首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven soils were examined for their contents of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids, p-hydroxybenzaldehyde and vanillin. Water-soluble forms, both “free” and “bound” of the phenolic compounds accounted for less than 0.7% of the total amount of each acid or aldehyde as determined by extraction of the soil with 2 M NaOH. In most instances, more than 50% of the water-soluble compounds were in the bound form, which was estimated after conversion to the free form by treatment of the water extract with NaOH. Water-soluble forms, both free and bound, of each compound also occurred in roots associated with six of the soils, and in beech litter associated with the seventh.  相似文献   

2.

Purpose

The deposition of phenolic acids in soils is of ecological and environmental importance for growth of trees and nutrient cycling of soil. The objective of this study was to investigate the relationship between environmental behaviors of phenolic acids and their rhizodeposition in forest soils. The results could provide more information regarding the ecological process of root exudates at the plant-soil interface.

Materials and methods

The amounts of four types of phenolic acids (i.e., p-hydroxybenzoic acid, benzoic acid, cinnamic acid, and vanillin acid) in the rhizosphere and bulk soils of two plantation forests were measured and compared using HPLC (Thermo Electron Corp., USA). The root exudates of poplar saplings under three nutrient conditions (normal (CK), nitrogen stress (low-N), and phosphorus stress (low-P)) were collected via adsorption resins (Amberlite XAD-16, USA). The phenolic acids in root exudates were then quantified by external standards. The adsorption and degradation dynamics of the phenolic acids in soils were monitored by exogenous application in the lab. Several models were employed to reveal the environmental behavior properties of phenolic acids after they entered into soils. Meanwhile, the enumeration of the culturable bacteria and fungi was conducted using soil dilution plate method to measure the abundance variation of the microbial community along with the degradation of the phenolic acids.

Results and discussion

More phenolic acids deposited in the rhizosphere soils than in the bulk soils of the poplar plantations. The difference was significant (p?<?0.05). Under normal nutrient conditions, poplar roots could secrete phenolic acids. However, in low-N and low-P conditions, poplar roots would significantly increase the secretion (p?<?0.05). Phenolic acids were quickly adsorbed by the soil within 24 h. These four phenolic acids showed varied adsorption capacities by soil, but they are generally more than 1500 μg g soil?1. Phenolic acids were degraded over time with half-lives around 1.29–4.24 days. Among them, p-hydroxybenzoic acid showed the highest secretion capability and the longest persistence, indicating that p-hydroxybenzoic acid had higher deposition potential in soils. Environmental behaviors should be responsible for the rhizodepostion of phenolic acids in poplar plantations.

Conclusions

Roots could release a certain amount of phenolic acids into the rhizosphere soil, especially under nutrient stress. Phenolic acids could be easily adsorbed onto soil colloids. However, the degradation amount of phenolic acids was positively related with the abundance of the fungi community. Thus, the rhizodeposited phenolic acids were the trade-off between those produced by root exudation and those consumed by microbial degradation.
  相似文献   

3.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

4.
A technique has been developed to extract soil phenolics by their adsorption onto resin, the separation of resin from soil, and desorption from the resin followed by high performance liquid chromatography (HPLC) analysis. Four representative phenolic acids, p-hydroxybenzoic, p-hydroxycinnamic, p-methoxybenzoic and 2,4-dimethoxybenzoic acids, were added to a subtropical soil (66 nmol g?1 soil) and recovered by extraction with Amberlite XAD-4 resin. The recovery efficiency of the added phenolics was greater using a flotation method to separate resin from soil than by a filtration method. The recoveries of p-hydroxybenzoic acid and p-hydroxycinnamic acid decreased with increasing extractant pH. Recoveries of p-methoxybenzoic acid and 2,4-dimethoxybenzoic acid increased slightly with increasing pH. The addition of NaCl to the XAD-4 resin extractant generally increased the recovery of phenolics by filtration but not by flotation. The recoveries of phenolics from the soil by extraction with XAD-4 resin were much greater than by alkaline extraction at pH 11.  相似文献   

5.
Substrate quality and decomposition (measured as CO2 release in laboratory microcosms) of fresh leaf litter and fine roots of Cupressus lusitanica, Pinus patula, Eucalyptus grandis and native forest trees were studied. Changes in litter chemistry in each forest stand were analysed by comparing fresh leaf litter (collected from trees) and decomposed litter from the forest floor. Elemental concentrations, proximate fractions including monomeric sugars, and cross polarisation magic-angle spinning (CPMAS) 13C NMR spectra were analysed in leaf litters, decomposed litter and fine roots. Leaf litters and fine roots varied in their initial substrate chemistry with Ca concentration in leaf litters being higher than that in fine roots. In each stand, fine roots had a higher acid unhydrolysable residue (AUR) (except for the Pinus stand), higher holocellulose concentration and lower concentration of water-soluble extractives (WSE) and dichloromethane extractives (NPE) than fresh leaf litter. Likewise, 13C NMR spectra of fine roots showed lower alkyl and carboxyl C, and higher phenolic (except P. patula), aromatic and O-alkyl C proportions than leaf litters. Compared with fresh leaf litter, decomposed litter had lower concentrations of potassium, holocellulose, WSE, NPE, arabinose and galactose, similar or higher concentrations of Mg, Ca, S and P, and higher concentrations of N and AUR. CPMAS 13C NMR spectra of decomposed litter showed a higher relative increase in signal intensity due to methoxyl C, aromatic C, phenolic C and carboxylic C compared with alkyl C. In a microcosm decomposition study, the proportion of initial C remaining in leaf litter and fine roots significantly fitted an exponential regression model. The decomposition constants (k) ranged between 0.0013 and 0.0030 d−1 for leaf litters and 0.0010-0.0017 d−1 for fine roots. In leaf litters there was a positive correlation between the k value and the initial Ca concentration, and in fine roots there was an analogous positive correlation with initial WSE. Leaf litters decomposed in the order Cupressus>native forest>EucalyptusPinus, and fine roots in the order Pinus>native forest>CupressusEucalyptus. In each stand the fine root decomposition was significantly lower than the leaf litter decomposition, except for the P. patula stand where the order was reversed.  相似文献   

6.
We investigated contributions of leaf litter, root litter and root-derived organic material to tundra soil carbon (C) storage and transformations. 14C-labeled materials were incubated for 32 weeks in moist tussock tundra soil cores under controlled climate conditions in growth chambers, which simulated arctic fall, winter, spring and summer temperatures and photoperiods. In addition, we tested whether the presence of living plants altered litter and soil organic matter (SOM) decomposition by planting shoots of the sedge Eriophorum vaginatum in half of the cores. Our results suggest that root litter accounted for the greatest C input and storage in these tundra soils, while leaf litter was rapidly decomposed and much of the C lost to respiration. We observed transformations of 14C between fractions even when total C appeared unchanged, allowing us to elucidate sources and sinks of C used by soil microorganisms. Initial sources of C included both water soluble (WS) and acid-soluble (AS) fractions, primarily comprised of carbohydrates and cellulose, respectively. The acid-insoluble (AIS) fraction appeared to be a sink for C when conditions were favorable for plant growth. However, decreases in 14C activity from the AIS fraction between the fall and spring harvests in all treatments indicated that microorganisms consumed recalcitrant C compounds when soil temperatures were below 0 °C. In planted leaf litter cores and in both planted and unplanted SOM cores, the greatest amounts of 14C at the end of the experiment were found in the AIS fraction, suggesting a high rate of humification or accumulation of decay-resistant plant tissues. In unplanted leaf litter cores and planted and unplanted root litter cores most of the 14C remaining at the end of the experiment was in the AS fraction suggesting less extensive humification of leaf and root detritus. Overall, the presence of living plants stimulated decomposition of leaf litter by creating favorable conditions for microbial activity at the soil surface. In contrast, plants appeared to inhibit decomposition of root litter and SOM, perhaps because of microbial preferences for newer, more labile inputs from live roots.  相似文献   

7.
Phenolic acids have been implicated in the process of allelopathy and are, therefore, of interest in plant management as a basis for new herbicide structures. The potential bioavailability of phenolic acids is controlled by sorption–desorption processes in soil. Sorption–desorption of p-coumaric acid (4-hydroxycinnamic acid), ferulic acid (3-methoxy-4-hydroxycinnamic acid), veratric acid (3,4-dimethoxybenzoic acid), vanillic acid (3-methoxy-4-hydroxybenzoic acid), and p-hydroxybenzoic acid (4-hydroxybenzoic acid) was characterized on soils with varying physicochemical properties. The phenolic acids sorbed quickly (<8 h) and in high proportions to the amount applied (average 84% of applied was sorbed). Sorption was irreversible with the batch desorption method used (0.01 N CaCl2 extraction). Pretreatment of soils to remove organic matter and free metal oxides from the soils decreased sorption, particularly in soils with free oxides removed. Statistical analysis suggested that sorption of p-coumaric and ferulic acids was correlated with soil clay content and veratric acid sorption was correlated with several soil factors. In contrast, no consistent relationship between soil characteristics and vanillic and p-hydroxybenzoic acid sorption was found. Based on the results of these experiments, i.e. the high reactivity of the phenolic acids, it is unlikely that these chemicals would be transported far from their point of origin, limiting their range of influence. It appears that, for phenolic acids to have allelopathic effects on plants, they would have to persist in the soil for long periods, resulting in a buildup of the chemical to high enough levels so that sufficient chemical would be in solution to cause the allelopathic effects, even though they may be strongly sorbed at lower concentrations.  相似文献   

8.
We investigated the influence of three concentrations of water extracts of three leaf litter species (pitch pine, huckleberry and white oak) and a mixture of all litters on the germination of pitch pine seeds and initial seedling growth in a microcosm experiment. All three plant species are important components of the pine barrens ecosystems in New Jersey, where it has been seen that pine seedling recruitment occurs only after stand replacing fire or in disturbed sites, where surface organic soil horizons and leaf litter have been removed. Leaf litter extracts did not influence seed germination, but significantly reduced seedling growth at high concentrations. There was little difference between the leaf litter species in growth suppression. As charcoal is a natural residue on the forest floor following fire, its influence on growth suppression was examined; it has been shown to immobilize polyphenols. Charcoal removed the inhibitory effect of leaf litter extracts and allowed the fertilizer effect of nutrients leached from the leaves to enhance seedling growth, particularly at the higher concentration of litter extract used. Responses to litter extracts were compared to four pure phenolic compounds, catchecol, p-coumaric acid, p-hydroxybenzoic acid and tannic acid. None of these compounds suppressed pine seedling growth, suggesting that these phenolics are not allelopathic to pine seedlings. The results are discussed in the context of fire as a driving factor in these oligotrophic and seasonally dry ecosystems and the interactions between nutrient supply and allelopathic chemistry of different leaf litters.  相似文献   

9.
Controls on the colonization and abundance of arbuscular mycorrhizal fungi (AMF) in ecosystems are little understood and may be related to host factors, the fungal community, and soil physio-chemical properties; and changes in these variables during soil development may affect succession between mycorrhizal groups. Here we investigated the effects of litter, litter leachates, and common soluble phenolic compounds on AMF colonization of roots. In previous studies, we observed a negative correlation between increases in black cottonwood (Populus trichocarpa) litter and AMF abundance and inoculum potential along a riparian chronosequence in northwest Montana. From this, we hypothesized that litter inputs negatively affect the native AMF community and may contribute to the shift between AMF and ectomycorrhizas. We tested the effects of cottonwood foliage and litter extract additions on the colonization of AMF of both cottonwood and Sudan grass (Sorghum sudanese) seedlings. Addition of 5% (v/v) dried cottonwood leaves completely inhibited AMF colonization of S. sudanese. AMF colonization of S. sudanese was significantly reduced by litter extract of P. trichocarpa foliage, and colonization was negatively correlated with litter extract concentrations. Additions of aqueous litter extract significantly reduced AMF colonization of cottonwood seedlings as well. The effect of the litter extract on AMF colonization of S. sudanese did not appear to be mediated by changes in soil pH or plant biomass. Available phosphorus was higher in soil receiving highest concentration of litter extract, but not at a level expected to be inhibitory to AMF colonization. Litter additions significantly increased total soil phenolics, but with a range similar to natural soils of the Nyack floodplain. We tested pure soluble phenolic compounds common to Populus for their effect on AMF colonization by native fungi from the Nyack floodplain. All tested compounds significantly reduced AMF colonization but did not affect colonization by non-AMF root-colonizing fungi. This suggests secondary compounds present in cottonwood litter can affect colonization ability of a native AMF community. The potential mechanisms of inhibition and the relevance of these findings to AMF succession within both a single host and soil are discussed.  相似文献   

10.
Earthworms play an important role as primary decomposers in the incorporation and initial mixing of plant litter. This study explored the response of earthworms to increasing fertiliser inputs, pasture production and livestock numbers (and their influence on food availability and soil physical condition) on six different managements in sheep-grazed and fifteen different managements in dairy-grazed pastures in a variety of New Zealand soils.Native earthworms were only found in some low-fertility pastures. Accidentally introduced peregrine earthworms, when present, dominate pasture soils. Of these, endogeic earthworms dominated the earthworm community and were positively associated with soil types with higher bulk densities. Peregrine anecic earthworms were absent from most hill-country sheep-grazed pastures, however in more fertile and productive dairy-grazed pastures they reached a biomass of up to 2370 kg ha?1. Only anecic earthworms showed a positive response to the increasing pressures associated with higher potential dry matter inputs and liveweight loadings of grazing livestock on soil, while epigeic earthworms declined. The positive response of anecic earthworms probably reflects the combined effect of the increase in food resources, including dung and plant litter, available on the soil surface, and their lower susceptibility to livestock treading pressure. Anecic species may be a suitable substitute for incorporation of surface litter in those soils where livestock treading limits epigeic earthworm populations.This study confirmed previous observations of limited distribution of the introduced Aporrectodea longa in pastoral hill-country soils in the North Island, and their near absolute absence from the South Island of New Zealand. This would suggest that large areas of New Zealand pastoral farmed soils could benefit from the introduction of anecic species from other parts of New Zealand which already contain A. longa.  相似文献   

11.
A survey of PAHs in the soils of a mature,mixed-deciduous woodland and the surrounding pasturewas conducted along two transects. PAH `profiles'were not significantly different in the woodland soilcompared with the pasture. ΣPAH concentrations in thewoodland soil were significantly higher than soil fromthe surrounding pasture by a factor of 1.5–3 (P < 0.01), indicating enhanced deposition of PAHs to thesoil under the canopy via leaf litter, stemflow and/or through-fall. A deposition `edge effect' was onlyobserved at the windward edge of the canopy where thenumber and density of aerial and basal stems washighest (P < 0.05). The influence of predominantwest/south-westerly winds was observable in the lackof an edge effect at the leeward edges, and the higherΣPAH concentrations in the predominantly leewardpasture compared to the windward pasture (P < 0.05).  相似文献   

12.
The humus layer of soils under Betula pendula, Quercus robur, Fagus sylvatica, Pinus nigra and Picea abies was analyzed for water-soluble phenolic substances. Highest concentrations of total water-soluble phenols were found in soils supporting oak trees. Highest polyphenol concentrations occurred under spruce-fir and beech trees, whereas highest monomeric phenols were found in soils under spruce-fir and pine. The polyphenol content was positively correlated with total carbon content of the soil. The phenolic acid composition of the soils under trees was partly dependent on the tree species. Among the monomeric compounds, ferulic, p-coumaric, vanillic, protocatechuic, syringic and benzoic acid dominated the phenol spectra.Seasonal variations were observed in the concentrations of water-soluble and mild alkaline-soluble phenols in the humus layer under F. sylvatica in two contrasting soil types. The water-soluble phenols in a sandy soil accounted for a larger proportion of the mild-alkaline extractable amounts compared to a loamy soil.  相似文献   

13.
Abstract

Most ethnic populations worldwide consume poultry products. Whereas poultry litter (PL) is a traditionally inexpensive and effective fertilizer to improve soil quality and agricultural productivity, overapplication to soils has raised concerns because excess nutrients in runoff could accelerate the eutrophication of fresh bodies of water. A long‐term field experiment of land application of PL to soils used for pasture growth has been maintained for nearly two decades in the Sand Mountain region of north Alabama, USA. In this work, several soil parameters impacted by the long‐term applied litter were characterized. The findings clearly support previous general observations that long‐term applied litter on pasture soils altered soil properties and macrocation levels. Unlike other studies, however, the effects of applied litter at multiple rates and years were examined, thus revealing the dynamic impacts on soil properties. Hay yields increased with the increase of years of PL application, regardless of the applied rate. This observation was consistent with previous observations that the labile phosphorus (P) portion in these soils increases with application years whereas total P increases with the cumulative applied PL amounts. Poultry litter application did not markedly affect soil electric conductivity, bulk density, or sodium (Na) or potassium (K) levels, especially at the soil surface (0–20 cm). Soil pH, carbon (C), C/nitrogen (N) ratio, calcium (Ca), and magnesium (Mg) were profoundly affected at all three soil depths (0–20, 20–40, and 40–60 cm). Most soil parameters analyzed in this study reached peak values with 10–15 years of applied litter. This observation suggests that there was a turning point of impact for applied litter around 10 years: prior to that the soil macrocations were altered positively as a result of accumulative functions. Continuous litter application may negatively alter a soil's capacity to retain macrocations, leading to less impact observed in this study. In other words, pasture soils with more than 10 years of applied litter would have higher potential for leaching and runoff. Our observation suggested that best management practices for land application of PL should take into consideration the different effects of PL application history.  相似文献   

14.
Our aim was to determine whether the soil microbial biomass, which has developed naturally over many years in a given ecosystem, is specially adapted to metabolize the plant‐derived substrate C of the ecosystem within which it developed or whether the nature of recently added substrate is the more important factor. To examine this, soils from three sites in close proximity (woodland, grassland and arable from the Broadbalk Experiment at Rothamsted Research, Harpenden, UK) were each amended with air‐dried wheat straw (Triticum aestivum), ryegrass leaves (Lolium perenne) or woodland leaf litter (mainly Quercus robur and Fagus sylvatica) in a fully replicated 3 × 3 factorial laboratory experiment. The initial mineralization rates (evolved CO2‐C) were determined during the first 6.5 hours and again, together with the amount of microbial biomass synthesized (microbial biomass C), at 7, 14, 21, 30 and 49 days of incubation. The hourly rate of CO2‐C production during the first 6.5 hours was slowest following leaf litter addition, while the added grass gave the fastest rates of CO2‐C evolution both within and between soils. Ryegrass addition to the arable soil led to approximately four times more CO2‐C being evolved than when it was added to the woodland soil, at an overall rate in the arable soils of 41 μg C g?1 soil hour?1. In each soil, the net amounts of CO2‐C produced were in the order grass > straw > leaf litter. In each case, the amount produced by the added leaf litter was significantly less (P < 0.05) than either the added grass or straw. Overall, the trend was for much slower rates of mineralization of all substrates in the woodland soil than in either the arable or grassland soils. During 49 days of incubation in the woodland and grassland soils, the net total amounts of CO2‐C evolved differed significantly (P < 0.01), with grass > straw > leaf litter, respectively. In the arable soil, the amounts of CO2‐C evolved from added grass and straw were significantly larger (P < 0.01) than from the leaf litter treatment. Our findings indicated that the amounts of CO2‐C evolved were not related to soil management or to the size of the original biomass but to the substrate type. The amount of biomass C synthesized was also in the order grass > straw > leaf litter, at all stages of incubation in the woodland and grassland soil. In the arable soil, the same effect was observed up to 14 days, and for the rest of the incubation the biomass C synthesized was in the order grass > straw > leaf litter. Up to three times more biomass C was synthesized from the added grass than from the other substrates in all soils throughout the incubation. The maximum biomass synthesis efficiency was obtained with grass (7% of added C). Overall, the woodland soil was most efficient at synthesizing biomass C and the arable soil the least. We conclude that substrate type was the overriding factor that determined the amount of new soil microbial biomass synthesized. Mineralization of substrate C by soil microorganisms was also influenced mainly by substrate type and less by soil management or size of original biomass.  相似文献   

15.
Summary It is commonly assumed that the adverse effect of plant residues on crop yields is largely or partly due to phytotoxic compounds leached from these residues or produced by their decomposition. There has been substantial support for the hypothesis that the phytotoxic compounds responsible for reduced crop yields are phenolic acids such as p-coumaric acid, p-hydroxybenzoic acid, and ferulic acid. To test the validity of this hypothesis, we studied the effects of nine phenolic acids (caffeic acid, chlorogenic acid, p-coumaric acid, ellagic acid, ferulic acid, gallic acid, p-hydroxybenzoic acid, syringic acid, and vanillic acid) on (1) seed germination of corn (Zea mays L.), barley (Hordeum vulgare L.), oats (Avena sativa L.), rye (Secale cereale L.), sorghum [Sorghum bicolor (L.) Moench], wheat (Triticum aestivum L.), and alfalfa (Medicago sativa L.) on germination paper and soil, (2) seedling growth of alfalfa, oats, sorghum, and wheat on germination paper and soil, and (3) early plant growth of corn, barley, oats, rye, sorghum, and wheat in soil. The results showed that although the phenolic acids tested affected germination and seedling growth on germination paper, they had no effect on seed germination, seedling growth, or early plant growth in soil even when the amounts applied were much greater than the amounts detected in soil. We conclude that the adverse effect of plant residues on crop yields is not due to phenolic acids derived from these residues.  相似文献   

16.
Relationships between abiotic oxidation and adsorption of phenolic acids added to soils and soil chemical properties were investigated by using 32 soil samples and ferulic, vanillic, and p-hydroxybenzoic acids. Soil properties studied were as follows: (as adsorption factors) contents of acid oxalate extractable Al (Alo), Fe (Feo), dithionite-citrate-bicarbonate (DCB) extractable Fe (Fed), total carbon and clay, and (as oxidation factors) level of soil oxidative activity (Cr oxidation) determined by the amount of Cr(VI) converted from Cr(III) added to soils. Soil samples were divided into 3 types based on chemical properties: Andosols A (A horizon of Andosols), Andosols B (B horizon of Andosols and light-colored Andosols), and non-Andosols.

The recovery of all phenolic acids (RPA) was negatively correlated with the total carbon and Feo contents in Andosols A and B, respectively, which suggested adsorption onto soil organic matter in Andosols A and onto Feo in Andosols B. It was considered that almost no oxidation of phenolic acids occurred in Andosols A, because a very small amount of Cr(VI) was obtained. The recovery of ferulic acid (RFA) and vanillic acid (RVA), however, was negatively correlated with Cr oxidation in non-Andosols, suggesting that these phenolic acids were oxidized, while almost all of the p-hydroxybenzoic acid was recovered.

These results were also supported by the comparison between RFA and recovery of dissolved organic carbon (RTOC). RFA was very similar to RTOC in Andosols A and B, which indicated that adsorption occurred, whereas RFA was lower than RTOC in the non-Andosols that showed a high level of Cr oxidation, indicating that oxidation took place. Manganese dissolution which occurred when phenolic acids were added to soils was also examined.  相似文献   

17.
Examination of three forest soils from Malaysia using the soil incubation technique suggests that nitrification was not inhibited in these oligotrophic soils. Nitrification rates were between 40 and 750 ngN produced g?1 dry weight soil day?1 of incubation. Addition of phenolic metabolites (tannic acid) and leaf filtrates from hill and lowland forest litter did not significantly inhibit nitrification. Addition of sucrose (1% w/w carbon source) decreased nitrification but not ammonification.  相似文献   

18.
Soil macrofauna play an essential role in the initial comminution and degradation of organic matter entering the soil environment and yet the chemical effects of digestion on leaf litter are poorly understood at the molecular level. This study was undertaken to assess the selective chemical transformations that saprophagous soil invertebrates mediate in consumed leaf litter. A number of pill millipedes (Glomeris marginata) were fed oak leaves (Quercus robur) after which the biomolecular compositions (lipids and macromolecular components) of the leaves and millipede faeces were compared using a series of wet chemical techniques and subsequent analysis by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). It was found that the concentrations of short chain (<C20) n-alkanoic acids, sterols and triacylglycerols reduced dramatically in the millipede faeces relative to the leaf litter. Hydrolysable carbohydrates and proteins both decreased in concentration in the faeces, whereas similar yields of phenolic components were observed for the cupric oxidation products of lignin, although the oxygenated functionalities were affected by passage through the millipede gut, yielding a more highly condensed state for lignin. This shows that the chemical composition of fresh organic matter entering the soil is directly controlled by invertebrates feeding upon the leaf litter and as such that they are key contributors to the early stages of diagenesis in terrestrial soils.  相似文献   

19.
Adsorption of Cd by two soils and its uptake by perennial ryegrass (Lolium perenne) and winter rape (Brassica napus) as a function of pH (pH 4 to 7) and the amount of Cd added to the soil (0 to 5 mg kg?1 soil) were studied in a 2-yr pot experiment. In the soils, the more soluble fractions of Cd increased as the pH was lowered. Increasing the pH from 5 to 7 by adding CaO invariably reduced the Cd-content of ryegrass plants, but this decrease was less consistent where the pH had only been increased to 6. In some cases, acidifying the soil with S to reach a pH of 4 also led to a decrease in plant Cd-content. The Cd-content of rapeseed plants was markedly higher at pH 4 than at pH 5. Plant damage at low pH was observed in this crop. Water-leachable and CaCl2-extractable soil Cd levels as well as plant uptake were higher in the sand soil than in the clay soil, whereas 1M NH4AcO (buffered at pH 4.8 and 7) extracted roughly equal amounts from both soils. Adding more Cd to the soil did not change the relation between Cd levels in soil and those in plants; instead the amounts of Cd in both increased in direct proportion to the amounts added. Fixation of added Cd apparently did not occur continuously at any pH or Cd-level during the 2-yr period, but seasonal variations in solubility and uptake were observed.  相似文献   

20.
Soil microbiological properties during decomposition of leaf litter of poplar (Populus deltoides) and eucalyptus (Eucalyptus tereticornis) were studied under laboratory conditions. Microbial biomass C and ninhydrin-N were measured at different intervals up to 90 days following incorporation of poplar and eucalyptus leaves separately @ 20 and 100t ha-1. In general, the net increase in total biomass C or ninhydrin N following amendment was larger in the soils which received poplar leaves than in the soils that received eucalyptus leaves. The amounts of biomass C, at day 90, in the soils which received eucalyptus leaves @ 20 and 100 t ha-1 was about half and one-third, respectively, that of the soils that received poplar leaves at the same rates. Similarly, the field soils naturally receiving eucalyptus leaf litter contained about half the amounts of biomass C or ninhydrin N of the soils that received poplar leaf litter. In contrast, the amounts of organic C and total N were more in soils which received eucalyptus leaves both in the laboratory experiment and under field conditions than in the soils that received poplar leaves, indicating that the decomposition of eucalyptus leaves in soils was slower than that of poplar leaves. The ratio of biomass C/soil organic C in soils receiving eucalyptus leaves was about 2–4 times lower than those in soils with no admendment or soils receiving poplar leaves. These results, therefore, suggest that the allelochemicals released into soil during decomposition of eucalyptus leaves had a toxic effect on soil microorganisms and may thus affect the nutrient cycling and hence soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号