首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
14C-labelled cellulose was added to seven different soils containing silt + clay (particles < 0.02 mm) in amounts which varied from 8 to 75 per cent. The cellulose was allowed to decompose, and the amounts of labelled C transformed into metabolites hydrolyzable into amino acids were determined. The amounts of labelled amino acid C in the soils were proportional to their content of silt + clay. After 30 days of incubation labelled amino acid C remaining in the soil with the lowest content of silt + clay constituted 6 per cent of the carbon added in cellulose, as compared with 18 per cent in the soil with the highest content of silt + clay. These values had decreased to 5 and 13 per cent respectively after 2 years of incubation. The order between the soils in the content of labelled amino acid C established during the first month of incubation, was thus roughly maintained throughout the period of incubation. The biological half-life of the labelled C in amino acids varied in the seven soils during the last year of incubation from 3 to 8 years. The variation was, however, not related to the amount of silt + clay.n the soils had been incubated with the labelled material for 2 years, samples of the soils were exposed to “stress” treatments: air drying-rewetting; increased biological activity caused by addition of glucose, and exposure to chloroform vapour. The treatments resulted in an evolution of labelled C in CO, which was 5–10 times larger than the evolution from untreated samples. The increase in the CO2 evolution caused by the treatments in the different soils was, however, not related to the amount of silt + clay, and a high content of this material did not protect organic material against the effect of the treatments.is concluded that the silt + clay fraction ensures stabilization of amino acid metabolites produced during the period of intense biological activity that follows the addition of decomposable, energy rich material to the soil. The amount of amino acid metabolites stabilized increased with increasing concentration of silt + clay, but the rate of decay of the amino acid material during later stages was largely independent of the concentration of silt + clay.  相似文献   

2.
The organic C and total N in Tanzanian forest soil profiles decreased with the depth but the C:N ratio and pH tended to increase. Soil pH ranged from 6.5 in the surface horizon to 7.3 in sub-surface ones.Of the total N in the surface horizon, 69.3–85.6% was hydrolysable in boiling 6 n HCl and 14.4–30.7% was nonhydrolysable. The amounts, expressed as percentage of total soil N, of NH+4-N, hexosamine-N, serine + threonine-N (hydroxy amino acid-N) and amino acid-N in the total hydrolysable-N fraction ranged between 10.8–21.4, 5.2–11.5, 4.6–11.3 and 18.6–31.2, respectively. The amount of identified-N ranged between 43.3 and 60.0%, and that of unidentified-N between 24.1 and 36.0%. Amino acid-N constituted the largest portion of the identified-N. Total, NH+4, hexosamine, amino acid (in Olmotonyi forest profiles only) and identified N fractions generally tended to decrease with depth in the profile but nonhydrolysable-N increased. Hydroxy amino acid-N and unidentified-N followed no definite trend.During aerobic incubation of surface soil, the amounts of total hydrolysable-N, hexosamine-N and hydroxy amino acid-N decreased while those of NH+4-N and nonhydrolysable-N increased. All the organic N fractions underwent transformation during incubation. The hexosamines and hydroxy amino acids were more unstable than the others; the former being more vulnerable than the latter.  相似文献   

3.
Chemical fixation of NH3 to soil organic matter was studied in two Swedish soils with different contents of organic matter: a clay soil with 2.3% C and an organic soil with 36.6% C. 15N‐labelled urea was applied at different rates to both sterilized and non‐sterilized soils. After 10 days, the soils were extracted and washed with K2SO4 and determined for total N and atom% 15N excess. Urea N was recovered as non‐extractable N in sterilized soil corresponding to 9.7% of supplied l5N‐labelled urea in the organic soil and 2.2% in the clay soil. Since no biological immobilization is thought to occur in the sterile soil, this non‐extractable N is suggested to be chemically fixed to soil organic matter. Owing to urea hydrolysis in the clay soil, pH increased from 6.3 to 9.3 and in the organic soil from 5.7 to 6.9 and 8.8, respectively, at the low and high urea supply.  相似文献   

4.
Four soils with a range of clay and silt contents were incubated for 5 a with 15N-labelled (NH4)SO4 and 14C-labelled hemicellulose and then fractionated according to particle size by ultrasonic dispersion and sedimentation. The distribution of labelled and native N between clay, silt and sand fractions was determined and elated to previous results on the C distributions. Between 29% and 48% of the added N was found in organic form. The 15N atom percentage excess decreased in the order: clay > whole soil > silt > sand. For both clay and silt, the enrichment factor for labelled and native N decreased with increasing fraction weight. Clay enrichment was higher for labelled than for native N, the converse being true for silt. The distribution of whole soil labelled organic N was: clay 77–91%, silt 4–11%, and sand <0.5%. Corresponding values for native N were 69–74%, 16–22%, and 1–2%, respectively. All soils had higher proportions of labelled than of native N in the clay, the converse was true for the silt. The C/N ratio of the native silt organic matter was higher and that of clay organic matter lower than whole soil C/N ratios. Differences between the C/N ratio distributions of native and labelled organic matter were small. The relative distribution of labelled N and C was very similar confirming that the turnover of C and N in soil organic matter is closely interrelated.  相似文献   

5.
Summary An experiment was carried out to investigate how straw, cellulose and lignin affect the turnover and availability of inorganic labelled N in soil. The experiment comprised an incubation period in which the soil was incubated with 15NH4 15NO3 and organic materials followed by drying and by cropping the soil with Lolium perenne. The incubation period lasted 148 days during which soil samples were taken 36 and 148 days after the beginning of incubation. Addition of organic materials to the soil promoted the incorporation of inorganic N into organic matter and decreased apparent N denitrification losses during the first period of incubation (0–36 days after beginning of incubation). In this respect straw and cellulose were more effective than lignin. The organic materials also promoted the fixation of NH4 + by clay minerals. In all treatments highest fixation of labelled NH4 + by clay minerals was found at the end of the incubation period. During the cropping period high apparent denitrification losses were observed particularly in the straw and cellulose treatment. Hence the recovery of labelled N by Lolium was particularly low in these treatments while in the control treatment the 15N recovery was about twice as high.  相似文献   

6.
15NO?3 was immobilized in a calcareous sandy soil and a calcareous clay soil each incubated with glucose and wheat straw. Net mineralization of organic-15N was more rapid in the sandy soil, irrespective of C amendment, and in soils amended with glucose. Intermittent drying and wetting of soils during incubation stimulated mineralization of 15N-labelled and native soil organic-N in all treatments. The availability (percentage mineralization) of recently-immobilized 15N consistently exceeded that of the native soil N. Ratios of the availability of labelled and unlabelled N were similar in the sandy and clay soils but varied according to C amendment, drying and wetting cycle and incubation period.Changes in the distribution of immobilized N amongst soil extracts and soil fractions of different particle size and density were determined during periods of net N mineralization. In straw-amended soils, the organic-15N of a light fraction, sp.gr. < 1.59, decomposed relatively rapidly during the late mineralization period. Decreases of organic 15N of the fine clay fraction were also recorded. In glucose-amended soils, net N mineralization was accompanied by significant decreases in the concentrations of organic-15N of the silt and fine clay fractions.Drying and rewetting of soils hastened or magnified changes occurring in the organic-15N of soil fractions, but qualitatively, the pattern of change was similar to that observed with soils incubated under uniformly-moist conditions.The percentage distribution of labelled and unlabelled N suggested that in the long term, the silt fraction will accumulate an increasing proportion of the more stable nitrogenous residues.  相似文献   

7.
Sand-, silt-, and clay-size organo-mineral fractions were isolated in bulk from surface horizons of five soils following ultrasonic dispersion in water. Good clay separation was achieved for all except one highly organic, calcareous clay soil. Organic-N and -C were concentrated in the clay and silt fractions but for each soil the organic C : N ratio decreased in the order sand > silt > whole soil > clay. Acid hydrolysis of the silt and clay fractions revealed a slight concentration of amino acid-N and NH4-N in the clays but only small differences in the distribution of individual amino acids were observed. The results suggest that both silt and clay fractions may be important in the stabilization of soil organic matter.  相似文献   

8.
Two soils, one a sandy loam and the other of relatively high clay content, were incubated with [14C(U)]gtucose and [15N](NH4)2SO4 for 101 days, either under continuously moist conditions, or with intermittent drying of soils. Rates of evolution of 14CO2, decline in residual organic 14C, and net immobilization and mineralization of N and 15N in the sandy loam soil were more rapid than in the clay soil. First order decay rates for the decomposition of residual 14C, after 10 days, were consistently twice as fast in the sandy loam soil. By contrast, the efficiency with which glucose was utilized within the first few days, and the amounts of C, 14C, N and 15N present as soil biomass throughout the incubation, were greater in the clay soil than in the sandy loam. Biomass 14C as a percentage of residual organic 14C, was consistently 1.5 times greater in the clay soil. Compared with soils held continuously moist, soils which were intermittently dried and remoistened contained smaller amounts of isotope-labelled biomass C and N, but overall similar amounts of total residual organic 14C and 15N. Remoistening of dried soils caused a temporary (4 days) flush in C and N mineralization rates.A simulation model describes C and N behaviour in the two soils. Three features of the model are proposed to expain short-term differences between soils in the rates of C and N turnover, viz. the clay soil (a) has a greater capacity to preserve biomass C and N (b) holds a higher proportion of microbial decay products in the near vicinity of surviving cells, and, to a lesser extent, (c) utilizes glucose and metabolic products more efficiently for biosynthetic reactions.  相似文献   

9.
10.
Summary Two soils from Pakistan (Hafizabad silt loam and Khurrarianwala silt loam) and one from Illinois, USA (Drummer silty clay loam) were incubated with 15N-labelled soybean tops for up to 20 weeks at 30°C. Mineralization of soybean 15N was slightly more rapid in the Pakistani soils, and after 20 weeks of incubation, 50%, 53%, and 56% of the applied 15N was accounted for as (NH4 ++NO3 )-N in Drummer, Hafizabad, and Khurrarianwala soils, respectively. Potentially mineralizable N (determined by anaerobic incubation) varied between 1.5% and 10% of the applied 15N in the three soils at different stages of incubation; somewhat higher percentages were mineralizable in the Pakistani soils than in the Drummer soil. From 3.7% to 9% of the applied 15N was accounted for in the microbial biomass. From 10% to 32% of the applied N was recovered in the humic acid and fulvic acid fractions of the organic matter by sequential extraction with Na4P2O7 and NaOH; from 12% to 49% was recovered in the humin fraction. Of the three soils, Drummer soil contained more 15N as humic and fulvic acids. In all cases, the 15N was approximately equally distributed between the humic and fulvic acid fractions. A significant percentage of the humin 15N (52%–78%, equivalent to 8%–34% of the applied 15N) occurred in non-hydrolyzable (6 N HCl) forms. Of the hydrolyzable 15N, 42%–51% was accounted for as amino acid-N followed in order by NH3 (17%–30%), hydrolyzable unknown forms (20%–22%), and amino sugars (6%–2%). The recovery of applied 15N for the different incubation stages was 87±22%. Recovery was lowest with the Khurrarianwala soil, presumably because of NH3 volatilization losses caused by the high pH of this soil.  相似文献   

11.
Changes in 15N abundance and amounts of biologically active soil nitrogen   总被引:1,自引:0,他引:1  
 Estimation of the capacity of soils to supply N for crop growth requires estimates of the complex interactions among organic and inorganic N components as a function of soil properties. Identification and measurement of active soil N forms could help to quantify estimates of N supply to crops. Isotopic dilution during incubation of soils with added 15NH4 + compounds could identify active N components. Dilution of 15N in KCl extracts of mineral and total N, non-exchangeable NH44 +, and N in K2SO4 extracts of fumigated and non-fumigated soil was measured during 7-week incubation. Samples from four soils varying in clay content from 60 to 710 g kg–1 were used. A constant level of 15N enrichment within KCl and K2SO4 extracted components was found at the end of the incubation period. Total N, microbial biomass C and non-exchangeable NH4 + contents of the soils were positively related to the clay contents. The mineralized N was positively related to the silt plus clay contents. The active soil N (ASN) contained 28–36% mineral N, 29–44% microbial biomass N, 0.3–5% non-exchangeable NH4 + with approximately one third of the ASN unidentified. Assuming that absolute amounts of active N are related to N availability, increasing clay content was related to increased N reserve for crop production but a slower turnover. Received: 7 July 1998  相似文献   

12.
In cultivated soils, total soil N, organic C and C-to-N ratios were in the range of 0.24–0.49%, 3.1–5.8% and 10.7–15.0, respectively in the surface horizons and decreased with depth. Native fixed NH+4-N accounted for 2.3–3.0% of total soil N in surface horizons but while the quantities of fixed NH+4-N decreased with depth, the proportion to total soil N increased. Exchangeable NH+4-N ranged from 15 to 32 and NO?3-N from 26 to 73 μg g?1 soil in surface horizons, and both decreased with depth. Exchangeable-N accounted for 1.1–2.4% of total soil N. Over 97% of total soil N was organically bound.Of the total soil N in the surface horizons, 29.0–79.0% was acid hydrolysable and 21.0–71.0% was nonhydrolysable. The range of proportions of each of hydrolysable NH+4-N, hexosamine-N, serine plus threonine α-amino acid-N, identified-N, and unidentified-N to total soil N in the surface horizons were 14.5–22.4, 4.8–9.2, 0.2–5.8, 4.0–16.7, 23.3–48.8, and 0.3–41.5%, respectively. Hydrolysable NH+4-N constituted the largest proportion of the identified-N fraction. Distribution patterns of the organic-N fractions in the profiles varied from soil to soil. Sixteen amino acids were identified which accounted for 82–100% of the α-amino acid-N fraction in the soils; glycine and alanine alone accounted for 35–40%. All the organic-N fractions were transformed to varying degree during aerobic incubation.  相似文献   

13.
In two studies, we assessed the mass balance of added 14C-labelled sucrose and 15NH415NO3 by measuring 14CO2, 14C and 15N in soil microbial biomass (SMB) and 14C and 15N in soil solution. Specifically, we assessed the potential of recently added 14C to be re-mobilised by cryptic growth using subsequent additions of sucrose and cellulose and the effect of physical protection on the stabilisation of the labelled substrate. We used both a constructed soil with low soil organic matter content and varied the clay content as well as a natural soil. We observed a substantial initial as well as a later stage transfer of 14C into unidentifiable form, hypothesised to be microbial residues. When using a standard k EC value of 0.45, only roughly 50% of the added labelled substrates were accountable and therefore we explored the full range of reported k EC values to assess the mass balance. Subsequent application of unlabelled sucrose and cellulose did not substantially increase turnover 14C and 15N. Contrary to our expectation, there was no effect of clay content on the amount of unidentified 14C and 15N. The unidentified 14C and 15N is ascribed to formation of soil microbial residue. The low recovery of added isotope suggests that our mechanistic models are missing a large and important pool in order to realistically simulate organic matter turnover in soil.  相似文献   

14.
Four soils with 6, 12, 23 and 46% clay were fractionated according to particle size after incubation for 5–6 years with 14C labelled straw, hemicellulose or glucose: 6–23% of the 14C was still present and the amount increased with increasing content of fine particles. clay fractions contained 66–84% of the 14C and the silt fractions accounted for 4–19%. <2% was found in the sand fractions and 4–9% was water soluble. The distribution of the native C was: clay, 46–68%; silt, 20–31%; sand, 2–7%. The clay fractions had higher relative proportions of 14C than of native C, the reverse being true for the silt fractions. This distribution pattern was not directly related to soil clay content or to kind of organic amendment. The C enrichment factor of clay and silt fractions (per cent C in fraction/per cent C in whole soil) increased with decreasing fraction size for both native and 14C. However, clay enrichment factors were higher for 14C than for native C, whereas silt enrichment factors were lower. A soil (9% clay) that had been incubated in the field for 18 years with 14C labelled straw was also analysed. Labelled C content at sampling was 9% of the initial value. In contrast to the other soils the distribution of labelled and native C was similar in the clay and silt fractions, which contained 55% and 33% of the whole soil C, respectively. The results indicate that clay-bound organic matter may be important in mediumterm organic matter turnover, whereas silt-bound organic matter may participate in longer-term organic matter cycling.  相似文献   

15.
The extraction of soils by the electro-ultrafiltration (EUF) method yields organic N which has been used as an index for mineralisable N in soils. This EUF extractable organic fraction contains a mixture of various N compounds not yet completely identified. It has been proposed that the amino N compounds are more indicative for the potentially mineralisable N in soils than the total organic N extracted (Mengel et al., 1999). An amendment of soils with easily mineralisable organic matter may, therefore, alter the amino N concentrations of the organic N extracted. Our determination of the amino N compounds aimed to prove this hypothesis. The principle of our experiment was to mix soil with green manure, bacterial biomass and cellulose, respectively, and to incubate the treated soil aerobically for 80 days at 20°C in the laboratory. Control treatments without organic amendment were also incubated. Soil samples were taken several times during the incubation period and analysed for the inorganic N (NO3-N and NH4+-N) and for the EUF extractable organic N. Amino acids and amino sugars were determined in the hydrolysed EUF extracts. The concentrations of amino acids and amino sugars in the organic N extracted varied with time and differed between the treatments. Glutamic acid has been found to be the most relevant amino acid in the EUF extracts and was particularly indicative for the existence of mineralisable green manure in the soil. Glucosamine was the most relevant amino sugar in the EUF extracts and this amino sugar appears to be indicative for the easily mineralisable relics of microbial cells in the soil.  相似文献   

16.
Management of N fertilization depends not only on the mineral N measured at the beginning of the growing season but also on the status of the low-molecular-weight organic-N fraction. Our study was conducted to analyze how much of the 15N applied in labeled cornshoot tissue would be recovered in 0.01 M CaCl2-extractable 15N fractions and wheter a decrease in the CaCl2-extractable 15N fraction quantitatively followed the trend in net mineralization of the 15N applied in corn-shoot tissue during an incubation period. The effects of adding 15N-labeled young corn-shoot tissue to a sandy soil and a clay soil were investigated for 46 days in an aerobic incubation experiment at 25°C. The application of 80 mg N kg-1 soil in the form of labeled corn-shoot tissue (24.62 mg 15N kg-1 soil) resulted in a significant initial increase, followed by a decrease the labeled organic-N fraction in comparison with the untreated soils during the incubation. The labeled organic-N fraction was significantly higher in the sandy soil than in the clay soil until the 4th day of incubation. The decrease in labeled organic N in the sandy soil resulted in a subsequent increase in 15NO inf3 sup- during the incubation. Ammonification of applied plant N resulted in a significant increase in the 1 M HCl-extractable non-exchangeable 15NH inf4 sup+ fraction in the clay soik, owing to the vermiculite content. The 15N recovery was analyzed by the 0.01 M CaCl2 extraction method; at the beginning of the incubation experiment, recovery was 37.0% in the sandy soil and 36.7% in the clay soil. After 46 days of incubation, recovery increased to 47.2 and 43.8% in the sandy and clay soils, respectively. Net mineralization of the 15N applied in corn-shoot tissue determined after the 46-day incubation was 6.60 mg 15N kg-1 soil (=34.9% of the applied organic 15N) and 4.37 mg 15N kg-1 soil (=23.1% of the applied organic 15N) in the sandy and the clay soils, respectively. The decrease in the labeled organic-N fraction extracted by 0.01 M CaCl2 over the whole incubation period was 3.14 and 2.33 mg 15N kg-1 soil in the sandy and clay soil, respectively. These results indicate that net mineralization of 15N was not consistent with the decrease in the labeled organic-N fraction. This may have been due to the inability of 0.01 M CaCl2 to extract or desorb all of the applied organic 15N that was mineralized during the incubation period.  相似文献   

17.
Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.  相似文献   

18.
Impacts of crop residue biochar on soil C and N dynamics have been found to be subtly inconsistent in diverse soils. In the present study, three soils differing in texture (loamy sand, sandy clay loam and clay) were amended with different rates (0%, 0.5%, 1%, 2% and 4%) of rice-residue biochar and incubated at 25°C for 60 days. Soil respiration was measured throughout the incubation period whereas, microbial biomass C (MBC), dissolved organic C (DOC), NH4+-N and NO3N were analysed after 2, 7, 14, 28 and 60 days of incubation. Carbon mineralization differed significantly between the soils with loamy sand evolving the greatest CO2 followed by sandy clay loam and clay. Likewise, irrespective of the sampling period, MBC, DOC, NH4+-N and NO3N increased significantly with increasing rate of biochar addition, with consistently higher values in loamy sand than the other two soils. Furthermore, regardless of the biochar rates, NO3-N concentration increased significantly with increasing period of incubation, but in contrast, NH4+-N temporarily increased and thereafter, decreased until day 60 in all soils. It is concluded that C and N mineralization in the biochar amended soils varied with the texture and native organic C status of the soils.  相似文献   

19.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   

20.
Changes in biomass-S in relationship to biomass-C and N were evaluated, and the transformation of 35S-labelled SO42? among organic matter fractions were followed during incubation of a Black Chernozemic (Udic Haploboroll) and Orthic Gray Luvisol (Typic Cryoboralf) soils. There was a net immobilization of S with and without the addition of cellulose or sulfate after 64 days. In contrast, a net mineralization of N occurred. Cellulose decomposition rates responded to supplies of S available for new microbial cell synthesis.Fluctuations in the amounts of biomass-S during incubation of both soils followed biomass-C and biomass-N changes and C/S and C/N ratios of the biomass ranged between 47–121 and 4.9–7.7, respectively. Microbially-incorporated S was found concentrated within the biomass or partially transformed into soil organic matter.Fractionation of soils after incubation, by a 0.1 m NaOH-0.1 m Na4P2o7 extraction-separation technique showed significant increases in the C and N contents of the conventional humic acid (HA-A) and fulvic acid (FA-A), and humin (<2 μm) fractions. Biomass C accounted for 20–64% of the observed increases in these fractions suggesting that the differences were due partly to transformed microbial products and partly to microbial cell organic constituents released on lysis of cells during incubation. In contrast to C and N, the contents of total S and HI-reducible S increased in the FA-A fraction only and accounted for 45–76% of the immobilized labelled S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号