首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
2.
The influence of a high-protein [HP, 47% of metabolizable energy (ME)] diet on energy balance was evaluated in obese cats allowed ad libitum access to food. Energy intake, body weight, body composition, energy expenditure, and concentrations of hormones and metabolites associated with carbohydrate and lipid metabolism (glucose, insulin, free fatty acids, triglycerides and leptin) were measured in cats after consuming either a moderate protein (MP, 27% of ME) or HP diet for 4 months. Indirect respiration calorimetry showed that resting and total energy expenditure (kJ/day) adjusted for either body weight or lean body mass was increased in cats consuming the HP in relation to MP diets. However, voluntary energy intake also was increased in the HP treatment and, thus, there was no difference in body weight between animals consuming the two diets. Body composition measurements using deuterium oxide dilution showed that dietary protein content did not alter amounts of either lean body mass or fat mass. No significant differences (p > 0.05) were observed between the two treatment groups for blood glucose, free fatty acid or leptin concentrations, although there was a trend (p = 0.054) towards an increase of serum insulin concentrations in the cats eating the HP diet. This study showed that short-term ad libitum feeding of an HP diet did not reduce food intake or promote weight loss in obese cats. However, energy expenditure was increased in the HP diet group and it is possible that this effect of HP might help promote weight loss when energy intake is restricted.  相似文献   

3.
The effects of adding beet pulp or wheat bran to urea‐treated potato pulp (PP) in order to reduce moisture of PP silage and flake density of corn grain on digestibility and ruminal fermentation in beef steers were studied in a split‐plot design experiment. The whole‐plot treatments were PP silage mixed with 0% added pellets (CON), 9% (as‐fed basis) beet pulp pellets (BP) or 9% (as‐fed basis) wheat bran pellets (WB) as water‐absorbing materials. The subplot treatments consisted of supplements formulated to contain either high‐density corn (HDC) or low‐density corn (LDC). BP steers consumed more (BP vs WB, P = 0.011) concentrate than did WB steers, whereas hay intake did not differ between the treatments. Dry matter (BP vs WB, P = 0.023) and organic matter (BP vs WB, P = 0.029) digestibility were higher for BP steers than for WB steers. Starch digestibility was higher (P = 0.006) for LDC than for HDC. There were no differences in the concentration of ruminal ammonia nitrogen among the treatments. Molar proportions of ruminal acetate were higher for BP steers than for WB steers (BP vs WB, P = 0.030). Conversely, molar proportions of propionate were lower for BP steers than for WB steers (BP vs WB, P = 0.044). Flake density of corn did not affect ruminal characteristics. In conclusion, from the viewpoint of feed intake and digestibility, BP is superior to WB as a moisture control material for urea‐treated PP silage, and flake density of corn supplemented with urea‐treated PP silage does not alter ruminal fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号