首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lowering the oxygen (O2) partial pressure from 21?kPa to 1?kPa delayed the light-dependent increase of the net carbon dioxide (CO2) assimilation rate in rice (Oryza sativa L. cv. Notohikari) leaves. Researching the underlying molecular mechanisms that act before the start of photosynthesis, we established the following facts. First, O2 at 21?kPa enhanced the quantum yield of PSII [Y(II)] and PSI [Y(I)]. More than 90% of Y(II) and Y(I) were not accounted for by O2-dependent electron flow in the Mehler-ascorbate peroxidase (MAP) pathway. Both yields increased further with the start of photosynthesis. Second, O2 enhanced photochemical quenching of chlorophyll (Chl) fluorescence (qL). qL also increased further with the rate of photosynthesis. Third, O2 enhanced the photo-oxidation of P700. Fourth, O2 suppressed the reduction of P700. Fifth, O2 enhanced non-photochemical quenching of Chl fluorescence (NPQ). These results showed that the MAP pathway triggered cyclic electron flow within PSII (CEF-II) and cyclic electron flow around PSI (CEF-I) by inducing ΔpH across thylakoid membranes and oxidizing the plastoquinone pool, before photosynthesis started. We propose that the photosynthetic electron transport system is controlled by the MAP pathway, which would explain the O2-dependent enhancement of the induction of photosynthesis.  相似文献   

2.
Summary We have developed a simple method for the determination of gaseous compounds that reflect microbial activity in soil, as affected by factors such as the presence of an organic amendment (peat) or a variation in soil moisture. The method is based on a gas chromatographic analysis of the headspace of vials containing the soil under examination. A single gas chromatograph can detect up to 10 different gases. As expected, after peat was added to the soil, CO2 evolution and O2 uptake increased significantly. Positive relationships were found between the evolution of N2O, and soil moisture and the amount of peat added to the soil. Both the these variables influenced the CO2:O2 ratio. The results given by this method show high reproducibility.  相似文献   

3.
Nanofertilizers, which supply nutrients to the plant, are used to replace conventional fertilizers. Iron (Fe) is one of the essential elements for plant growth and plays an important role in the photosynthetic reactions. To study the effects of nano-iron fertilizer on Catharanthus roseus, plants were treated with different concentrations (0, 5 10 20, 30, and 40 mM) of iron oxide nanoparticles (Fe2O3) for 70 days. Fe2O3 nanoparticles increased growth parameters, photosynthetic pigments, and total protein contents in the treated plants significantly. The maximum amounts of growth parameters, photosynthetic pigments, and protein contents were obtained with 30 µM Fe2O3 and minimum values of these parameters were found with 0 µM Fe2O3. The highest value of total alkaloid content was obtained in 0 µM Fe2O3 and the lowest value was observed in control plants. Iron oxide nanoparticles increased potassium, phosphorus, and iron absorption but did not show a significant effect on sodium content.  相似文献   

4.
《Journal of plant nutrition》2013,36(10-11):2137-2148
Abstract

The present work is aimed at evaluating some effects induced by different levels of iron availability in the growth medium for two different tomato (Lycopersicon esculentum Mill.) genotypes, the T3238fer (Tfer), unable to activate mechanisms for iron mobilization and uptake known as “strategy I,” and its correspondent wild‐type T3238FER (TFER). By using different iron concentration in the growth solution, the most suitable iron level to induce phenotypic differences between the two genotypes without being lethal for the mutant was found to be 40 µM Fe‐Na‐EDTA. The analyses were carried out also on plants grown with 80 µM Fe‐Na‐EDTA, an iron concentration at which the two genotypes showed no phenotypic differences. A significant decrease in total leaf iron and chlorophyll content was detected in both genotypes following reduction of iron concentration in the nutrient solution, and was particularly evident in Tfer40, which showed symptoms of chlorosis. The photo‐electron transport rate of the whole chain was significantly affected by growth conditions as well as by genotype, the lowest activity being detected in Tfer40 plants. Chlorophyll a fluorescence analysis revealed an increase in non‐photochemical quenching (q NP) of Tfer plants grown at both iron concentrations, indicating the activation of photoprotective mechanisms, which, however, were not sufficient to prevent photoinhibition when plants were grown at 40 µM iron, as indicated by significant reduction in PSII photochemistry (F v/F m) and photochemical quenching (q P). The actual quantum yield of PSII (ΦPSII) and the intrinsic PSII efficiency (ΦEXC) showed the same behavior of q P and F v/F m ratio. A significant effect of mutation and iron supply on all the pigments was detected, and was particularly evident in the mutant grown at 40 µM iron. A different behavior was shown by the three pigments involved in the xantophyll cycle, violaxanthin being less affected than chlorophylls and the other carotenoids, and zeaxanthin even increasing, due to the xanthophyll cycle activation. In conclusion, the interaction between iron deprivation and fer mutation induced functional alterations to the photosynthetic apparatus. Anyway, as far as concerns the photo‐electron transport activity, the influence of fer mutation seemed to occur independently from iron supply.  相似文献   

5.
The mechanism of SO2 inhibition of photosynthesis in intact leaves of tomato and maze was studied to evaluate SO2 inhibition of photorespiration. Leaf tissues were fumigated with SO2 under photorespiratory (low CO, and/or high O, concentrations) and non-photo-respiratory conditions. When tomato leaf disks were fumigated with 10 ppm SO2 at 2, 21 and 100° o O., SO2 inhibited photosynthesis at 2% O2 in the same degrees as at 21% O2. SO2 inhibition of photosynthesis was depressed at higher CO2 concentrations when the disks were fumigated with SO2 at different CO2 concentrations. High CO2 concentrations also reduced the photosynthesis inhibition of maize leaf disks. These results suggest that SO2 inhibits photosynthesis through other mechanisms than photorespiration inhibition and confirm the view that SO2 competes with CO2 for the carboxylating enzymes in photosynthesis  相似文献   

6.
1) CO2 compensation points of the plants tested correlate well with the leaf anatomy. Low CO2 compensation plants had well-developed VBS containing large and specialized chloroplasts but no plant with a high CO2 compensation point possessed chloroplasts in the VBS.

2) CO2 Compensation Points Closely Correlated With The Major Carboxylation Pathway In Photosynthesis. Low Compensation Plants Fixed CO2 Via The C-4 Pathway (C-4 Plants) While High Compensation Plants Carried Out CO2 Fixation By The Calvin Cycle (C-3 Plants).

3) Close correlations could be established for the CO2 compensation point, the major carboxylation pathway, and glycolate oxidase activity. Glycolate oxidase activity was much higher in C-3 plants than in C-4 plants. On the other hand, dark respiration in C-4 plants was higher than that in C-3 plants.

4) TCA cycle activity in detached leaves was not inhibited to any large extent by illumination.

In C-3 plants, the release of 14CO2 from alanine-1-14C increased with an increase in the ambient O2 concentration; whereas, radioactivity in the sugar fraction was quite small at all O2 concentrations. In C-4 plants the release of 14CO2 was little affected by the ambient O2 concentration while sugar formation was stimulated at high O2 concentrations. This indicates that in C-3 plants CO2 fixation is blocked at a high O2 concentration, therefore, internal 14CO2 is released from the leaf without being refixed, but in C-4 plants internal 14CO2 can be efficiently refixed and metabolized to sugar by a combination of active PEP carboxylase and the ‘Kranz type’ of leaf anatomy.  相似文献   

7.
La(NO3)3 对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响   总被引:2,自引:0,他引:2  
为探讨稀土元素镧(La)对牧草盐胁迫伤害的缓解作用, 采用水培法研究了叶面喷施20 mg·L-1La(NO3)3 对NaCl 胁迫下黑麦草幼苗生长及其抗逆生理特性的影响。结果表明: 盐胁迫显著抑制黑麦草幼苗的生长, 提高叶片电解质渗漏率及丙二醛(MDA)、O2- 和H2O2 含量, 其作用随盐浓度的增大而增强。超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)、谷胱甘肽(GSH)、可溶性蛋白质、脯氨酸含量随盐浓度增大呈先升后降趋势, 可溶性糖和Na+/K+比逐渐增大, 质膜H+-ATP 酶活性逐渐降低, 过氧化物酶(POD)活性及POD 同功酶数量表达增强。喷施La(NO3)3 处理可降低盐胁迫下黑麦草幼苗叶片的O2- 和H2O2 含量, 提高SOD、CAT、POD、APX 和质膜H+-ATP 酶的活性及POD 同功酶的表达, 使AsA、GSH、可溶性蛋白质、可溶性糖和游离脯氨酸含量及幼苗生物量增加, Na+/K+比降低。表明La(NO3)3 可通过提高抗氧化系统的活性和积累渗透溶质减轻盐胁迫伤害, 从而提高黑麦草的耐盐性。  相似文献   

8.
Some South Dakota soils contain high levels of available selenium (Se) for crop uptake. A field study was conducted to determine if any popular wheat (Triticum aestivum) varieties demonstrate differential Se uptake. A total of 280 samples including eight winter wheat and ten spring wheat varieties were analyzed for grain Se concentration and uptake for two growing years. Soil samples were sequentially fractionated into (1) plant available (0.1?M KH2PO4 extractable) and (2) conditionally available (4?M HCl extractable) pools and analyzed separately for total Se. Selenium concentration in wheat grain had a wide variability and the mean value over two years was 0.63?µg?Se?g?1. Grain Se concentration and Se uptake were not significantly different by wheat varieties tested in this study. Grain Se concentration was significantly correlated with soil Se levels, soil pH, and orthophosphate-P content within a location, but grain Se concentration was strongly influenced by geographical location in which different amounts of soil Se bioavailability occurred.  相似文献   

9.
《Journal of plant nutrition》2013,36(10-11):2187-2196
Abstract

The present work aimed at evaluating in sunflower leaves: the relationship between Fe‐deficiency and the possible accumulation of H2O2; the activity of some extracellular enzymatic and non‐enzymatic systems involved in H2O2 production and scavenging. Iron‐deficient leaves exhibited a significant H2O2 accumulation, monitored at extracellular level by electron microscopy analysis. Such an increase in H2O2 level could derive from the significant decrease in extracellular ascorbate peroxidase (APX) activity, accompanied by a lower APX protein content detected by immuno‐electrophoresis. Also, extracellular ascorbic acid content was significantly affected by Fe‐deficiency, implying a reduced capacity for H2O2 scavenging. The contribute of peroxidases (PODs) involved in lignification process in keeping H2O2 levels under the toxic threshold was dependent on their subcellular location: the activity of covalently‐bound (CB) isoforms being increased while that of ionically‐bound (IB) ones decreased. NAD(P)H oxidation activity, known to produce H2O2, was found to decrease in apoplastic fluid and IB fraction and to slightly increase in the CB fraction. In conclusion, H2O2 accumulation observed in Fe‐deficient sunflower leaves seems to be mostly due to a reduced scavenging capacity of ASA, APX, and PODs, although the possibility of increased H2O2 production cannot be excluded.  相似文献   

10.
Abstract

Seedlings of nine different conifers were exposed to 355 and 730 μmol mol-1 CO2, or low (> 15 nmol mol?1) and elevated 03 concentration (70 nmol mol?1) for 81–116 days. The experiments were conducted in growth chambers placed in a greenhouse. Increased CO2 concentration enhanced the mean relative growth rate (RGR) and total plant dry weight by 4 and 33% in Larix leptolepis, by 4 and 38% in Larix sibirica, by 7 and 47% in Picea glauca and by 3 and 16% in Picea sitchensis, respectively. The growth rates and dry weights of Pimis contorta, Pinus mugo and Pseudotsuga menziesii were not significantly affected. Carbon dioxide enrichment enhanced RGR of two provenances of Picea abies by 4 and 6%, respectively, while a third provenance was unaffected. In Pimis sylvestris, only the RGR of one of three provenances was stimulated by CO2 enrichment (4%).

After two growth seasons CO2 enrichment enhanced RGR and total plant dry weight by 11 and 35% in Picea abies and by 12 and 36% in Pinus sylvestris, respectively. Elevated CO2 decreased the shoot:root ratio in Larix leptolepis, and decreased the needlerstem ratio in Picea glauca, but increased it in Pseudotsuga menziesii.

Elevated O3 significantly decreased the plant dry weight in Picea sitchensis, Pseudotsuga menziesii and in one of three provenances of Pinus sylvestris, while the other species and provenances were unaffected. Increased O3 concentration increased the shoot:root dry weight ratio in one of three Picea abies provenances, in all three Pinus sylvestris provenances and in Pinus contorta. The needle:stem ratio was enhanced by O3 in seven of the nine species. The O3 exposure caused chlorosis of needles in all species except Pseudotsuga menziesii.  相似文献   

11.
The effects of NO2 and O3 exposure alone or in combination were investigated with respect to the amino acid content and composition in kidney bean. The short-term exposure (up to 8 h) to NO2 at a concentration of 4.0 ppm alone or in combination with O3 at a concentration of 0.4 ppm induced a rapid increase in the total amino acid content among which glutamine accounted for most of the part. Total amino acid content was also increased by O3 exposure at 0.4 ppm after 2 hours’ lag period. Ammonium level became higher in the case of combined exposure to NO2 and O3, while it remained constant in the case of exposure to NO2 and O3 alone.

When the exposure period was extended to 2 to 7 days (long-term exposure), the increase in the content of the total amino acids was observed in most of treatments. Roots of the plants exposed to various concentrations of NO2 and O3 showed the most remarkable increase in the content of total amino acids. Asparagine, in place of glutamine, became a major amino acid. The percentage of asparagine was especially increased by the mixed exposure to NO2 and O3 These results indicate that glutamine which accumulates considerably in the early phase of the gas exposure (short-term exposure) seems to be gradually converted into other amino acids, mainly asparagine.

The correlation between the content of each amino acid, ammonium and total amino acids was calculated using data from the above experiment. Most of the amino acids in the primary and trifoliate leaves showed a high correlation with the total amino acids, suggesting that the changes in the amount of total amino acids caused by the air pollutants may be reflected not only by a particular amino acid, but also by an individual amino acid composing soluble metabolite pool. A high correlation was obtained among amino acids belonging to the serine family such as glYCine, serine, and cysteine.  相似文献   

12.
In this study, a new Co3O4 nanoparticles (NPs) coated with sodium dodecyl sulphate (SDS) is developed for preconcentration of trace amounts of cadmium ions (Cd 2+) as a prior step to its determination by flame atomic absorption spectrometry (FAAS). The effects of various parameters, including pH of sample solution, amount of sorbent, flow rates of solution and eluent, sample volume, type, and least amount of the eluent for elution of the Cd 2+ from Co3O4 NPs were studied and optimized. Experimental conditions for effective separation of trace levels of the Cd 2+were optimized with respect to different experimental parameters in Column method. Under the best experimental conditions, the calibration curve was linear in the range of 1.0–500.0 ng.mL?1 of cadmium (Cd) with R2 = 0.999. The detection limit was 0.4ng.mL?1 in the original solution (3Sb/m) and the relative standard deviation for eight replicate determination of 0.1µg.mL?1 Cd was ±2.1%. The method was validated by the analysis of a certified reference material with the results being in agreement with those quoted by manufactures. The developed method was successfully applied to the extraction and determination of Cd in water and food samples with satisfactory results.  相似文献   

13.
Abstract

The effect of P deficiency on nodulation, nodule P content, nodule O2 permeability and N fixation rates in Phaseolus vulgaris–rhizobia symbiosis was studied under glasshouse conditions. Four recombinant inbred lines (L34, L83, L115 and L147) and one variety cultivated in Morocco (Concesa) were inoculated with Rhizobium tropici CIAT 899 in hydroaeroponic culture. Two P levels i.e. 75 (deficient level) and 250 µmol plant?1 week?1 P (sufficient level) were applied and the trial was assessed 42 days after transplanting that coincide with plant flowering stage. Under P-deficiency, decrease of plant growth (18%) and nodule biomass (19%) was detected and significantly pronounced in the sensitive line L147 compared with the remaining genotypes. Additionally, under P-deficiency, the efficiency in use of rhizobial symbiosis, estimated by the slope of the regression model of shoot biomass as a function of nodule biomass, was significantly increased in the four lines. This constraint did not significantly influence nodule P content in Concesa, but it was 24 and 41% lower in the tolerant and in the sensitive lines, respectively. Nodule P content was positively correlated to nodule biomass, r=0.75, and shoot N, r=0.92. These genotypic variations were associated with variability in nodule O2 permeability that was significantly affected by the P level-bean genotype interaction. Under P-deficiency, nodule O2 permeability was significantly reduced in the tested genotypes and accompanied with a decrease in shoot N content, especially in the sensitive lines (35%). Moreover, the ratios plant N fixed: nodule P content and plant N fixed:nodule dry weight were affected under P-deficiency in four lines with an exception observed in Concesa. Depending on the observed data we concluded that N2 fixation efficiency could be influenced by nodulation and level of nodule P requirement which depend on both bean genotypes and P level.  相似文献   

14.
Maize plants (Zea mays L. cv. Ganga 2 and cv. Jaunpuri satha) were grown in solution culture under glasshouse conditions at deficient (0 µM) and normal (1 µM) levels of Zn supply. Appearance of visible effects characteristic of Zn deficiency, depression in plant growth, and dry matter yield of the plants indicated that Ganga 2 was more susceptible to Zn deficiency than Jaunpuri satha. Higher susceptibility of Ganga 2 to Zn deficiency was also manifested by a greater decrease in plant dry mass and an increased accumulation of TBARS (thiobarbituric acid reactive substance, describing lipid peroxidation). While total SOD activity was decreased in Zn deficient plants of Ganga 2, it was increased marginally in case of Jaunpuri satha. The marginal increase in total SOD activity in the Zn‐deficient Jaunpuri satha plants was a result of a marked increase in non‐CuZn SOD and only a slight decrease in CuZn SOD. Though Zn deficiency increased H2O2 concentration and the activities of H2O2‐scavenging enzymes in both the cultivars, there was less increase in H2O2 concentration and the activities of peroxidase, ascorbate peroxidase and glutathione reductase were more prominently increased in the Zn‐efficient Jaunpuri satha. Plants of the susceptible variety, Ganga 2, accumulated higher concentrations of glutathione disulfide. It is concluded that the significant decreases in the activities of CuZn SOD (CN‐sensitive SOD) and glutathione reductase, and high concentrations of H2O2 predisposed Zn‐deficient Ganga 2 plants to more severe oxidative stress than those of Jaunpuri satha and, therefore, contributed to a greater decrease in dry matter production.  相似文献   

15.
Potassium deficiency in soybeans (Glycine max (L.) Merr.) may cause decreased photosynthetic capacity. Potassium‐stressed soybeans were compared by CO2 fixation and O2 evolution assays. Trifoliate leaves of potassium‐stressed soybean seedlings which did not show reduced chlorophyll content per unit fresh weight nor altered rates of light‐induced O2 evolution, fixed 38% less CO2 than did control leaves.  相似文献   

16.
Soybean plants (Glycine max L. cv. Akisengoku) were grown in water culture in a greenhouse. At the pod-setting and pod-filling stages, plants were subjected to stem-ringing or treated with high concentration of nitrate. Respiration and N2 fixation (acetylene reducing activity) were studied in individual nodules along with the concentrations of ATP and magnesium.

There was a high positive correlation between respiration activity and acetylene reduction in soybean nodules. The maintenance respiration in mature nodules corresponded to a CO2 evolution of 5.5 µmol/g F.W., and the respiratory cost for nitrogen fixation was estimated at 2 mg C liberated/mg N fixed, though this value was probably underestimated due to CO2 fixation by the nodules. For the nitrogenase activity there was a threshold value of ATP concentration at around 0.15 µmol/g F.W., and the activity increased up to around 0.35 µmol/g F.W., beyond which the ATP concentration did not increase unlike the nitrogenase activity. The values for the magnesium concentration in the nodules detected in the present experiments were above the optimum level.  相似文献   

17.
A 56-day aerobic incubation experiment was performed with 15-nitrogen (N) tracer techniques after application of wheat straw to investigate nitrate-N (NO3-N) immobilization in a typical intensively managed calcareous Fluvaquent soil. The dynamics of concentration and isotopic abundance of soil N pools and nitrous oxide (N2O) emission were determined. As the amount of straw increased, the concentration and isotopic abundance of total soil organic N and newly formed labeled particulate organic matter (POM-N) increased while NO3-N decreased. When 15NO3-N was applied combined with a large amount of straw at 5000 mg carbon (C) kg?1 only 1.1 ± 0.4 mg kg?1 NO3-N remained on day 56. The soil microbial biomass N (SMBN) concentration and newly formed labeled SMBN increased significantly (P < 0.05) with increasing amount of straw. Total N2O-N emissions were at levels of only micrograms kg?1 soil. The results indicate that application of straw can promote the immobilization of excessive nitrate with little emission of N2O.  相似文献   

18.
Using H2 15O as a tracer, the effect of the nutrient concentration on the water flow at the discrimination center (DC) of rice was monitored using a positron multi-probe system (PMPS). The maximum velocity of the water flow was achieved by the use of 20× Kasugai's culture solution. The addition of 0.01 to 0.1% NaCl gradually decreased the velocity. In intact plants, the ionic strength of essential elements in the xylem sap may be effective in decreasing the xylem resistance, resulting in the increase of the water flow in the xylem.  相似文献   

19.
Abstract

To clarify the microbiological factors that explain high N2O emission in an arable peat soil in Central Kalimantan, Indonesia, a substrate-induced respiration-inhibition experiment was conducted for N2O production. The N2O emission rate decreased by 31% with the addition of streptomycin, whereas it decreased by 81% with the addition of cycloheximide, compared with a non-antibiotic-added control. This result revealed a greater contribution of the fungal community than bacterial community to the production of N2O in the soil. The population density of fungi in the soil, determined using the dilution plate method, was 5.5 log c.f.u. g?1 soil and 4.9 log c.f.u. g?1 soil in the non-selective medium (rose bengal) and the selective medium for Fusarium, respectively. The N2O-producing potential was randomly examined in each of these isolates by inoculation onto Czapek agar medium (pH 4.3) and incubation at 28°C for 14 days. Significant N2O-producing potential was found in six out of 19 strains and in five out of seven strains isolated from the non-selective and selective media, respectively. Twenty-three out of 26 strains produced more than 20% CO2 during the 14-day incubation period, suggesting the presence of facultative fungi in the soil. These strains were identified to be Fusarium oxysporum and Neocosmospora vasinfecta based on the sequence of 18S rDNA, irrespective of the N2O-producing potential and the growth potential in conditions of low O2 concentration.  相似文献   

20.
Summary The rate of H2 release from broad beans (Vicia faba) infected with Rhizobium leguminosarum Hup- was much faster than from beans infected with the Hup+ strain. Acetylene reduction and H2 release were abolished by cutting the plants down, by incubation in darkness, or after the addition of ammonium, indicating that the H2 was released by N2-fixing bacterial symbionts. In laboratory cultures using non-sterile soil, the bean plants released H2 until an equilibrium between H2 production and H2 oxidation was reached. The H2 equilibrium concentration was higher in Hup--infected bean cultures (about 3 ppm H2 in the gas phase) than in Hup+-infected cultures (0.3 ppm H2) because of the higher H2 production. The H2 release from Hup--infected bean cultures in sterile soil did not reach equilibrium. An equilibrium occurred, if Knallgas bacteria were added. However, the equilibrium value was higher (13 ppm H2) than in non-sterile soil, which seemed to be more efficient at H2 oxidation. The Knallgas bacteria exhibited a relatively high K m for H2 (> 1300 ppmv H2); this activity was observed in unplanted non-sterile soil, and in nonsterile soil planted with Hup+-infected beans or planted with Hup--infected beans which had been cut down before being assayed. All these soils also showed a second, low-K m (<50 ppm) level of H2 oxidation activity, which was presumably due to abiontic soil enzymes. In contrast, only one level of activity, which had an intermediate K m (about 200 ppm H2), was observed when the soil was planted with Hup--infected beans. The origin of this activity, which was only observed in the presence of intact, H2-producing beans, is still unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号