DON and not low MW DON to NH4+ or NH4+ to NO3. Calculated turnover rates of amino acid-derived C and N immobilized in the soil microbial biomass were similar with a half-life of approximately 30 d indicating congruent C and N mineralization.  相似文献   

16.
Free amino acids (FAAs) in soil solution are increasingly recognized as a potentially important source of nitrogen (N) for plants, yet we are just beginning to understand the behavior of FAAs in soil. I investigated the effects of amino-acid chemistry and soil properties on mineralization, microbial assimilation and sorption of amino-acid N in soils from three ecosystems representing the two endpoints and mid point of a temperate forest fertility gradient ranging from low mineral N availability/high FAA oak forests to high mineral N availability/low FAA maple-basswood forests. Soils were amended with six 15N-labeled amino-acid substrates that ranged widely in chemical properties, including molecular weight, C:N ratio, average net charge, hydrophobicity, and polarity: Arginine (Arg), Glutamine (Gln), Glutamate (Glu), Serine (Ser), Glycine (Gly) and Leucine (Leu). Mineralization of amino-acid N accounted for 7-45% (18% avg.) of the added label and was most strongly affected by soil characteristics, with mineralization increasing with increasing soil fertility. Mineralization of amino-acid N was unrelated to amino-acid C:N ratio, rather, I observed greater N mineralization from polar FAAs compared to non-polar ones. Assimilation of amino-acid N into microbial biomass accounted for 6-48% (29% avg.) of the added label, and was poorly predicted by either intrinsic amino-acid properties or soil properties, but instead appeared to be explicable in terms of compound-specific demand by soil micoorganisms. Sorption of amino-acid N to soil solids accounted for 4-15% (7% avg.) of the added label and was largely controlled by charge characteristics of individual amino acids. The fact that both positively- and negatively-charged amino acids were more strongly sorbed than neutral ones suggests that cation and anion exchange sites are an important factor controlling sorption of FAAs in these acid forest soils. Together, the findings from this study suggest that there may be important differences in the behavior of free amino acids in sandy, acidic forest soils compared to generalizations drawn from finer-textured grassland soils, which, in turn, might affect the availability of some FAAs in soil solution.  相似文献   

17.
The aim of this study was to investigate the dynamics of dissolved organic N in soils fumigated separately with chloropicrin (CP), 1,3-dichloropropene, and metam sodium (MS) for 7 days and then incubated at 25°C for 84 days. The dissolved organic N (DON) at 14 days after fumigation was mainly dissolved amino acids (DAA) which were then rapidly mineralized to ammonium. However, the DON pool at later incubation times was mainly high molecular weight organic N which was resistant to microbial decomposition. Three soil fumigants all increased the proportions of DON in total dissolved N and DAA in DON. Dissolved organic N became much more important mobile N source in CP- and MS-fumigated soils, and this may increase the risks of DON leaching in agricultural ecosystems.  相似文献   

18.
Mycorrhizal plants from a variety of ecosystems have the capacity to take up organic forms of nitrogen, yet the fraction of plant nitrogen demand met by organic N (ON) uptake remains unclear. ON uptake by mycorrhizal plants is a biochemical process that involves multiple steps, including breakdown and uptake of soil ON by mycorrhizal fungi, internal transformation of ON, and transfer of N to the host plant. We present hypothetical mechanisms controlling each of these steps and outline predictions for how these mechanisms structure patterns of ON uptake by mycorrhizal plants in ecosystems. Using a synthesis of published data, we found that uptake of amino acids by mycorrhizal fungi is related to the relative abundance, N content, and carbon structure of the amino acid. We hypothesize that the bond strength and structural diversity of soil ON controls the breakdown of polymeric ON by mycorrhizal fungi. In addition, the availability of carbon resources for the mycorrhizal fungus influences the capacity for mycorrhizal fungi to assimilate amino acids and produce extracellular enzymes that catalyze the breakdown of polymeric ON.  相似文献   

19.
Rainfall in Mediterranean climates may affect soil microbial processes and communities differently in agricultural vs. grassland soils. We explored the hypothesis that land use intensification decreases the resistance of microbial community composition and activity to perturbation. Soil carbon (C) and nitrogen (N) dynamics and microbial responses to a simulated Spring rainfall were measured in grassland and agricultural ecosystems. The California ecosystems consisted of two paired sets: annual vegetable crops and annual grassland in Salinas Valley, and perennial grass agriculture and native perennial grassland in Carmel Valley. Soil types of the respective ecosystem pairs were derived from granitic parent material and had sandy loam textures. Intact cores (30 cm deep) were collected in March 1999. After equilibration, dry soil cores (approx. −1 to −2 MPa) were exposed to a simulated Spring rainfall of 2.4 cm, and then were measured at 0, 6, 24, and 120 h after rewetting. Microbial biomass C (MBC) and inorganic N did not respond to rewetting. N2O and CO2 efflux and respiration increased after rewetting in all soils, with larger responses in the grassland than in the agricultural soils. Phospholipid fatty acid (PLFA) profiles indicated that changes in microbial community composition after rewetting were most pronounced in intensive vegetable production, followed by the relict perennial grassland. Changes in specific PLFA markers were not consistent across all sites. There were more similarities among microbial groups associated with PLFA markers in agricultural ecosystems than grassland ecosystems. Differences in responses of microbial communities may be related to the different plant species composition of the grasslands. Agricultural intensification appeared to decrease microbial diversity, as estimated from numbers of individual PLFA identified for each ecosystem, and reduce resistance to change in microbial community composition after rewetting. In the agricultural systems, reductions in both the measures of microbial diversity and the resistance of the microbial community composition to change after a perturbation were associated with lower ecosystem function, i.e. lower microbial responses to increased moisture availability.  相似文献   

20.
The aim of this work is to review current knowledge on inputs, sources and regulation of protease activities in soils from different ecosystems, while exploring limitations to proteolysis and N mineralisation. Extracellular proteases enter the soil via microbial production and other sources, including plant root exudates, animal excrements, decomposition processes and leaching from agro-industrial fertilisers. The synthesis and activities of proteases in soil are regulated by many factors, including climate, soil properties and the presence of organic compounds of plant and microbial origin. Two particularly important areas for future research are the regulation of proteolysis by low-molecular-weight organic compounds, including amino acids, sugars, flavonoids, plant hormones and siderophores, as well as the identification and characterisation of proteinaceous protease inhibitors of plant and microbial origin in the soil. Despite all the work that has been performed on soil proteases, our understanding of the roles of extracellular plant root proteases in N nutrition is weak. Furthermore, the regulation of soil proteolytic activities of different ecosystems, especially in terms of pollutant inputs and the impact of climate change, requires investigation. Other areas that pose important questions for the future include assessments of protease inhibitor inputs to the soil, regulation of these inhibitors via naturally occurring soil organic compounds and the interactions between soil organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号