首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
旨在比较牦牛和柴达木黄牛低氧通气反应(HVR)特征及颈动脉体(CB)中一氧化氮(NO)、一氧化氮合酶(NOS)含量。选择生活在海拔3 200m临床健康的成年牦牛和柴达木黄牛进行13.9%O2低氧(模拟海拔6 000m)通气反应;采用荧光定量PCR、酶联免疫吸附(ELISA)双抗体夹心法和免疫组织化学方法对海拔3 200m牦牛、柴达木黄牛及模拟海拔6 000m时CB中的NOS mRNA和蛋白水平表达以及NO含量进行检测。结果表明:牦牛、柴达木黄牛低氧通气反应斜率(△VE/△SaO2)分别为(0.21±0.10)和(0.50±0.21)(L·min-1)/%SaO2(P0.01);海拔3 200m时,CB中nNOS、eNOS、iNOS基因mRNA和蛋白表达水平在牦牛与柴达木黄牛间差异均不显著(P0.05),模拟海拔6 000m时,CB中nNOS、eNOS、iNOS蛋白表达水平在牦牛与柴达木黄牛间差异均不显著(P0.05),模拟海拔6 000m的牦牛、柴达木黄牛CB中nNOS、eNOS、iNOS蛋白表达水平分别与海拔3 200m的牦牛、柴达木黄牛比较差异均不显著(P0.05);在模拟海拔6 000m组,牦牛、柴达木黄牛CB中NO含量均显著高于海拔3 200m(P0.01或P0.05),在模拟海拔6 000m组,牦牛CB中NO含量极显著高于柴达木黄牛(P0.01),在海拔3 200m,牦牛与柴达木黄牛CB中NO含量差异不显著(P0.05)。结果提示,青藏高原世居牦牛低氧通气反应钝化,而柴达木黄牛对低氧的刺激保持较高的通气反应,急性低氧时牦牛CB内产生大量的NO可抑制对低氧的化学感受。  相似文献   

2.
选取两个海拔高度大通牦牛作为研究对象,以乐都地区牦牛为对照,利用光镜技术和计算机图像分析系统测定心肌肌纤维直径、表面积密度;利用透射电镜技术比较心肌线粒体的平均体积(V)、体积密度(VV)和面数密度(NA)等结构参数;利用免疫组织化学技术对心肌细胞血管内皮生长因子(VEGF)和微血管密度(MVD)进行检测,并对以上数据进行相关性分析。结果显示:(1)大通牦牛心肌肌纤维直径均细于乐都地区牦牛心肌肌纤维直径,肌纤维表面积密度均高于乐都地区牦牛,且三者两两比较差异显著(P<0.05);(2)大通牦牛的VEGF和MVD均高于乐都地区牦牛,差异显著(P<0.05);(3)大通牦牛心肌线粒体的V和VV均大于乐都地区牦牛,差异显著(P<0.05);海拔3 700m的大通牦牛心肌线粒体面数密度大于海拔3 200m的乐都地区牦牛,差异显著(P<0.05)。结果表明,大通牦牛心肌组织主要表现为心肌纤维直径细、表面积密度大、心肌组织血管内皮生长因子和微血管密度大的遗传学特点。而心肌线粒体的低氧适应表现为,随着海拔高度的增加,心肌线粒体平均体积增大,面数密度和体密度增加的特点。  相似文献   

3.
为了进一步研究大通牦牛心肌对高原低氧适应的组织学特点,选取2个海拔高度(海拔3 700,3 200m)成年大通牦牛作为研究对象,并选取同海拔高度的泽库地区成年牦牛(海拔3 700m)和海晏地区成年牦牛(海拔3 200 m)作为对照,利用组织学、免疫组织化和电镜技术对心肌组织的显微和超微结构进行观测与分析,结果显示:海拔3 700m牦牛,其心肌纤维直径细于海拔3 200m牦牛,表面积密度大于海拔3 200m牦牛,差异显著(P0.05);海拔3 700m牦牛血管内皮生长因子(VEGF)和微血管密度(MVD)均大于海拔3 200m牦牛,差异显著(P0.05);海拔3 700m牦牛平均体积和体密度大于海拔3 200m牦牛,差异显著(P0.05);而面数密度(NA)小于海拔3 200m牦牛,差异显著(P0.05)。大通牦牛心肌适应高原低氧环境的组织学特点主要表现为:肌纤维直径细、表面积密度大、VEGF和MVD均较高的特点,心肌肌线粒体平均体积相对较小、NA相对较大,而体密度大的特点。  相似文献   

4.
采用冰冻切片法、借助TIGER细胞图像分析仪对南海麻黄鸡、江西鸡、黄鸡M系、黄鸡N系、黄鸡K系的胸部肌肉的肌纤维直径和肌纤维密度进行了测定。结果表明:①肌纤维直径由小到大依次为江西鸡(30.1±3.1)μm、南海麻黄鸡(35.3±7.8)μm、黄鸡N系(36.7±1.9)μm、黄鸡K系(37.2±0.7)μm、黄鸡M系(38.1±3.1)μm,江西鸡与黄鸡N系、黄鸡K系之间的差异均达到极显著水平(P<0.01)。②肌纤维密度由小到大依次为黄鸡K系(424.5±39.3)根/mm2、M系(465.5±91.9)根/mm2、N系(471.5±63.0)根/mm2、南海麻黄鸡(568.1±59.7)根/mm2和江西鸡(655.5±182.6)根/mm2。③优质肉鸡的肌纤维直径和密度与肌肉品质之间有密切关系。  相似文献   

5.
不同海拔地区牦牛心肌、骨骼肌GSH-PX的测定   总被引:1,自引:0,他引:1  
在西宁屠宰场对来自青海省两个不同海拔县牦牛心肌和骨骼肌线粒体内谷胱甘肽过氧化物酶(GSH-PX)活性进行测定。结果表明,海拔4300m左右的玛多县牦牛心肌、骨骼肌GSH-PX分别为20.15U.mg-1±5.43U.mg-1和15.32U.mg-1±4.27U.mg-1,海拔3400m左右的刚察县牦牛心肌、骨骼肌GSH-PX分别为6.67U.mg-1±5.67U.mg-1和7.76U.mg-1±4.83U.mg-1;玛多牦牛的心肌、骨骼肌组织线粒体的GSH-PX活性显著高于刚察牦牛(P<0.05)。在高原低氧环境下,牦牛体内GSH-PX活性与海拔高度呈正相关。  相似文献   

6.
为了分析小金县封闭式牦牛育肥舍内外冬季环境指标,采用常规检测方法,对拴系牦牛舍内外环境指标进行了检测。结果表明:早上8:00和19:00舍内外的温度差异显著(P<0.05),中午13:00的温度差异不显著(P>0.05);舍内外的湿度差异不显著(P>0.05);舍外风速差异极显著(P<0.01);舍内外CO_2和NH3浓度差异极显著(P<0.01);舍内温度为4.38±0.76℃~13.65±1.36℃、湿度为47.23±6.43%~59.38±6.31%、风速为0.04±0.02m/s~0.07±0.05m/s、CO2浓度为825±70mg/m~3~982±65 mg/m~3、NH3浓度为0.46±0.11 mg/m3~0.81±0.09 mg/m~3。因此,这些牦牛短期育肥圈舍内外环境指标对牦牛育肥生产具有现实的指导意义。  相似文献   

7.
为了探讨高原牦牛肺泡组织结构特点与高原低氧的关系,试验采用常规组织学方法,利用光镜、透射电镜和计算机图像分析系统观测高原牦牛和平原黄牛肺泡的组织结构.结果表明:高原牦牛单位面积内肺泡数(MAN)、单个肺泡平均面积(MSAA)、单位面积内总肺泡面积(TAA)与平原黄牛相比差异均不显著(P>0.05),但高原牦牛肺泡隔厚度...  相似文献   

8.
用流式细胞仪分选有正常繁殖力的公牛(n=3)、公鹿(n=3)、公山羊(n=1)的精液,获得高纯度(≥91%)X和Y细管冷冻精液,对解冻后的X和Y精子进行常规染色制片,采用Motic Images Advanced 3.2软件自动测量X精子和Y精子头部面积。结果显示,公牛X精子的头部面积35.84μm2±4.12μm2,极显著高于Y精子(34.81μm2±3.72μm2)(P<0.01);梅花鹿X精子的头部面积33.29μm2±2.93μm2,极显著高于Y精子(32.90μm2±3.25μm2)(P<0.01);山羊X精子的头部面积28.53μm2±3.16μm2,也极显著高于Y精子(28.07μm2±3.19μm2)(P<0.01);不同分选纯度的公牛精液X精子之间、Y精子之间头部面积差异均不显著(P>0.05)。结论:牛、梅花鹿、山羊X精子头部面积均极显著高于Y精子。  相似文献   

9.
线粒体呼吸链是实现氧化磷酸化的分子机构,被广泛证实是活性氧产生的主要来源,活性氧的积累会造成细胞氧化应激,因此为了阐明不同海拔地区牦牛骨骼肌线粒体呼吸链复合酶活性及抗氧化能力的差异,试验从高(海拔4 200 m)、中(海拔3 200 m)、低(海拔1 900 m)海拔地区随机选择临床健康成年雄性牦牛各5头(分别分为高、中、低海拔组),屠宰后取骨骼肌采用比色法测定5种线粒体呼吸链复合酶和抗氧化关键酶的活性及氧化应激指标。结果表明:随着海拔的升高,牦牛骨骼肌线粒体呼吸链复合酶Ⅰ~Ⅴ活性均表现为逐渐降低的趋势,其中高海拔组牦牛骨骼肌线粒体呼吸链复合酶Ⅰ、Ⅲ、Ⅳ活性与中、低海拔组牦牛差异显著(P<0.05);低海拔组牦牛骨骼肌线粒体呼吸链复合酶Ⅱ、Ⅴ活性与中、高海拔组牦牛差异显著(P<0.05)。随着海拔的升高,牦牛骨骼肌中羟自由基、丙二醛(MDA)含量和谷胱甘肽过氧化物酶(GSH-Px)活性逐渐下降,且各组间显著差异(P<0.05);总抗氧化能力(T-AOC)先升高后降低,中海拔组牦牛骨骼肌显著高于低海拔组和高海拔组(P<0.05);超氧化物歧化酶(SOD)活性先下降...  相似文献   

10.
以屠宰场牦牛卵巢为材料,比较了抽吸加切割法和抽吸法2种卵母细胞离体采集方法的效率和5种成熟培养液的培养效果,并研究了卵泡位置、形态对卵母细胞体外成熟的影响。结果表明:在牦牛乏情期,平均每个卵巢用抽吸加切割法回收卵数极显著高于抽吸法(9.33±4.30VS4.70±2.62,P<0.01),可用卵数也极显著高于抽吸法(5.63±4.19VS4.37±2.32,P<0.01)。将牦牛卵丘卵母细胞复合体(COCs)分别置于5种成熟培养液中培养,其中M199(缓冲体系为Earles盐) 10% FBS 5.0mg/LLH 1.0mg/LE2 双抗(青霉素100IU/mL和链霉素100mg/L)的成熟液效果最好,成熟率为81.33%,卵裂率为49.33%。来自卵巢表面卵泡的COCs的成熟率和卵裂率均高于来自卵巢内卵泡的COCs(分别为81.33%VS69.33%,P>0.05;49.33%VS34.67%,P<0.05)。来自明亮卵泡的COCs的成熟率和卵裂率均极显著高于来自浑浊卵泡的COCs(分别为81.33%VS33.33%,P<0.01;49.33%VS3.33%,P<0.01)。  相似文献   

11.
The knowledge of anatomical variations of the posterior superior alveolar artery (PSAA) is very important in surgeries for maxillary sinus (MS) elevation and subsequent insertion of dental implants, avoiding common and serious surgical complications. The main objective of this study was to analyse important anatomical variations of the PSAA by means of cone beam computed tomography (CBCT) examinations. 180 tomographic CBCT were analysed, and MS was divided into three equal regions: (I) anterior, (II) intermediate and (III) posterior. Variables evaluated were the visualisation of the artery, distance from the artery to the ridge crest, distance from the artery to the sinus floor, alveolar ridge height and arterial diameter. The PSAA visualisation was more prevalent in males and region III (76.7%). The distance from the artery to the sinus floor presented no significant difference between regions II and III, with both regions showing significantly lower values than region I. A significant difference was observed in the diameter of the arteries with higher prevalence of diameters >1.0 mm in males and <1.0 mm in females. The PSAA can be well visualised frequently with a CBCT, and differences in artery diameter were observed in relation to gender (males > females). Additional care is recommended when it is necessary to extend surgeries to the posterior MS region, avoiding haemorrhages that are associated with failures in these procedures.  相似文献   

12.

Objective

To investigate the effects of pneumoperitoneum alone or combined with an alveolar recruitment maneuver (ARM) followed by positive end-expiratory pressure (PEEP) on cardiopulmonary function in sheep.

Study design

Prospective, randomized, crossover study.

Animals

A total of nine adult sheep (36–52 kg).

Methods

Sheep were administered three treatments (≥10-day intervals) during isoflurane–fentanyl anesthesia and volume-controlled ventilation (tidal volume: 12 mL kg?1) with oxygen: CONTROL (no intervention); PNEUMO (120 minutes of CO2 pneumoperitoneum); PNEUMOARM/PEEP (PNEUMO protocol with an ARM instituted after 60 minutes of pneumoperitoneum). The ARM (5 cmH2O increases in PEEP of 1 minute duration until 20 cmH2O of PEEP) was followed by 10 cmH2O of PEEP until the end of anesthesia. Cardiopulmonary data were recorded until 30 minutes after abdominal deflation.

Results

PaO2 was decreased from 435–462 mmHg (58.0–61.6 kPa) (range of mean values in CONTROL) to 377–397 mmHg (50.3–52.9 kPa) in PNEUMO (p < 0.05). Quasistatic compliance (Cqst, mL cmH2O?1 kg?1) was decreased from 0.85–0.92 in CONTROL to 0.52–0.58 in PNEUMO. PaO2 increased from 383–385 mmHg (51.1–51.3 kPa) in PNEUMO to 429–444 mmHg (57.2–59.2 kPa) in PNEUMOARM/PEEP (p < 0.05) and Cqst increased from 0.52–0.53 in PNEUMO to 0.70–0.74 in PNEUMOARM/PEEP. Abdominal deflation in PNEUMO did not restore PaO2 and Cqst to control values. Cardiac index (L minute?1 m2) decreased from 4.80–4.70 in CONTROL to 3.45–3.74 in PNEUMO and 3.63–3.76 in PNEUMOARM/PEEP. Compared with controls, ARM/PEEP with pneumoperitoneum decreased mean arterial pressure from 81 to 68 mmHg and increased mean pulmonary artery pressure from 10 to 16 mmHg.

Conclusions and clinical relevance

Abdominal deflation did not reverse the pulmonary function impairment associated with pneumoperitoneum. The ARM/PEEP improved respiratory compliance and reversed the oxygenation impairment induced by pneumoperitoneum with acceptable hemodynamic changes in healthy sheep.  相似文献   

13.
ObjectiveTo investigate the effects of methadone on the minimum alveolar concentration of isoflurane (ISOMAC) in dogs.Study designProspective, randomized cross-over experimental study.AnimalsSix adult mongrel dogs, four males and two females, weighing 22.8 ± 6.6 kg.MethodsAnimals were anesthetized with isoflurane and mechanically ventilated on three separate days, at least 1 week apart. Core temperature was maintained between 37.5 and 38.5 °C during ISOMAC determinations. On each study day, ISOMAC was determined using electrical stimulation of the antebrachium (50 V, 50 Hz, 10 mseconds) at 2.5 and 5 hours after intravenous injection of physiological saline (control) or one of two doses of methadone (0.5 or 1.0 mg kg?1).ResultsMean (±SD) ISOMAC in the control treatment was 1.19 ± 0.15% and 1.18 ± 0.15% at 2.5 and 5 hours, respectively. The 1.0 mg kg?1 dose of methadone reduced ISOMAC by 48% (2.5 hours) and by 30% (5 hours), whereas the 0.5 mg kg?1 dose caused smaller reductions in ISOMAC (35% and 15% reductions at 2.5 and 5 hours, respectively). Both doses of methadone decreased heart rate (HR), but the 1.0 mg kg?1 dose was associated with greater negative chronotropic actions (HR 37% lower than control) and mild metabolic acidosis at 2.5 hours. Mean arterial pressure increased in the MET1.0 treatment (13% higher than control) at 2.5 hours.Conclusions and clinical relevanceMethadone reduces ISOMAC in a dose-related fashion and this effect is lessened over time. Although the isoflurane sparing effect of the 0.5 mg kg?1 dose of methadone was smaller in comparison to the 1.0 mg kg?1 dose, the lower dose is recommended for clinical use because it results in less evidence of cardiovascular impairment.  相似文献   

14.
Objective: This paper characterizes the clinical findings in 5 cats with feline asthma complicated by concurrent pneumothorax. Design: Retrospective study. Medical records of cats with concurrent diagnoses of asthma and pneumothorax that were presented to the Veterinary Hospital of the University of Pennsylvania from 1990 to 2000 were reviewed. Results: Of 421 cases of feline asthma, 5 cats fulfilled the inclusion criteria (1.2%). All 5 had respiratory distress at presentation. One cat was panting, and the other 4 cats had respiratory rates of 28, 52, 58 and 120 breaths per minute (bpm), respectively (mean RR 65±39 bpm). Historical findings included untreated chronic cough (n=3), previously treated asthma (n=1), and no previous illness (n=1). Thoracocentesis was performed in 4/5 cats, and 3 of those cats required thoracostomy tubes. Four cats required immediate oxygen supplementation, and 1 of those cats required ventilation. All 5 cats had evidence of pneumothorax on initial radiographs. Follow‐up radiographs revealed partial or complete resolution of pneumothorax in 4 cats which were discharged alive with total hospitalization of 2–7 days, but were then lost to follow‐up. One cat was euthanized because it could not be weaned off mechanical ventilation, and necropsy confirmed end‐stage feline asthma and emphysema. Conclusion: Small airway obstruction can predispose asthma patients to increased alveolar pressure, emphysema, and spontaneous pneumothorax, which can lead to dyspnea in affected cats. The short‐term outcome in these cats was good despite the severity of dyspnea at presentation.  相似文献   

15.

Objective

To evaluate the effects of an alveolar recruitment maneuver (ARM) followed by 5 cmH2O positive end-expiratory pressure (PEEP) in dogs undergoing laparoscopy.

Study design

Prospective, randomized clinical study.

Animals

A group of 20 dogs undergoing laparoscopic ovariectomy.

Methods

Dogs were sedated with acepromazine and methadone intramuscularly; anesthesia was induced with propofol intravenously and maintained with inhaled isoflurane. The following baseline ventilatory setting (BVS) was administered: tidal volume of 12 mL kg–1, inspiratory to expiratory ratio of 1:2, inspiratory pause 25% of inspiratory time, no PEEP and a respiratory rate to maintain end-tidal carbon dioxide tension between 5.3 and 7.3 kPa. Then, 10 minutes after the pneumoperitoneum, 10 dogs (RM) underwent a sustained inflation ARM followed by BVS plus 5 cmH2O PEEP, while 10 dogs (NO-RM) were left with BVS throughout the procedure. Gas exchange and respiratory system mechanics were evaluated before the pneumoperitoneum (PPpre), before ARM (PP10), 30 minutes later (PP30) and 20 minutes after pneumoperitoneum discontinuation (PPpost20). Data were analyzed using anova (p < 0.05).

Results

The Fshunt at PP30 and PPpost20 was lower (p < 0.001) in the RM (2.3 ± 2.2 and 4.7 ± 3.7%) than in the NO-RM (5.2 ± 2.1 and 11.1 ± 5.2%), and PaO2 at PP30 and PPpost20 was higher (p < 0.001) in the RM (67.3 ± 4.2 and 60.1 ± 9.4 kPa) than in the NO-RM (50.2 ± 7.4 and 45.5 ± 11.1 kPa). Static compliance of the respiratory system at PP30 and PPpost20 was greater (p < 0.001) in the RM (2.4 ± 0.2 and 2.1 ± 0.4 mL cmH2O?1 kg–1) than in the NO-RM (0.9 ± 0.4 and 1.2 ± 0.2 mL cmH2O?1 kg–1).

Conclusions and clinical relevance

In dogs undergoing laparoscopy, ARM followed by 5 cmH2O PEEP improves gas exchange and respiratory system mechanics.  相似文献   

16.
OBJECTIVE: To determine the cardiopulmonary effects of desflurane (DES) in horses. ANIMALS: Six healthy adult horses, three males and three females, aged 9 +/- 4 (mean +/- SD) years and weighing 370 +/- 36 kg. MATERIALS AND METHODS: Anaesthesia was induced with an O2 (10 L minute(-1)) and DES mixture (vaporizer setting 18%). After oro-tracheal intubation, horses were positioned in right lateral recumbency. Anaesthesia was maintained with DES in O2 (20 mL kg(-1) minute(-1)) delivered through a large animal circle breathing system. The minimum alveolar concentration of DES (MAC(DES)) that prevented purposeful movement in response to 60 seconds of electrical stimulation of the oral mucous membranes was determined for each horse. The delivered concentration of DES was then increased to achieve end-tidal concentrations corresponding to 1.5 x MAC(DES), 1.75 x MAC(DES), and 2.0 x MAC(DES). Heart rate (HR), mean arterial blood pressure (MAP), respiratory rate (fr), tidal volume (VT), minute volume (VM) and core temperature were determined, and blood samples for arterial blood gas analysis taken at each DES concentration. All data were analysed by two-way anova for repeated measures and Fisher's test for multiple comparisons. A probability level of p < 0.05 was applied. RESULTS: Desflurane concentrations of 2.0 x MAC(DES) increased HR whereas lower concentrations did not. Mean arterial pressure was not affected by 1.0 x MAC(DES) 1.5 x MAC(DES) or 1.75 x MAC(DES), whereas it decreased at 2.0 x MAC(DES). All concentrations of DES examined significantly depressed fr, VT and VM. CONCLUSIONS AND CLINICAL RELEVANCE: Desflurane concentrations between 1.0 and 1.75 x MAC(DES) reduces fr and VM but does not affect HR or MAP in horses.  相似文献   

17.
ObjectiveTo test whether naltrexone, an opioid receptor antagonist, affects the minimum alveolar concentration (MAC) of isoflurane in cats, a species that is relatively resistant to the general anesthetic sparing effects of most opioids.Study designRandomized, crossover, placebo-controlled, blinded experimental design.AnimalsSix healthy adult cats weighing 4.9 ± 0.7 kg.MethodsThe cats were studied twice. In the first study, baseline isoflurane MAC was measured in duplicate. The drug (saline control or 0.6 mg kg?1 naltrexone) was administered IV every 40–60 minutes, and isoflurane MAC was re-measured. In the second study, cats received the second drug treatment using identical methods 2 weeks later.ResultsIsoflurane MAC was 2.03 ± 0.12% and was unchanged from baseline following saline or naltrexone administration.Conclusion and clinical relevanceMinimum alveolar concentration was unaffected by naltrexone. Because MAC in cats is unaffected by at least some mu-opioid agonists and antagonists, spinal neurons that are directly modulated by mu-opioid receptors in this species cannot be the neuroanatomic sites responsible for immobility from inhaled anesthetics.  相似文献   

18.
ObjectiveTo evaluate the effect of tramadol on sevoflurane minimum alveolar concentration (MACSEVO) in dogs. It was hypothesized that tramadol would dose-dependently decrease MACSEVO.Study designRandomized crossover experimental study.AnimalsSix healthy, adult female mixed-breed dogs (24.2 ± 2.6 kg).MethodsEach dog was studied on two occasions with a 7-day washout period. Anesthesia was induced using sevoflurane delivered via a mask. Baseline MAC (MACB) was determined starting 45 minutes after tracheal intubation. A noxious stimulus (50 V, 50 Hz, 10 ms) was applied subcutaneously over the mid-humeral area. If purposeful movement occurred, the end-tidal sevoflurane was increased by 0.1%; otherwise, it was decreased by 0.1%, and the stimulus was re-applied after a 20-minute equilibration. After MACB determination, dogs randomly received a tramadol loading dose of either 1.5 mg kg?1 followed by a continuous rate infusion (CRI) of 1.3 mg kg?1 hour?1 (T1) or 3 mg kg?1 followed by a 2.6 mg kg?1 hour?1 CRI (T2). Post-treatment MAC determination (MACT) began 45 minutes after starting the CRI. Data were analyzed using a mixed model anova to determine the effect of treatment on percentage change in baseline MACSEVO (p < 0.05).ResultsThe MACB values were 1.80 ± 0.3 and 1.75 ± 0.2 for T1 and T2, respectively, and did not differ significantly. MACT decreased by 26 ± 8% for T1 and 36 ± 12% for T2. However, there was no statistically significant difference in the decrease between the two treatments.Conclusion and clinical relevanceTramadol significantly reduced MACSEVO but this was not dose dependent at the doses studied.  相似文献   

19.

Objective

To characterize the isoflurane-sparing effects of a high and a low dose of fentanyl in dogs, and its effects on mean arterial pressure (MAP) and heart rate (HR).

Study design

Prospective, randomized crossover trial.

Animals

Eight healthy male Beagle dogs weighing 12.1 ± 1.6 kg [mean ± standard deviation (SD)] and approximate age 1 year.

Methods

Dogs were anesthetized using isoflurane and minimum alveolar concentration (MAC) was determined in duplicate by the bracketing method using an electrical stimulus on the tarsus. Animals were administered fentanyl: low dose (33 μg kg?1 loading dose, 0.2 μg kg?1 minute?1) or high dose (102 μg kg?1 loading dose, 0.8 μg kg?1 minute?1) and MAC was re-determined (MACISO-F). Blood was collected for analysis of plasma fentanyl concentrations before administration and after MACISO-F determination. All values are presented as mean ± SD.

Results

Isoflurane MAC (MACISO) was 1.30 ± 0.23% in the low dose treatment, which significantly decreased to 0.75 ± 0.22% (average MAC reduction 42.3 ± 9.4%). MACISO was 1.30 ± 0.18% in the high dose treatment, which significantly decreased to 0.30 ± 0.11% (average MAC reduction 76.9 ± 7.4%). Mean fentanyl plasma concentrations were 6.2 and 29.5 ng mL?1 for low and high dose treatments, respectively. MAP increased significantly only in the high dose treatment (from 81 ± 8 to 92 ± 9 mmHg). HR decreased significantly in both treatments from 108 ± 25 to 61 ± 14 beats minute?1 with the low dose and from 95 ± 14 to 42 ± 4 beats minute?1 with the high dose.

Conclusions and clinical relevance

Fentanyl administration resulted in a dose-dependent isoflurane MAC-sparing effect with bradycardia at both doses and an increase in MAP only at high dose. Further evaluation is needed to determine the effects of fentanyl on the overall cardiovascular function.  相似文献   

20.
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号