首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
beta-Galactosidase (beta-D-galactosidase galactohydrolase, EC 3.2.1. 23) isolated and purified from gram chicken bean was immobilized on cross-linked polyacrylamide gel. The activity yield was high and attained up to 72%. Compared with the free enzyme, the immobilized enzyme had a wider operational pH range and better thermal stability. Lyophilized pieces exhibited good stability when stored at room temperature for 60 days and a favorable operational stability when used eight times repeatedly without loss of enzymatic activity under the same conditions. Kinetic data (K(m), V(m), and E(a)) for the free and the immobilized enzymes were determined using O-nitrophenyl-beta-D-galactoside (ONPG) and lactose as substrates. The result of time courses of hydrolysis of lactose showed that beta-galactosidase from the plant gram chicken bean would have a promising application in the hydrolysis of lactose in milk.  相似文献   

2.
The hyphomycete Chalara paradoxa CH32 produced an extracellular beta-glucosidase during the trophophase. The enzyme was purified to homogeneity by ion-exchange and size-exclusion chromatography. The purified enzyme had an estimated molecular mass of 170 kDa by size-exclusion chromatography and 167 kDa by SDS-PAGE. The enzyme had maximum activity at pH 4.0-5.0 and 45 degrees C. The enzyme was inactivated at 60 degrees C. At room temperature, it was unstable at acidic pH, but it was stable to alkaline pH. The purified enzyme was inhibited markedly by Hg(2+) and Ag(2+) and also to some extent by the detergents SDS, Tween 80, and Triton X-100 at 0.1%. Enzyme activity increased by 3-fold in the presence of 20% ethanol and to a lesser extent by other organic solvents. Purified beta-glucosidase was active against cellobiose and p-nitrophenyl-beta-D-glucopyranoside but did not hydrolyze lactose, maltose, sucrose, cellulosic substrates, or galactopyranoside, mannopyranoside, or xyloside derivatives of p-nitrophenol. The V(max) of the enzyme for p-NPG (K(m) = 0.52 mM) and cellobiose (K(m) = 0.58 mM) were 294 and 288.7 units/mg, respectively. Hydrolysis of pNPG was inhibited competitively by glucose (K(i) = 11.02 mM). Release of reducing sugars from carboxymethylcellulose by a purified endoglucanase produced by the same organism increased markedly in the presence of beta-glucosidase.  相似文献   

3.
The purification and characterization of a novel extracellular beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila J18 were studied. The strain produced the maximum level of extracellular beta-glucanase (135.6 U mL(-1)) when grown in a medium containing corncob (5%, w/v) at 50 degrees C for 4 days. The crude enzyme solution was purified by 122.5-fold with an apparent homogeneity and a recovery yield of 8.9%. The purified enzyme showed as a single protein band on SDS-PAGE with a molecular mass of 38.6 kDa. The molecular masses were 34.6 kDa and 31692.9 Da when detected by gel filtration and mass spectrometry, respectively, suggesting that it is a monomeric protein. The enzyme was a glycoprotein with a carbohydrate content of 19.0% (w/w). Its N-terminal sequence of 10 amino acid residues was determined as H2N-A(?)GYVSNIVVN. The purified enzyme was optimally active at pH 7.0 and 70 degrees C. It was stable within pH range 4.0-10.0 and up to 65 degrees C, respectively. Substrate specificity studies revealed that the enzyme is a true beta-1,3-1,4-D-glucanase. The K m values determined for barley beta-D-glucan and lichenan were 2.46 and 1.82 mg mL(-1), respectively. The enzyme hydrolyzed barley beta-D-glucan and lichenan to yield bisaccharide, trisaccharide, and tetrasaccharide as the main products. Circular dichroism studies indicated that the protein contains 28% alpha-helix, 24% beta-sheet, and 48% random coil. Circular dichroism spectroscopy is also used to investigate the thermostability of the purified enzyme. This is the first report on the purification and characterization of a beta-1,3-1,4-glucanase from Paecilomyces sp. These properties make the enzyme highly suitable for industrial applications.  相似文献   

4.
The DNA encoding chicken lung cystatin was ligated into a thioredoxin-pET 23a+ expression vector and transformed into Escherichia coli AD494(DE3)pLysS. A high level of soluble recombinant thioredoxin-cystatin (trx-cystatin) was expressed in the cytoplasm of the E. coli transformant. As compared with recombinant cystatin (trx-free), a 38.7% increase of inhibitory activity in the soluble fraction was achieved by introducing the trx fusion protein. Trx-cystatin was purified to electrophoretical homogeneity by 3 min of heating at 90 degrees C and Sephacryl S-100 chromatography. The molecular mass of trx-cystatin was 29 kDa, which was the expected size based on its composition of recombinant trx (16 kDa) and chicken cystatin (13 kDa). The purified trx-cystatin behaved as a thermally stable and papain-like proteinase inhibitor comparable to either recombinant or natural chicken cystatins. The inhibitor could inhibit the gel softening of mackerel surimi.  相似文献   

5.
Phenyllactic acid (PLA) is a novel antimicrobial compound synthesized by lactic acid bacteria (LAB), and its production from phenylpyruvic acid (PPA) is an effective approach. In this work, a lactate dehydrogenase (LDH), which catalyzes the reduction of PPA to PLA, has been purified to homogeneity from a cell-free extract of Lactobacillus sp. SK007 by precipitation with ammonium sulfate, ion exchange, and gel filtration chromatography. The purified enzyme had a dimeric form with a molecular mass of 78 kDa (size exclusion chromatography) or 39 kDa (SDS-PAGE). The ratio of enzyme activity with PPA to that with pyruvate being almost invariable at every purification step indicated that, in Lactobacillus sp. SK007, LDH is responsible for the conversion of PPA into PLA. HPLC profiles of PPA transformation into PLA by growing cells, cell-free extract, and purified LDH of Lactobacillus sp. SK007 were also investigated. Results showed that the presence of NADH was found to be necessary for the enzymatic production of PLA from PPA. The purified LDH displayed optimal activity for PPA at pH 6.0 and 40 degrees C. The Km values of the enzyme for PPA and pyruvate were 1.69 and 0.32 mM, respectively. Moreover, because other screened LAB strains exhibiting relatively high LDH activity toward PPA produced also considerable amounts of PLA, LDH activity for PPA could be therefore used as a screening marker for PLA-producing LAB.  相似文献   

6.
To characterize the alginate lyase produced by rhizosphere Streptomyces, Streptomyces sp. A5 was isolated from banana rhizosphere, and its extracellular lyase was purified to an electrophoretically homogeneous state. The lyase has a molecular mass of 32 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimum temperature and pH were 37 degrees C and pH 7.5, respectively. Ninety-two percent of the activity was lost after incubation at 70 degrees C and pH 7.5 for 20 min. The enzyme was inhibited by 0.05 M SDS and 2 mM Hg2+, Cu2+, and Fe3+, but EDTA enhanced the enzyme activity. The Km value of the lyase was 0.13 mg mL-1 with the substrate sodium alginate. The lyase had substrate specificity for polyguluronate units in the alginate molecules. The alginate oligomers prepared by the lyase show growth-promoting activity on the roots of banana plantlets. These results indicated that the encapsulation method using alginate microbeads to inoculate beneficial streptomycete strains might be beneficial to the root growth of banana plantlets.  相似文献   

7.
A chitosanolytic enzyme was purified from a commercial ficin preparation by affinity chromatographic removal of cysteine protease on pHMB-Sepharose 4B and cystatin-Sepharose 4B and gel filtration on Superdex 75 HR. The purified enzyme exhibited both chitinase and chitosanase activities, as determined by SDS-PAGE and gel activity staining. The optimal pH for chitosan hydrolysis was 4.5, whereas the optimal temperature was 65 degrees C. The enzyme was thermostable, as it retained almost all of its activity after incubation at 70 degrees C for 30 min. A protein oxidizing agent, N-bromosuccinimide (0.25 mM), significantly inhibited the enzyme's activity. The molecular mass of the enzyme was 16.6 kDa, as estimated by gel filtration. The enzyme showed activity toward chitosan polymers exhibiting various degrees of deacetylation (22-94%), most effectively hydrolyzing chitosan polymers that were 52-70% deacetylated. The end products of the hydrolysis catalyzed by this enzyme were low molecular weight chitosan polymers and oligomers (11.2-0.7 kDa).  相似文献   

8.
Cathepsin L in silver carp musle was purified to 48.4-fold by acid-heat treatment and ammonium sulfate fractionation, followed by a series of chromatographic separations. The molecular mass of the purified enzyme was 30 kDa determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme was activated by dithiothreitol and cysteine while it was substantially inhibited by E-64 and insensitive to PMSF and pepstatin A, suggesting that the purified enzyme belongs to a family of cysteine proteinase. Consistent with this conclusion, Zn2+, Cu2+, Co2+, Ni2+, and Fe2+ could strongly inhibit the activity of this enzyme. The optimal pH and temperature were 5.0 and 55 degrees C, respectively. The enzyme catalyzed the hydrolysis of Z-Phe-Arg-MCA with a parameter of K(m) (8.27 microM) and K(cat) (28.7 s(-1)) but hardly hydrolyzed Z-Arg-Arg-MCA, Arg-MCA, and Boc-Val-Leu-Lys-MCA. The microstructure analysis by scanning electron microscopy showed that this proteinase is capable of destroying the network structure of silver carp surimi gels. The enzyme exhibited a higher hydrolytic activity on surimi protein at 65 degrees C than at 40 degrees C.  相似文献   

9.
Production, purification, and characterization of a novel β-1,3-1,4-glucanase (lichenase) from thermophilic Rhizomucor miehei CAU432 were investigated. High-level extracellular β-1,3-1,4-glucanase production of 6230 U/mL was obtained when oat flour (3%, w/v) was used as a carbon source at 50 °C. The crude enzyme was purified to homogeneity with a specific activity of 28818 U/mg. The molecular weight of purified enzyme was estimated to be 35.4 kDa and 33.7 kDa by SDS-PAGE and gel filtration, respectively. The optimal pH and temperature of the enzyme were pH 5.5 and 60 °C, respectively. The K(m) values of purified β-1,3-1,4-glucanase for barley β-glucan and lichenan were 2.0 mM and 1.4 mM, respectively. Furthermore, the gene (RmLic16A) encoding the β-1,3-1,4-glucanase was cloned and its deduced amino acid sequence showed the highest identity (50%) to characterized β-1,3-1,4-glucanase from Paecilomyces thermophila. The high-level production and biochemical properties of the enzyme enable its potential industrial applications.  相似文献   

10.
Polyphenol oxidase (PPO) was purified and characterized from Chinese cabbage by ammonium sulfate precipitation and DEAE-Toyopearl 650M column chromatography. Substrate staining of the crude protein extract showed the presence of three isozymic forms of this enzyme. The molecular weight of the purified enzyme was estimated to be approximately 65 kDa by gel filtration on Toyopearl HW-55F. On SDS-PAGE analysis, this enzyme was composed of a subunit molecular weight of 65 kDa. The optimum pH was 5.0, and this enzyme was stable at pH 6.0 but was unstable below pH 4.0 or above pH 7.0. The optimum temperature was 40 degrees C. Heat inactivation studies showed temperatures >40 degrees C resulted in loss of enzyme activity. PPO showed activity to catechol, pyrogallol, and dopamine (K(m) and V(max) values were 682.5 mM and 67.6 OD/min for catechol, 15.4 mM and 14.1 OD/min for pyrogallol, and 62.0 mM and 14.9 OD/min for dopamine, respectively). The most effective inhibitor was 2-mercaptoethanol, followed in decreasing order by ascorbic acid, glutathione, and L-cysteine. The enzyme activity of the preparation was maintained for 2 days at 4 degrees C but showed a sudden decreased after 3 days.  相似文献   

11.
Two proteinaceous invertase inhibitors, designated ITI-L and ITI-R, were purified to electrophoretic homogeneity. ITI-L was purified from acetone powder of sweet potato leaves through sequential steps entailing buffer extraction, acid treatment, DEAE-Sephacel ion-exchange chromatography, and Sephacryl S-100 gel filtration. ITI-R was purified from sweet potato tuberous roots by sequentially applying buffer extraction, Con A-Sepharose affinity chromatography, DEAE-Sephacel ion-exchange chromatography, Sephacryl S-200, and Superose 12 gel filtration. The optimal pHs for interaction between ITI-L and ITI-R and acid invertase from sweet potato leaves were 5.5 and 5.0, respectively. The molecular masses of ITI-L and ITI-R were 10 and 22 kDa, respectively, as estimated by both gel filtration and SDS-PAGE. Both inhibitors were thermostable (90% of the activity remained after incubation at 100 degrees C for 20 min), and Western blotting showed them to be immunologically related.  相似文献   

12.
Trypsin from the pyloric ceca of Atlantic bonito (Sarda sarda) was purified and characterized with respect to its purity; molecular weight; sensitivity to temperature, pH, and inhibition; and N-terminal sequence. The purified trypsin had a molecular weight of 29 kDa as per sodium dodecyl sulfate polyacrylamide gel electrophoresis, and optimal activity was observed at pH 9 and 65 degrees C with BAPNA as a substrate. The enzyme was stable to heat treatment up to 50 degrees C and within the pH range of 7-12. It was stabilized by calcium ions, but its activity was strongly inhibited by soybean trypsin inhibitor, N-p-tosyl-L-lysine chloromethyl ketone, and phenyl methyl sulfonyl fluoride. The enzyme exhibited a progressive decrease in activity with increasing NaCl concentration (0-30%). The N-terminal 20 amino acid residues of Atlantic bonito trypsin were determined as IVGGYECQAHSQPWQPVLNS and were homologous with other trypsins.  相似文献   

13.
For the production of oligosaccharides from chitosan, a chitosanase-producing bacterium, S65, was isolated from soil. On the basis of phylogenetic analysis of the 16S rDNA gene sequence and phenotypic analysis, S65 was identified as a Bacillus sp. strain. This bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. S65 chitosanase was homogeneously purified by DEAE Sepharose fast flow anion exchange followed by Superdex 75 size exclusion, and the molecular weight was 45 kDa according to SDS-PAGE. Enzyme analysis showed that the optimum pH and temperature of S65 were 6.0 and 65 degrees C, respectively. Catalytic activity was stable from pH 5.5-6.5 at temperatures below 40 degrees C, and the pI of chitosanase was about 6.0 as determined by a test tube method. S65 chitosanase degraded carboxymethyl cellulose (CMC) at the degree of about 5.3% relative to the value of soluble chitosan, but it cannot hydrolyze colloidal chitin and crystalline cellulose. Gene encoding was cloned and sequenced. The deduced amino acid sequence of the S65 exhibited the highest homology to those of family 8 glycanase, suggesting that the enzyme belonged to family 8.  相似文献   

14.
Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.  相似文献   

15.
The gene encoding pyrethroid-hydrolyzing esterase (EstP) from Klebsiella sp. strain ZD112 was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the estP gene revealed an open reading frame of 1914 bp encoding for a protein of 637 amino acid residues. No similarities were found by a database homology search using the nucleotide and deduced amino acid sequences of the esterases and lipases. EstP was heterologously expressed in E. coli and purified. The molecular mass of the native enzyme was approximately 73 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of EstP indicated molecular masses of 73 and 73.5 kDa, respectively, suggesting that EstP is a monomer. The purified EstP not only degraded many pyrethroid pesticides and the organophosphorus insecticide malathion, but also hydrolyzed rho-nitrophenyl esters of various fatty acids, indicating that EstP is an esterase with broad substrates. The K(m) for trans- and cis-permethrin and k(cat)/K(m) values indicate that EstP hydrolyzes both these substrates with higher efficiency than the carboxylesterases from resistant insects and mammals. The catalytic activity of EstP was strongly inhibited by Hg2+, Ag+, and rho-chloromercuribenzoate, whereas a less pronounced effect (3-8% inhibition) was observed in the presence of divalent cations, the chelating agent EDTA, and phenanthroline.  相似文献   

16.
A chitinase cDNA clone (CpCHI, 1002 bp) was isolated from papaya fruit, which encoded a 275 amino acid protein containing a 28 amino acid signal peptide in the N-terminal end. The predicted molecular mass of the mature protein was 26.2 kDa, and its pI value was 6.32. On the basis of its amino acid sequence homology with other plant chitinases, it was classified as a class IV chitinase. An active recombinant CpCHI enzyme was overexpressed in Escherichia coli. The purified recombinant papaya chitinase showed an optimal reaction temperature at 30 degrees C and a broad optimal pH ranging from 5.0 to 9.0. The recombinant enzyme was quite stable, retaining >64% activity for 3 weeks at 30 degrees C. The spore germination of Alternaria brassicicola could be completely inhibited by a 76 nM level of recombinant CpCHI. Recombinant CpCHI also showed antibacterial activity in which 50% of E. coli was inhibited by a 2.5 microM concentration of the enzyme.  相似文献   

17.
A hydrolase with chitinase and chitosanase activity was purified from commercial stem bromelain through sequential steps of SP-Sepharose ion-exchange adsorption, HiLoad Superdex 75 gel filtration, HiLoad Q Sepharose ion-exchange chromatography, and Superdex 75 HR gel filtration. The purified hydrolase was homogeneous, as examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited chitinase activity for hydrolysis of glycol chitin and 4-methylumbelliferyl beta-D-N,N',N' '-triacetylchitotrioside [4-MU-beta-(GlcNAc)(3)] and chitosanase activity for chitosan hydrolysis. For glycol chitin hydrolysis, the enzyme had an optimal pH of 4, an optimal temperature of 60 degrees C, and a K(m) of 0.2 mg/mL. For the 4-MU-beta-(GlcNAc)(3) hydrolysis, the enzyme had an optimal pH of 4 and an optimal temperature of 50 degrees C. For the chitosan hydrolysis, the enzyme had an optimal pH of 3, an optimal temperature of 50 degrees C, and a K(m) of 0.88 mg/mL. For hydrolysis of chitosans with various N-acetyl contents, the enzyme degraded 30-80% deacetylated chitosan most effectively. The enzyme split chitin or chitosan in an endo-manner. The molecular mass of the enzyme estimated by gel filtration was 31.4 kDa, and the isoelectric point estimated by isoelectric focusing electrophoresis was 5.9. Heavy metal ions of Hg(2+) and Ag(+), p-hydroxymercuribenzoic acid, and N-bromosuccinimide significantly inhibited the enzyme activity.  相似文献   

18.
The purification and characterization of a novel extracellular beta-glucosidase from Paecilomyces thermophila J18 was studied. The beta-glucosidase was purified to 105-fold apparent homogeneity with a recovery yield of 21.7% by DEAE 52 and Sephacryl S-200 chromatographies. Its molecular masses were 116 and 197 kDa when detected by SDS-PAGE and gel filtration, respectively. It was a homodimeric glycoprotein with a carbohydrate content of 82.3%. The purified enzyme exhibited an optimal activity at 75 degrees C and pH 6.2. It was stable up to 65 degrees C and in the pH range of 5.0-8.5. The enzyme exhibited a broad substrate specificity and significantly hydrolyzed p-nitrophenyl-beta- d-glucopyranoside ( pNPG), cellobiose, gentiobiose, sophorose, amygdalin, salicin, daidzin, and genistin. Moreover, it displayed substantial activity on beta-glucans such as laminarin and lichenan, indicating that the enzyme has some exoglucanase activity. The rate of glucose released by the purified enzyme from cellooligosaccharides with a degree of polymerization (DP) ranging between 2 and 5 decreased with increasing chain length. Glucose and glucono-delta-lactone inhibited the beta-glucosidase competitively with Ki values of 73 and 0.49 mM, respectively. The beta-glucosidase hydrolyzed pNPG, cellobiose, gentiobiose, sophorose, salicin, and amygdalin, exhibiting apparent Km values of 0.26, 0.65, 0.77, 1.06, 1.39, and 1.45 mM, respectively. Besides, the enzyme showed transglycosylation activity, producing oligosaccharides with higher DP than the substrates when cellooligosaccharides were hydrolyzed. These properties make this beta-glucosidase useful for various biotechnological applications.  相似文献   

19.
Three turnip peroxidases (fractions C1, C2, and C3) were partially purified and characterized, to permit study of their feasibility for use in clinical and enzyme immunoassays. These fractions represented 20% of the initial activity, and fractions C1 and C2 were purified to homogeneity. The optimum pH was between 5.0 and 5.5, while optimum temperature ranged from 40 to 55 degrees C. The ABTS K(m) values for the two acidic fractions (C2 and C3) were 0.70 and 0.42 mM, respectively; about 5 times lower than that reported for the acidic commercial horseradish peroxidase (HRP). Fraction C3 had 4 times higher K(m) value than commercial cationic HRP. The molecular weights determined by SDS-PAGE ranged from 39.2 to 42.5 kDa. Activation energies for inactivation were 113 (C1), 130 (C2), and 172 kJ/mol (C3) which are higher or comparable to other peroxidase isoenzymes reported. Fractions C1 and C3 represent an alternative source of peroxidase because of their higher purification yield and specific activity, when compared to fraction C2.  相似文献   

20.
A DNA encoding thioredoxin-mature carp ovarian cystatin (trx-cystatin) fusion protein was ligated into a pET-23a(+) expression vector and then transformed into Escherichia coli AD494(DE3) expression host. After induction by isopropyl beta-D-thiogalactopyranoside, a high level of the soluble form of recombinant trx-cystatin was expressed in the cytoplasm of E. coli. The recombinant trx-cystatin could be purified by Ni(2+)-NTA agarose affinity chromatography. The molecular mass (M) of the recombinant trx-cystatin was approximately 28 kDa composed of recombinant thioredoxin (16 kDa) and recombinant mature carp ovarian cystatin (12 kDa). Both recombinant trx-fused and mature carp ovarian cystatins were stable at pH 6-11. No obvious decrease in activity was observed even after 5 min of incubation at 60 degrees C. They exhibited papain-like protease inhibition activity comparable to that of the mature carp ovarian cystatin, which could inhibit papain and mackerel cathepsins L and L-like, but not cathepsin B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号