首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial location of carbon decomposition in the soil pore system   总被引:5,自引:0,他引:5  
We sought to examine the distribution of carbon (C) decomposition within the framework of the soil pore system. Soils were sampled from a transect having a natural gradient in pore‐size distribution. After the addition of labelled wheat straw (13C) the repacked soil columns were incubated (25°C) at soil water matric potentials of either ?75 kPa or ?5 kPa and for either 4 or 90 days. Pore‐size distribution was determined for each soil column after incubation and soils were then analysed for soluble C, label‐derived residual C, label‐derived and native biomass C, nematode abundance, and ergosterol concentration as an indicator of fungal biomass. Overall, the data suggested that pore‐size distribution and its interaction with soil water give rise to a highly stratified biogeography of organisms through the pore system. This results in different rates of decomposition in pores of different size. Added plant material seemed to decompose most rapidly in soils with a relatively large volume of pores with neck diameters c. 15–60 µm and most slowly in soils with large volumes of pores with neck diameters < 4 µm. Regression analysis suggested that at matric potentials of both ?75 kPa and ?5 kPa the fastest decomposition of organic substrate occurred close to the gas–water interface. This analysis also implied that slower rates of decomposition occur in the pore class 60–300 µm. Correlations between the mass of soil biota and the pore volume of each pore class point to the importance of fungi and possibly nematodes in the rapid decomposition of C in the pores c. 15–60 µm during the early stages of decomposition.  相似文献   

2.
3.
Summary Long-term experiments (ca. 2 years) were carried out in laboratory systems that simulated the complexity of a coniferous forest floor. The test materials were partially sterilized by freezing and thawing, and reinoculated with (1) microbes alone or (2) microbes with fauna. Removable microcosms containing birch litter, spruce litter, or humus were inserted into a humus substrate. Two experiments used organic matter only, and another included a layer of mineral soil below the humus. Both were incubated in climate chambers that simulated both summer and winter conditions. The evolution of CO2 was measured at regular intervals. In order to determine the C content of the leachates, the macrocosms and the microcosms were watered periodically.Soil fauna significantly increased respiration in the litter, but not in the microcosms containing humus. In the later phases of decomposition the presence of fauna had a negative effect. In the total systems the fauna consistently increased the respiration rate. The loss of mass was greater in the presence of fauna, especially during the middle phases (5–11 months), but it was higher in the controls later.Throughout the whole incubation period the decomposition rate was strongly influenced by the composition of the animal community. The interpretation of the results is affected by the fact that the controls, to which no fauna had been added, contained dense populations of microbial feeders (nematodes, rotifers, and protozoans).  相似文献   

4.
A quantitative approach was devised to evaluate the influence of soil microbial activity as a sink for nutrients exuded by fungal spores as a factor in soil fungistasis. The approach was based on measuring the CO2 evolved from microbial respiration of 14C-labelled exudates from conidia of Cochliobolus victoriae incubated on soil. The amount of exudate lost by spores on soil was greater than the amount lost by spores incubated on a bed of sand undergoing leaching at a flow rate of 110 ml h?1. where restriction of germination was similar to that on soil. Increasing flow rates in the leaching system increased spore exudation and reduced germination. Germination of C. victoriae conidia on membrane filters floated on distilled water decreased as the volume of water increased. The results indicate that the microbial nutrient sink of soil is sufficient to impose soil fungistasis.  相似文献   

5.
Change in temperature sensitivity of soil organic carbon (SOC) decomposition with change in soil qualities (i.e. decomposability or lability) is one of the most important issues to be evaluated for projection of future CO2 emissions from soils. We inversely estimated the temperature sensitivity of SOC decomposition rate by applying a hybrid of the Metropolis-Hasting algorithm and the particle filter method to the extended Rothamsted carbon model (RothC), together with long-term (9 years) experimental data on SOC obtained at five sites in Japanese upland soils. Contrary to the prediction of the Arrhenius kinetics theory, we found no significant differences in temperature sensitivity among soils with different qualities (represented as soil compartments in the RothC model). We also confirmed that there was a positive correlation between the relative temperature sensitivity of the humus compartment and future total CO2 emissions. The RothC model with default parameterization tended to overestimate future total CO2 emissions relative to the calibrated model, and the degree of overestimation was larger than that of underestimation.  相似文献   

6.
《Soil biology & biochemistry》2001,33(7-8):997-1010
Carbon mineralization kinetics of 17 organic materials were studied in a Mediterranean sandy soil. These added organic matters (AOM) used in the organic fertilizer industry differed in their origin and composition: plant residues from the agri-food industry, animal wastes, manures (plant and animal origin), composts at different composting times and organic fertilizers. The mixtures AOM-soils were incubated under aerobic conditions at 28°C during 6 months. Soil moisture was maintained at 75% water holding capacity and respired-CO2 was regularly trapped into alkali media in closed chambers, then checked by HCl titration. Analyses of CO2 were performed in triplicate at 17 sampling occasions. The mineralized AOM fraction (MAOMF) varied according to the AOM origin: from 12–33% of added C for composts, to 65–90% for animal-originated AOM, with many intermediate patterns for plant-originated AOM.Seven decomposition models from the literature were fitted to actual MAOMF: (a) three consecutive models with two 1st-order-kinetic compartments and three parameters (m1, humification; m2, exchange; m3, decomposition), (b) three parallel models (m4, with two compartments and three parameters; m8, a 1st-order plus 0-order model with three parameters; m5, a three-compartment model with four parameters), and (c) m7, a model with one 2nd-order-kinetic compartment and two parameters. Additionally, m6, a simplified version of m5 was proposed. Models m2 and m7 did not match with actual data or gave a poor fit. By the correlation parameters, the most simple model m4 was chosen instead of the consecutive models m1 and m3. Residual sums of squares were always greater—but not significantly—in m8 than in m4, which confirmed the superiority of the models with two 1st-order compartments against 1st-order plus 0-order models for incubation times higher than 100 days. Model m5 (most of its parameters being not correlated) gave the best predictions of our data. The proposed m6 version gave predictions with similar precision as m4 and appeared powerful with only two parameters (very labile and stable fractions of the AOM). A compromise between the precision of the predictions and the simplicity of the formulae allowed the recommendation of the well-known m4 model, and above all the simpler m6 model.  相似文献   

7.

Purpose  

Little information is available concerning the mobilization and speciation of arsenic (As) in paddy soils during iron plaque decomposition. It is important to investigate these processes since they affect As bioavailability and contaminate surface and ground water systems.  相似文献   

8.
Infrared spectroscopy and nitrogen analyses suggest that secondary amide groups in protein-like components of soil clay-organic complexes and extracted organic matter decompose above 100°C to yield ammonia which is retained as NH4+ by acid-washed clay-organic complexes. Above about 400°C, other volatile nitrogenous decomposition products are released. Clay surfaces in the clay-organic complexes may catalyse the decomposition.  相似文献   

9.
To formulate best management practices for animal slurry, it is important to understand and predict its decomposition in the soil. Slurry decomposition dynamics can be studied by measuring CO2 fluxes and soil mineral nitrogen concentration during laboratory incubations and subsequently calibrating a simulation model. Carbon and nitrogen dynamics are linked and both should be properly simulated. In this work we wanted to identify the tradeoffs between errors in the simulation of C respiration and of soil inorganic N concentration.We optimised six parameters of CN-SIM (a mechanistic dynamic simulation model), using data of respired C and soil inorganic N measured during a 180-day laboratory incubation of five dairy slurries on three soils. Optimisation was carried out with a multi-objective genetic algorithm (NSGA-II), by minimising the Relative Root Mean Squared Error (RRMSE) between observations and simulations.The simulation of C respiration was frequently conflicting with the simulation of inorganic N, i.e. low RRMSE–CO2 corresponded with high RRMSE–N and vice versa. When minimising RRMSE–CO2 a set of parameters was obtained that enhanced microbial N immobilisation and reduced the turnover of the organic pools, to match the observed decrease of inorganic N in the 28 days after slurry addition to soil. Remineralisation occurring in the following 150 days caused a marked overestimation of inorganic N. When minimising RRMSE–N, the optimisation provided parameters that strongly reduced remineralisation of immobilised N by markedly diminishing C respiration, with a consequent underestimation of CO2 emission. A modified version of the model, containing a simple implementation of denitrification and of clay fixation/release of ammonium, performed better than the original model for most treatments.We conclude that the mineralisation/immobilisation turnover in the model is not fully adequate to represent C and N dynamics. We also discuss the implementation of changes (time-varying microbial efficiency and C to N ratio; simulation of ammonium clay fixation and emissions of N2/N2O) to improve model performance.  相似文献   

10.
The effect of added heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) on the rate of decomposition of glutamic acid was studied in four Dutch soil types in order to determine if such measurements would serve as sensitive indicators of heavy metal pollution in soil. The time required to reach the maximum respiration rate (referred to as the decomposition time) with glutamic acid was linearly related to increasing concentrations of Ni in a sandy loam soil.Changes in decomposition time were measured 18 months after addition of 55, 400 or 1000 mg kg? of Cd, Cr, Cu, Ni, Pb or Zn respectively to sand, silty loam, clay and sandy peat soils. A significant increase in the decomposition time occurred with a concentration of 55 mg kg?1 of Cd, Cu or Zn in the sand soil. At 400mgkg?1 adverse effects in the various soils are distinct. The sensitivity of the decomposition time of glutamic acid as a method to measure soil pollution is discussed.  相似文献   

11.
Wood stake weight loss has been used as an index of wood decomposition in mineral soil, but it may not give a reliable estimate in cold boreal forests where decomposition is very slow. Various wood stake strength tests have been used as surrogates of weight loss, but little is known on which test would give the best estimate of decomposition over a variety of soil temperature conditions. Our study showed that radial compression strength (RCS) was a better indicator of wood strength change in southern pine (Pinus spp.) and aspen (Populus tremuloides Michx.) than surface hardness or longitudinal shear. The suitability of using the RCS to measure wood decomposition in boreal mineral soils was tested in six Scots pine (Pinus sylvestris L.) plantations along a North–South gradient from Finland to Poland. After 3 years RCS losses ranged from 20% in northern Finland to 94% in central Poland, compared to dry weight losses of 3% and 65%. RCS was a sensitive indicator of initial wood decomposition, and could be used in soils where decomposition is limited by low temperature, lack of water or oxygen, or where a rapid estimate of wood decomposition is wanted.  相似文献   

12.
Increasing plant species richness generally enhances plant biomass production, which may enhance accumulation of carbon (C) in soil. However, the net change in soil C also depends on the effect of plant diversity on C loss through decomposition of organic matter. Plant diversity can affect organic matter decomposition via changes in litter species diversity and composition, and via alteration of abiotic and/or biotic attributes of the soil (soil legacy effect). Previous studies examined the two effects on decomposition rates separately, and do therefore not elucidate the relative importance of the two effects, and their potential interaction. Here we separated the effects of litter mixing and litter identity from the soil legacy effect by conducting a factorial laboratory experiment where two fresh single root litters and their mixture were mixed with soils previously cultivated with single plant species or mixtures of two or four species. We found no evidence for litter-mixing effects. In contrast, root litter-induced CO2 production was greater in soils from high diversity plots than in soils from monocultures, regardless of the type of root litter added. Soil microbial PLFA biomass and composition at the onset of the experiment was unaffected by plant species richness, whereas soil potential nitrogen (N) mineralization rate increased with plant species richness. Our results indicate that the soil legacy effect may be explained by changes in soil N availability. There was no effect of plant species richness on decomposition of a recalcitrant substrate (compost). This suggests that the soil legacy effect predominantly acted on the decomposition of labile organic matter. We thus demonstrated that plant species richness enhances root litter-induced soil respiration via a soil legacy effect but not via a litter-mixing effect. This implies that the positive impacts of species richness on soil C sequestration may be weakened by accelerated organic matter decomposition.  相似文献   

13.
Assessments of terrestrial carbon fluxes require a thorough understanding of links between primary production, soil respiration and carbon loss through drainage. In this study, stem girdling was used to terminate autotrophic soil respiration including rhizosphere respiration and root exudation in a temperate Norway spruce stand. Rates of soil respiration and dissolved organic carbon (DOC) formation were measured in the second year after girdling, comparing an intact plant-rhizosphere continuum with an exclusive decomposer system. The molecular and isotopic composition of DOC in the soil solution was analysed with a coupled Py-GC/MS-C-IRMS system to distinguish between the carbon sources of dissolved carbon. Pyrolysis products were grouped according to their precursor origins: polysaccharides, proteins or of mixed origin (mainly derivates of lignins and proteins). When dead roots became available for decomposition, rates of heterotrophic soil respiration in girdling plots peaked at 6.5 μmol m−2 s−1, comparable to peak rates of total soil respiration (autotrophic and heterotrophic) in control plots, 6.1 μmol m−2 s−1. A significant response of soil respiration to temperature was found in control plots only, showing that an unlimiting supply of organic substrates for microbial respiration may mask any temperature effects. The enhanced decomposition in girdled plots was further supported by the isotopic composition of DOC in soil solution; all three precursor groups became isotopically enriched as the growing season progressed (polysaccharides by 2.3‰, proteins by 1.9‰, mixed origin group by 2.2‰). This indicates a trophic level shift due to incorporation of organic substrate into the microbial food chain. In the control plots’ mixed origin fraction, the isotopic composition changed over time from a signature resembling that of lignin (−28.9‰) to one similar of the protein fraction (−25.7‰). Significant temporal changes of structural DOC composition occurred in the girdling plots only. These results suggest that changes in the microbial community and in decomposition rates occurred in both girdled and control plots in the following ways: (i) increased substrate availability (dead roots) gave rise to generally enhanced performance of the decomposer community in girdled plots, (ii) root-derived exudates probably contributed to enhanced decomposition of recalcitrant lignin in the control plots and (iii) the structural composition of DOC seemed to be more a result of decomposition than of plant root exudation in all plots.  相似文献   

14.
试验研究温度与土壤水分对有机碳分解速率的影响,结果表明:相同水分条件下,培育初期(1~20d)各处理CO2排放速率较高,相对值表现为35℃处理>25℃处理>15℃处理>5℃处理;随培育时间延长(>20d),CO2排放速率渐趋平稳。相同温度条件下,30%~90%田间持水量时培育初期(1~20d)各处理CO2排放速率初始值较高,之后降低,当趋于某一定值时,相对值大小随土壤水分含量增加而增加。相同温度与土壤水分条件下,CO2排放速率相对值大小随土壤有机碳含量增加而增加。  相似文献   

15.
16.
ABSTRACT

During 2008–2011, model field experiments were carried out at the Joni?k?lis Experimental Station of Lithuanian Research Centre for Agriculture and Forestry on a clay loam Endocalcaric Endogleyic Cambisol. The study was aimed to establish the comparison of various postharvest practices (mineral nitrogen fertiliser alone or together with a bioactivator Penergetic k, livestock slurry, red clover biomass and straw incorporation in the soil by a stubble cultivator at a 10 cm depth) on the acceleration of the initial (nine-month period) decomposition of winter wheat straw. During this period, straw mass decomposition intensity was 20.7–29.1%, carbon (C) concentration decreased by 6.5–22.8%, while an increase in nitrogen (N) by 1.1–2.2 times was observed. The highest straw decomposition rate was recorded when after straw incorporation autumn was warm and humid. That year straw mass C to N ratio (C/N) was 38–46. Under less-favourable autumn conditions, the highest decomposition of straw was achieved, having applied mineral N (with and without Penergetic) and livestock slurry and having incorporated the straw in the soil (C/N = 40–55). A slower decomposition rate was observed for the straw spread on the soil surface with mineral N addition or on undersown red clover.  相似文献   

17.
Summary The effects of simulated acid rain on litter decomposition in a calcareous soil (pHH 2 O 5.8) were studied. Litterbags (45 m and 1 mm mesh size) containing freshly fallen beech leaf litter were exposed to different concentrations of acid in a beech forest on limestone (Göttinger Wald. Germany) for 1 year. Loss of C, the ash content, and CO2–C production were measured at the end of the experiment. Further tests measured the ability of the litter-colonizing microflora to metabolize 14C-labelled beech leaf litter and hyphae. The simulated acid rain strongly reduced CO2–C and 14CO2–C production in the litter. This depression in production was very strong when the input of protons was 1.5 times greater than the normal acid deposition, but comparatively low when the input was 32 times greater. acid deposition may thus cause a very strong accumulation of primary and secondary C compounds in the litter layer of base-rich soils, even with a moderate increase in proton input. The presence of mesofauna significantly reduced the ability of the acid rain to inhibit C mineralization. The ash content to the 1-mm litterbags indicated that this was largely due to transport of base-rich mineral soil into the litter.  相似文献   

18.
During 2008–2011 model field experiments were carried out at the Joni?k?lis Experimental Station of Lithuanian Research Centre for Agriculture and Forestry on a clay loam Endocalcaric Endogleyic Cambisol. The study was aimed to establish the comparison of various postharvest practices (mineral nitrogen fertilizer alone or together with a bioactivator Penergetic k, livestock slurry, red clover biomass, and straw incorporation in the soil by a stubble cultivator at a 10 cm depth) on the acceleration of the initial (nine-month period) decomposition of winter wheat straw. During this period straw mass decomposition intensity (DIM) was 20.7–29.1%, carbon (C) concentration decreased by 6.5– 22.8%, while an increase occurred in nitrogen (N) 1.1–2.2 times. The highest straw decomposition rate was recorded when after straw incorporation autumn was warm and humid. That year straw mass C to N ratio (C/N) was 38–46. Under less favourable autumn conditions, the highest decomposition of straw was achieved having applied mineral N (with and without Penergetic) and livestock slurry and having incorporated the straw in the soil (C/N = 40–55). A slower decomposition rate was observed for the straw spread on the soil surface with mineral N addition or on undersown red clover.  相似文献   

19.
Qu  Wendi  Li  Juanyong  Han  Guangxuan  Wu  Haitao  Song  Weimin  Zhang  Xiaoshuai 《Journal of Soils and Sediments》2019,19(2):609-617
Purpose

Climate warming and sea level rise have the potential to change the salt level of soil in tidal wetlands. And it is important to clarify the process and the mechanism of decomposition of soil organic carbon in a tidal wetland under varying salinities. The aim of this study was to evaluate the impacts of soil salinity on the decomposition rate of organic carbon (DROC) and dissolved organic carbon (DOC) in a tidal wetland.

Materials and methods

Two types of soil (surface soil in Suaeda salsa and bare tidal flat) were collected, air-dried, and homogenized. After adding different content of salt (0 g/L, 3 g/L, 6 g/L, 9 g/L, and 12 g/L), the soils were incubated for 28 days at stable room temperature (25?±?2 °C) and added by deionized water to maintain the stability of soil moisture. The gases (CO2 and CH4) emission rates of each salt treatment were measured during 28-day incubation. DROC was determined by the sum of daily CO2-C emission rates and daily CH4-C emission rates in this study.

Results and discussion

Salt addition inhibited the process of gas emissions and DROC. Gases emission rates and DROC of two types of soil showed similar temporal trends, with distinctive drop in the beginning of experiment and no significant decrease followed. Significant difference of DOC among salt treatments was found in the bare tidal flat soil. Variations of partial correlation between DROC and soil salinity and DOC showed similar trends (e.g., in days 9–18, the positive effect of DOC on DROC was greatly promoted (R2?=?0.80, p?<?0.001), and the negative effect of soil salinity was highly improved (R2?=?0.93, p?<?0.001)). Soil properties, in particular DOC, may be primary factors accounting for the discrepancy of gases emission rates and DROC of two types of soil.

Conclusions

Increased soil salinity had a negative effect on DROC during 28-day incubation. The impact of soil salinity and DOC on DROC were varied in different phases of laboratory experiment (soil salinity generally had increasingly negative relationship with DROC, but DOC showed most significantly positive relationship in the middle stage of incubation). Both the formation and consumption of DOC may be valuable for more detail research regarding to decomposition of soil organic carbon.

  相似文献   

20.
The effects of residue (wheat straw or sewage-sludge compost) incorporation in soil and the relative contribution of microorganisms in the residues, or in the soil to decomposition of the added residue, (CO2 production) was evaluated in an incubation experiment. All residues and soils were adjusted to 33 kPa moisture tension and maintained at 25°C under a constant flow of CO2-free air for 72 days. Residue decomposition was determined by monitoring CO2 evolution from the treatments.

Mixing an aged sewage-sludge compost (10%, 224 Mg ha−1) with soil stimulated decomposition of the compost 1.64-fold when compared with any of the localized placements, and indicated that the indigenous soil microorganisms were the major contributors to the transformations of this mature compost. Wheat straw was populated with organisms capable of decomposing readily-available substrates in the straw during the first stage of the decomposition, whereas it appeared that soil organisms contributed to an acceleration of straw decomposition during the final stages. After 65 days approx. 30% of the added wheat straw C had been evolved as CO2. Soil basidiomycetes doubled the extent of decomposition when the indigenous decomposers in wheat were inactivated by γ-irradiation. Model equations are presented for residue decomposition relative to time.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号