首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
农业活动所产生的温室气体在全球温室气体排放中所占比重较大,对气候变化的影响不可忽视。探索减少农田系统中温室气体(GHGs)释放的方法,是实现“双碳”战略目标的必要手段。本文综述了当前主流的气候变化模型、农田GHGs释放机理,进而剖析了气候变化对农田GHGs释放的影响以及相关模型研究。研究表明,大气温度(T)和CO2浓度升高都会影响微生物的呼吸作用及活性导致农田GHGs释放量增加。为减少气候变化对农田GHGs释放的影响,可通过改变农艺措施(如覆膜、干湿交替灌溉频率、耕作方式等)以减少农田GHGs释放。本研究可为减少农田GHGs释放提供指导性建议。  相似文献   

2.
生物质炭添加对农田温室气体净排放的影响综述   总被引:8,自引:1,他引:8  
农田是温室气体的重要排放源,降低农田温室气体排放对减缓全球气候变化具有重要意义。生物质炭是生物质在缺氧条件下热解产生的固体物质,因其含碳量高、难于分解、比表面积大、疏松多孔等特性,已成为农田温室气体减排研究中人们关注和研究的热点。通过综述农田添加生物质炭对温室气体CO2、CH4和N2O排放的影响及其机制,以及对温室气体净排放[包括净增温潜势(NGWP)、温室气体净排放(NGHGE)和温室气体排放强度(GHGI)]的影响等方面的国内外研究进展,并结合目前国内外生物质炭的研究现状,提出了未来生物质炭在农田温室气体减排领域的研究方向,旨在为生物质炭在农田温室气体减排中的应用提供思路和参考。  相似文献   

3.
氧化亚氮是大气温室效应气体之一。本文概括论述影响农田土壤N_2O排放的氧气、温度、土壤湿度和水分、有机质、土壤pH、微生物、土壤质地以及施肥等因素。  相似文献   

4.
综述了影响农田N2O排放的主要因素,提出了符合中国特点的农田N2O减排策略,并展望了未来农田N2O排放的研究重点。  相似文献   

5.
采用田间试验方法研究了西北干旱半干旱地区覆膜和种植措施对农田土壤中N2O排放通量变化的影响。结果表明,在冬小麦生长期内,覆膜与不覆膜措施相比较,无论种植小麦与否,土壤中N2O的排放通量显著增加;种植小麦与休闲地相比较,无论覆膜与否,土壤中N2O的排放通量也显著增加。  相似文献   

6.
覆盖种植措施对农田土壤中N_2O排放的影响   总被引:6,自引:0,他引:6  
采用田间试验方法研究了西北干旱半干旱地区覆膜和种植措施对农田土壤中N2O排放通量变化的影响。结果表明,在冬小麦生长期内,覆膜与不覆膜措施相比较,无论种植小麦与否,土壤中N2O的排放通量显著增加;种植小麦与休闲地相比较,无论覆膜与否,土壤中N2O的排放通量也显著增加。  相似文献   

7.
DNDC模型对北京旱地农田N_2O排放的模拟对比分析   总被引:11,自引:0,他引:11  
通过DNDC(Version 77)模型和田间原位观测,对北京地区大豆农田的N2O排放特征进行了模拟与对比分析。结果表明,DNDC模型能较好地模拟田间实测到的大豆生长期内N2O排放通量、气温和土壤地表温度的变化和N2O排放对每日降水的响应。但模型还存在一些问题:对于干旱期和非农业活动期农田的N2O排放反应灵敏度不够,模型低估了干旱期和非农业活动期农田的N2O排放通量。总的来说,在以生长期为时间尺度的计算上,模拟和实测值总量相差不大,在将来北京地区旱地农田N2O排放量估算上有很强的应用价值。为了进一步确定影响大豆生长期内N2O排放的主要因子,本文还进行了敏感性实验分析。结果表明,在一定范围内,在其他条件不变的情况下,N2O-N排放模拟值对土壤初始表面有机碳含量的变化较为敏感,随着土壤初始表面有机碳含量的增加,N2O-N排放模拟值也随着线性增加;另外,N2O-N排放模拟值对降雨中N素的含量变化也较为敏感,随着降雨中N素的含量的升高,N2O-N排放模拟值也随着非线性增加。  相似文献   

8.
为探究硝化抑制剂双氰胺和生物炭对菜地土壤N_2O和CO_2排放的影响,采用室内静态培养的方式测定相同氮肥用量下菜地土壤添加双氰胺和生物炭后N_2O和CO_2的排放通量和累积排放量。结果表明,氮肥处理的N_2O累积排放量较控制处理(CK)提高了14倍,达1 192.03 ng/m~2;双氰胺和生物炭处理的N_2O累积排放量分别为100.15,387.79 ng/m~2,较氮肥处理分别降低了91.6%和67.5%。硝化抑制剂对CO_2也有减排作用,其CO_2累积排放量为238.47μg/m~2,较氮肥处理降低56.4%;而生物炭处理的CO_2累积排放量较氮肥处理增加了46.2%。综上所述,氮肥的施用显著提高了土壤N_2O和CO_2的排放通量和累积排放量;双氰胺可有效降低因氮肥施用导致的土壤N_2O和CO_2的排放;生物炭对N_2O排放有一定的减排作用,但会促进土壤CO_2的排放。  相似文献   

9.
垃圾堆肥及其复合肥对农田土壤N_2O排放的影响   总被引:2,自引:0,他引:2  
设置不同肥料处理小区,并将同一施肥处理分为秸秆覆盖与无覆盖两部分,种植玉米,应用静态箱-气相色谱分析技术,研究了不同施肥处理对农田土壤N2O通量的影响,并分析了土壤水分对土壤N2O通量的影响.结果表明,玉米田土壤N2O排放具有明显的季节变化,苗期玉米田土壤的排放高峰主要是施肥的原因.不同施肥处理之间土壤N2O通量的差异主要表现在苗期堆肥处理和复合肥处理的土壤N2O平均通量分别为42.3和21.9μg N·m-2·h-1;抽穗期土壤N2O通量增大是由于受降水影响.玉米生长季节内,垃圾堆肥处理的土壤N2O平均通量大于复合肥处理;与对照相比,施用垃圾堆肥及其复合肥使农田土壤的N2O通量增加,其土壤N2O平均通量分别是对照的1.9倍和1.5倍;与无秸秆覆盖相比,秸秆覆盖使土壤N2O排放通量增大.  相似文献   

10.
干旱、半干旱和地中海气候区,乃至一些湿润地区,由干湿交替引起的土壤碳、氮的短暂脉冲式释放很大程度上决定着长时间尺度温室气体释放的总量,是土壤碳、氮温室气体释放的关键过程.选择我国降雨梯度下的森林、农田、草地和荒漠生态系统,采集土样进行实验室统一控制条件下的多重干湿交替循环,对比探讨不同生态系统土壤干湿交替频率对CO2和N2O释放的影响模式.结果表明:(1)干湿交替能够显著的激发土壤中CO2和N2O的释放,森林、农田、草地和荒漠土壤CO2和N2O释放速率对干湿交替的响应模式基本一致,其响应强度与土壤本底中碳和氮的含量有关;(2)在一定培养时间内,随着干湿交替频率的增加,土壤再湿润阶段CO2释放速率降低,但是,气体释放的总量较之于恒湿对照组有所增加.(3)不同土壤N2O的释放总量对于湿交替频率的响应模式表现出很大的差异,其中农田和荒漠土壤响应模式类似.  相似文献   

11.
水热条件对黄土性小麦田N_2O排放特征的影响   总被引:2,自引:1,他引:2  
以西北地区黄土性冬小麦田为研究对象,观察分析了不同年份小麦在不同生长期、不同水热条件下,各耕层土壤N2O排放的特征.结果表明,降雨和气温与N2O排放通量存在相关性,二者的共同作用引起年际间土壤N2O排放量的差异,而温度效应更大.小麦生长季节大田土壤N2O排放通量的变化与土壤10~20 cm深处温度有显著线性相关,但在孕穗期至开花期,N2O排放通量与土壤温度相关性不明显,其排放通量的升高主要受控于作物根系活动.在适宜土壤含水量范围内,土壤水分增加对土壤N2O排放具有正效应,但与耕层水分相关性未达显著.值得注意的是在干旱缺水条件下土壤N2O排放通量与NH^+4-N含量大小间呈极显著相关.  相似文献   

12.
为区分植物在土壤-植物系统N2O排放中的贡献,用封闭式箱法对田间栽培的大豆植株及土壤、大豆植株-土壤系统的N2O排放进行了测定,同时对影响N2O的排放的因素进行了分析。观测结果表明:田间栽培的大豆的N2O排放通量昼间变化模式是10∶30有一个排放高峰,153∶0有一个排放低谷,甚至表现为可吸收大气中的N2O;在生育期内,大豆植株有两个释放高峰,分别位于6月下旬和8月中旬。从6月下旬至8月末,大豆对土壤-植物系统N2O排放的贡献率约为25%~57%。大豆植株、大豆植株-土壤系统N2O排放通量与温度有一定的相关性,相关系数r2分别为0.4954和0.5357,大豆N2O的排放通量同光合速率有一定的相关性(r2=0.5944)。  相似文献   

13.
土壤质地及环境因子对农田N_2O排放的影响   总被引:1,自引:2,他引:1  
[目的]研究土壤质地与环境因素对N2O排放通量的影响情况。[方法]采用实验室培养法,设4种土壤质地,8个土壤深度梯度(5~40 cm),6个温度梯度(10~35℃)、5个湿度含水量等进行试验研究。[结果]相同培养条件下,粘土类N2O排放通量高于粘壤土和粘砂质壤土,最低的为砂质土壤;在不同培养深度条件下的N2O排放通量,壤土类明显高于砂质土壤,两土壤类加入氮肥后的N2O排放通量高于对照土壤;土壤的N2O排放通量随温度的增加而增长,在相同温度下壤土类土壤N2O排放通量高于砂质土壤;N2O排放通量随土壤含水量的上升随之增加,至田间持水量时N2O排放通量达到最大;在相同的湿度条件下,N2O排放通量壤土类高于砂质土壤。[结论]重质地旱作土壤N2O排放通量要高于轻质地土壤。  相似文献   

14.
【目的】合理灌溉是设施生产控制N2O和NO排放,提高氮肥利用率的有效措施。研究不同灌水下限设施土壤N2O和NO排放动态与土壤水分、无机氮和可溶性有机氮关系,分析N2O和NO排放特征及影响因素,以期为N2O、NO减排和设施土壤灌溉管理提供科学依据。【方法】基于连续7年的设施土壤不同灌溉下限的田间定位试验,以番茄为供试作物,设4个土壤水吸力处理,分别为25 kPa(W1)、35 kPa(W2)、45 kPa(W3)和55 kPa(W4)。采用密闭静态箱-气相色谱和氮氧化物分析仪法,分别对番茄生长季的N2O和NO进行田间原位同步观测。【结果】番茄生长季不同灌水下限处理土壤N2O和NO排放通量分别为 -34.46—1 671.78 μg N·m-2·h-1和6.83—269.89 μg N·m-2·h-1,二者排放峰值期同步且主要发生在施肥和灌溉后,各处理NO/N2O均小于1。土壤N2O和NO累积排放量分别为W2和W1处理最低(P <0.01),各处理N2O+NO总累积排放量表现为W4处理>W3处理>W1处理>W2处理。W2处理番茄产量较W1、W3和W4处理分别增加84%、32.4%和12%。单位产量N2O+NO排放量表现为W4处理最高(P <0.01),W2处理最低。各处理施肥和收获后土壤无机氮和可溶性有机氮含量的重复测量方差分析表明,除灌水下限和观测时间交互对亚硝态氮含量影响不显著外,灌水下限和观测时间及二者交互效应对土壤无机氮和可溶性有机氮均有极显著影响(P <0.01)。冗余分析和相关分析表明,NO2--N、NH4+-N和土壤孔隙含水量(WFPS)可分别解释设施土壤N2O和NO变异的55%、32.5%和20.7%,均是极显著影响不同灌溉下限N2O和NO排放的主要影响因素。【结论】综合考虑产量和N2O、NO减排效应,灌水下限35 kPa的W2处理为本试验最适宜的灌溉管理措施。  相似文献   

15.
【目的】 在等氮量有机部分替代化肥条件下研究温室番茄土壤N2O排放特征,探讨影响温室土壤N2O排放的环境因素,为估算温室菜地系统N2O的排放清单及其减排潜力提供数据支撑和理论依据。【方法】 以温室秋冬茬番茄为研究对象,设置不施肥(CK)、单施有机肥(MN)、单施化肥(CN)、有机肥部分替代化肥(CMN)4个处理,采用静态箱-气相色谱法,对番茄生育期内土壤N2O排放及土壤温度、含水量进行监测。【结果】 在相同施氮量情况下,处理CMN(有机部分替代无机)的N2O排放总量为4.05 kg·hm -2,相比处理CN(单施化肥)和MN(单施有机肥),土壤N2O排放总量降低了45.1%和33.2%;土壤N2O排放系数分别降低了50.0%和37.5%;排放强度降低了50.0%、42.1%。各处理土壤N2O排放通量峰值均出现在施肥灌水后第1天,排放主要集中在施肥灌溉后5 d内。温室番茄土壤N2O排放通量与0-5 cm地温呈显著或极显著线性相关关系;与土壤充水孔隙率(WFPS)呈显著或极显著的对数函数关系,且不同施肥处理下土壤N2O排放峰值出现在土壤充水孔隙率60%—80%范围内。【结论】 温室番茄土壤N2O排放的消长关系表现在温湿度变化和氮肥投入类型等方面,合理的减排措施应综合考虑以上因素。有机部分替代化肥施肥模式是提高温室番茄产量,减少N2O排放排放强度、排放系数和排放总量,提高肥料利用率,实现化肥零增长的重要手段。  相似文献   

16.
采用分隔式封闭箱法,测定盆栽大豆植株氧化亚氮(N2O)通量以及光照度、光合速率和气孔导度的日变化。同时,观测田间大豆—土壤系统在主要生长阶段N2O释放的变化。在温室里,大豆植株N2O释放在上午10:00时出现一个高峰;中午时N2O释放量较低,此时光照度和光合速率都保持在较高的水平上;在14:00时,N2O释放量达到低谷,光照度达到最大,但光合速率却处于很低的水平;在15:00时,植株N2O的释放达到第二个高峰,但光照度和光合速率却处于快速下降期。结果表明:植物N2O的释放不仅与光合作用的光反应有关,而且也与暗反应有关。上午10:00以后植株N2O释放通量与气孔导度变化没有一致的关系。在大豆生长季,大豆—土壤系统N2O释放通量有两个高峰,第一个峰出现在6月中下旬,第二个高峰出现在9月下旬。  相似文献   

17.
以京郊番茄为对象,研究了聚合物包膜控释肥不同用量与有机肥配合施用对设施生产体系产量和品质、硝态氮淋洗和N2O排放的影响。试验设对照(CK)、有机肥(N 134kg·hm-2,OM)、控释肥低量(控释N300kg·hm-2+有机肥N134kg·hm-2,N1)、控释肥中量(控释N 450 kg·hm-2+有机肥N 134kg·hm-2,N2)、控释肥高量(控释N600kg·hm-2+有机肥N134kg·hm-2,N3)、习惯施肥(速效N600 kg·hm-2+有机肥N 134 kg·hm-2,N4)共6个处理,用土壤溶液提取器测定淋洗液硝态氮浓度,静态箱法测定N2O排放。结果表明,与习惯处理(N4)相比,3个控释肥处理(N1、N2、N3)氮素淋洗损失明显减少,60 cm和100 cm土层的提取液硝态氮平均浓度降幅分别为15.4%~24.0%和17.8%~30.0%,拉秧后0~100cm土壤剖面硝态氮残留降低21.0%~59.8%。各处理N2O平均排放通量为60~144μg N·m-2·h-1,实际排放量为2.47~5.33kg·hm-2,施肥造成的N2O排放损失率为0.08%~0.39%;与习惯处理相比,控释肥处理平均减排38.1%~47.0%。番茄产量介于113~132 t·hm-2,N2处理产量最高,但处理间未见显著差异;N4处理的番茄硝酸盐含量最高,与对照差异显著。与习惯处理的多次施肥相比,控释肥与有机肥混配一次性基施显著降低了硝态氮淋洗量和N2O排放损失,控释肥高氮水平下氮素损失风险有增加趋势。试验结果显示施用中低量控释肥为协调番茄高产、高效与环保的较好选择。  相似文献   

18.
【目的】 通过在有机肥基础上增施不同量无机氮,研究滴灌水肥一体化条件下温室番茄土壤N2O排放和脲酶(UR)、硝酸还原酶(NR)、亚硝酸还原酶(Ni R)以及羟胺还原酶(Hy R)活性的动态变化,分析各处理土壤N2O排放特征及土壤UR、NR、Ni R和Hy R活性对土壤N2O排放的影响,揭示在滴灌水肥一体化下N2O排放过程机制。【方法】 试验共设CK(不施氮)、N1(200 kg·hm -2有机氮)、N2(200 kg·hm -2有机氮+ 250 kg·hm -2无机氮)、N3(200 kg·hm -2有机氮+ 475 kg·hm -2无机氮)4个处理。采用静态箱-气相色谱法,对番茄生育期内土壤N2O排放、土壤酶活性、土壤温湿度等进行监测。【结果】 滴灌水肥一体化,各施氮处理均在施肥+灌溉后第1天出现N2O排放高峰,随着时间推移不断下降,不同处理番茄整个生育期N2O排放通量在0.98—1 544.79 μg·m -2·h -1。土壤N2O排放总量差异显著,依次为N3((7.13±0.11)kg·hm -2)>N2((4.87±0.21)kg·hm -2)>N1((2.54±0.17)kg·hm -2)>CK((1.56±0.23)kg·hm -2),与N3相比,处理N1、N2土壤N2O排放总量分别降低了64.38%、31.70%。番茄生育期内N2O季节排放特征明显,秋季高,冬季低。土壤氮素转化相关酶活性大致随施氮量的升高而增高。土壤N2O排放通量与5 cm土壤温度、0—10 cm土层硝态氮含量、土壤NR活性及土壤Hy R活性均呈极显著正相关(P<0.01)。【结论】 滴灌水肥一体化下,土壤微生物处于好气环境,土壤N2O主要来自于硝化过程,减少了由反硝化过程所产生的N2O排放。综合考虑番茄产量、品质、N2O排放等因素,推荐北方温室秋冬茬番茄施用200 kg·hm -2有机氮+250 kg·hm -2无机氮,75 kg·hm -2 P2O5,450 kg·hm -2 K2O较为适宜。  相似文献   

19.
设施栽培土壤氧化亚氮排放及其影响因子的研究   总被引:7,自引:1,他引:7  
采用塑料温室及露地栽培试验方法,研究了土壤氧化亚氮排放规律及其影响因子。结果表明,设施栽培土壤氧化亚氮释放通量比露地蔬菜栽培土壤高1.41倍;施有机肥(酵素菌肥)的土壤中氧化亚氮的释放通量高于施化肥的处理,且分别比对照高2.08和0.74倍;不同形态的氮肥对氧化亚氮释放影响各异,其中长效尿素对氧化亚氮释放的促进作用最微弱;38℃下氧化亚氮的释放量高于15℃时氧化亚氮的释放量;pH为7.3时,土壤释放氧化亚氮的能力最强;不同碳源实验证实,葡萄糖对氧化亚氮释放的促进作用最强。  相似文献   

20.
Nitrogen losses are not only important for agriculture but environment as well. Field experiments were set up in summer corn field at Fengqiu Agro-Ecological Experimental Station of CAS in North China Plain. The soil was in maize-chao soil. Nitrification-denitrification losses and N2O emission were determined by acetylene-inhibition soil-core incubation method in the soils applied urea. The results showed that urea was fast hydrolyzed and became to nitrate. The soil with non urea released 0.33kg N/ha N2O.However, the soil produced 2.91kg N/ha N2O, about 1.94% of the applied N, when the urea was spread on soil surface. N2O emission reduced to 2.50kg N/ha, about 1.67% of the applied N, when the urea was put in deep soil by digging a hole. The denitrification loss was 1.17kg N/ha in control soil. It increased to 3.00kg N/ha and 2.09kg N/ha, which were 2.00% and 1.39% of the used N, in the soils received urea on surface and sub-surface respectively. It was suggested that nitrification-denitrification was probably not a main way of fertilizer nitrogen loss in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号