共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Almagro J. López C. Boix-Fayos J. Albaladejo M. Martínez-Mena 《Soil biology & biochemistry》2010,42(9):1549-263
Total belowground C allocation (TBCA) accounts for a large fraction of gross primary production, it may overtake aboveground net primary production, and contributes to the primary source of detrital C in the mineral soil. Here, we measure soil respiration, water erosion, litterfall and estimate annual changes in C stored in mineral soil, litter and roots, in three representative land uses in a Mediterranean ecosystem (late-successional forest, abandoned agricultural field, rain-fed olive grove), and use two C balance approaches (steady-state and non-steady-state) to estimate TBCA. Both TBCA approaches are compared to assess how different C fluxes (outputs and inputs) affect our estimates of TBCA within each land use. In addition, annual net primary productivity is determined and C allocation patterns are examined for each land use. We hypothesized that changes in C stored in mineral soil, litter and roots will be slight compared to soil respiration, but will still have a significant effect on the estimates of TBCA. Annual net primary productivity was 648 ± 31.5, 541 ± 42.3 and 324 ± 22.3 g C m−2 yr−1 for forest, abandoned agricultural field and olive grove, respectively. Across land uses, more than 60% of the C was allocated belowground. Soil respiration (FS) was the largest component in the TBCA approaches across all land uses. Annual C losses through water erosion were negligible compared to FS (less than 1%) and had little effect on the estimates of TBCA. Annual changes in C stored in the soil, litter layer and roots were low compared to FS (16, 24 and 10% for forest, abandoned agricultural field and olive grove, respectively), but had a significant effect on the estimates of TBCA. In our sites, an assumption that Δ[CS + CR + CL]/Δt = 0 will underestimate TBCA, particularly in the abandoned agricultural field, where soil C storage may be increasing more rapidly. Therefore, the steady-state model is unsuited to these Mediterranean ecosystems and the full model is recommended. 相似文献
2.
Masayuki Hojito Yoko Adachi Yutaka Ono Hideki Ogasawara 《Soil Science and Plant Nutrition》2016,62(5-6):545-552
Nutrient recycling should be effective at balancing nutrient flows in Japanese animal production. This means replacing imported feed with self-produced feed. The Yakumo Experimental Farm of Kitasato University has produced commercial beef under ‘organic’ management, without the use of agricultural chemicals or imported feed, since 2005. Using a data set obtained from 220 ha of grassland and 250 head of cattle over the 5 years from 2008 to 2012, we estimated nitrogen (N) flow. During 2011 and 2012, we measured grass production, cattle production (selling out), soil parameters and atmospheric deposition (from precipitation and atmospheric ammonia concentrations). To determine N fixation by clover (white clover, Trifolium repens L.), we compared grass + clover plots with grass-only plots. Averaged over the period, N components on the 220 ha of grassland comprised 1952 Mg soil N stock, 3.2 Mg N yr?1 in living livestock, 14.3 Mg N yr?1 uptake by grass growth (including 8.6 Mg yr?1 of N fixed by clover), 15.7 Mg N yr?1 applied in composted manure, 1.7 Mg N yr?1 in imported bedding material, 2.8 Mg N yr?1 in deposition and 1.41 Mg N yr?1 in meat production. N in composted manure equaled about 0.8% of the huge soil N stock; N in grass production equaled about 0.7%, of which clover fixation supplied 60%; N deposition was not negligible; and N export by meat production was minor. These results show that on this organically managed farm, soil N stock increased gradually (by 8.6 Mg N yr?1 [220 ha]?1 = 39 kg N ha?1 yr?1 = 0.02% of the soil N stock) and N export was small. Our findings show that it is possible to balance N inputs with N outputs in a beef cattle enterprise without the need for feed or fertilizer imports. 相似文献
3.
Effects of biochar amendment on greenhouse gas emissions,net ecosystem carbon budget and properties of an acidic soil under intensive vegetable production 下载免费PDF全文
J. Wang Z. Chen Z. Xiong C. Chen X. Xu Q. Zhou Y. Kuzyakov 《Soil Use and Management》2015,31(3):375-383
Biochar addition to soils has been frequently proposed as a means to increase soil fertility and carbon (C) sequestration. However, the effect of biochar addition on greenhouse gas emissions from intensively managed soils under vegetable production at the field scale is poorly understood. The effects of wheat straw biochar amendment with mineral fertilizer or an enhanced‐efficiency fertilizer (mixture of urea and nitrapyrin) on N2O efflux and the net ecosystem C budget were investigated for an acidic soil in southeast China over a 1‐yr period. Biochar addition did not affect the annual N2O emissions (26–28 kg N/ha), but reduced seasonal N2O emissions during the cold period. Biochar increased soil organic C and CO2 efflux on average by 61 and 19%, respectively. Biochar addition greatly increased C gain in the acidic soil (average 11.1 Mg C/ha) compared with treatments without biochar addition (average ?2.2 Mg C/ha). Biochar amendment did not increase yield‐scaled N2O emissions after application of mineral fertilizer, but it decreased yield‐scaled N2O by 15% after nitrapyrin addition. Our results suggest that biochar amendment of acidic soil under intensive vegetable cultivation contributes to soil C sequestration, but has only small effects on both plant growth and greenhouse gas emissions. 相似文献
4.
5.
This paper summarizes results from 8 years (1996–2003) of eddy covariance-based ecosystem CO2 exchange measurements at the Borden Forest Research Station (44°19′N, 79°56′W). The site represents a mid-latitude, 100-year-old, mixed deciduous and coniferous forest dominated by red maple, aspen and white pine. The years 1996 and 1997 were relatively cold, had a late spring and received below average photosynthetic photon flux density (PPFD). This contrasts with an early spring, warmer soil and air temperatures during 1998–1999, and with distinctly wet year of 2000 and dry years of 2001–2003. The combination of early spring, warmer air and soil temperature and relatively high level of PPFD was associated with higher net ecosystem productivity (NEP) that peaked during 1999. Photosynthetic capacity was reduced and NEP showed a mid-growing season depression during the dry years of 2001–2003. Annual average ecosystem respiration (R) determined from a light response model was 30% less than R derived from a logistic respiration equation, relating night time CO2 flux and soil temperature. However these independently determined R values were well correlated indicating that the site is unaffected by fetch and spatial heterogeneity problems. Based on the combined 8 years of growing season daytime data, an air temperature of 20–25 °C and a vapor pressure deficit (VPD) of 1.3 kPa were found to be the optimal conditions for CO2 uptake by the canopy. Over the 1996–2003 period, the forest sequestered carbon at an average rate of 140 ± 111 gC m−2 y−1. The corresponding gross ecosystem photosynthesis (GEP) and R over this period were 1116 ± 93 gC m−2 y−1 and 976 ± 68 gC m−2 y−1, respectively. The annual carbon sequestration ranged from 19 gC m−2 in 1996 to 281 gC m−2 in 1999. However, these estimates were sensitive to frictional velocity threshold () used for screening data associated with poor turbulent mixing at night. Increasing from 0.2 m s−1 (based on the inflection point in the nighttime CO2 flux vs. u* relationship) to 0.35 m s−1 (determined using a selection algorithm based on change-point detection) modified the 8-year mean NEP estimate from 140 ± 111 gC m−2 y−1 to 65 ± 120 gC m−2 y−1. Both approaches show that the Borden forest was a low to moderate sink of carbon over the 8-year period. 相似文献
6.
小麦-玉米-大豆轮作下黑土农田土壤呼吸与碳平衡 总被引:5,自引:1,他引:5
农田生态系统是陆地生态系统的重要组成部分,探讨农田生态系统的土壤呼吸与碳平衡对于科学评价陆地生态系统在全球变化下的源汇效应具有重要意义。基于中国科学院海伦农业生态实验站的长期定位试验,对不同施肥处理下黑土小麦-玉米-大豆轮作体系2005—2007年的作物固碳量与土壤CO2排放通量进行了观测,并对该轮作体系下黑土农田生态系统的碳平衡状况进行了估算。结果表明:在小麦-玉米-大豆轮作体系中,作物固碳量的高低表现为:玉米>大豆>小麦,平均值分别为6 513 kg(C).hm-2、4 025 kg(C).hm-2和3 655kg(C).hm-2。从作物生长季土壤CO2排放总量来看,3种作物以大豆农田生态系统的土壤CO2排放总量最高,平均值达4 062 kg(C).hm-2;其次为玉米,为3 813 kg(C).hm-2;而小麦最低,为2 326 kg(C).hm-2。3种作物轮作下NEP(净生态系统生产力)均为正值,表明黑土农田土壤-作物系统为大气CO2的"汇",不同作物系统的碳汇强度表现为玉米>小麦>大豆,三者的平均值分别为3 215 kg(C).hm-2、1 643 kg(C).hm-2和512 kg(C).hm-2。长期均衡施用氮、磷、钾化肥或氮、磷、钾化肥配施有机肥后,小麦、玉米和大豆农田生态系统的固碳量和土壤CO2排放总量均明显增加,并在氮、磷、钾配施有机肥处理下达到最高。不同的施肥管理措施将改变土壤-植物系统作为大气CO2"汇"的程度,总体表现为化肥均衡施用下NEP值较高,而化肥与有机肥配施下农田生态系统的NEP值较低。 相似文献
7.
8.
《Soil Science and Plant Nutrition》2013,59(4):650-661
Abstract To evaluate the carbon budget in soils under different cropping systems, the carbon dioxide (CO2) flux from soils was measured in a total of 11 upland crop fields within a small watershed in central Hokkaido over the no snow cover months for 3 years. The CO2 flux was measured using a closed chamber method at bare plots established in each field to estimate soil organic matter decomposition. Temporal variation in instantaneous soil CO2 fluxes within the sites was mainly controlled by soil temperature and moisture. Annual mean CO2 fluxes and cumulative CO2 emissions had no significant relationship with soil temperature and moisture (P > 0.2). However, there was a significant quadratic relationship between annual mean CO2 flux or cumulative CO2 emission and soil clay plus silt content (%) (R2 = 0.72~0.74, P < 0.0003). According to this relationship, the optimum condition for soil CO2 emission is at a clay plus silt content of 63%. The cumulative CO2 emission during the no snow cover season within each year varied from 1,159 to 7,349 kg C ha?1 at the different sites. The amount of crop residue carbon retained in the soils following a cropping season was not enough to offset the CO2 emission from soil organic matter decomposition at all sites. As a consequence, the calculation of the soil carbon budget (i.e. the difference between the carbon added as crop residues and compost and the carbon lost as CO2 from organic matter decomposition) ranged from –7,349 to –785 kg C ha?1, except for a wheat site where a positive value of 4,901 kg C ha?1 was observed because of a large input of organic carbon with compost. The negative values of the soil carbon budget indicate that these cropping systems were net sources of atmospheric CO2. 相似文献
9.
Influences of recovery from clear-cut, climate variability, and thinning on the carbon balance of a young ponderosa pine plantation 总被引:1,自引:1,他引:1
Laurent Misson Jianwu Tang Ming Xu Megan McKay Allen Goldstein 《Agricultural and Forest Meteorology》2005,130(3-4):207-222
From 1999 to 2002, the variations in carbon flux due to management practices (shrub removal, thinning) and climate variability were observed in a young ponderosa pine forest originated from clear-cutting and plantation in 1990. These measurements were done at the Blodgett Forest Ameriflux site located in the Sierra Nevada Mountains of California. Thinning in spring 2000 decreased the leaf area index (LAI) by 34% and added 496 g C m−2 of wood and leaf debris at the soil surface. Total ecosystem respiration was not significantly affected by thinning (1261 g C m−2 in 1999 and 1273 g C m−2 in 2000), while canopy photosynthesis decreased by 202 g C m−2. As a result the ecosystem shifted from a net sink of CO2 in 1999 (−201 g C m−2) to a small net source in 2000 (13 g C m−2). Woody and leaf debris resulting from thinning only accounted for maximum 1% and 7% of the total respiration flux, respectively. Thinning did not affect the relative proportion of the different components of respiration to an observable degree. Low soil water availability in summer 2001 and 2002 decreased the proportion of soil respiration to the total respiration. It also imposed limitations on canopy photosynthesis: as a result the ecosystem shifted from a sink to a source of carbon 1 month earlier than in a wetter year (1999). The leaf area index and biomass of the stand increased rapidly after the thinning. The ecosystem was again a sink of carbon in 2001 (−97 g C m−2) and 2002 (−172 g C m−2). The net carbon uptake outside the traditionally-defined growing season can be important in this ecosystem (NEE = −50 g C m−2 in 2000), but interannual variations are significant due to differences in winter temperatures. 相似文献
10.
Soil CO2 efflux, root mass, and root production were investigated in a humid temperate grassland of Japan over a growing season (Apr. to Sep.) of 2005 to reveal seasonal changes of soil CO2 efflux, to separate the respective contributions of root and microbial respiration to the total soil CO2 efflux, and to determine the environmental factors that control soil respiration. Minimal microbial respiration rate was estimated based on the linear regression equations between soil CO2 efflux and root mass at different experimental sites. Soil CO2 efflux, ranging from 4.99 to 16.29 μmol CO2 m-2 s-1, depended on the seasonal changes in soil temperature. The root mass at 0--10 cm soil depth was 0.82 and 1.27 kg m-2 in Apr. and Sep., respectively. The root mass at 0--10 cm soil depth comprised 60% of the total root mass at 0--50 cm soil depth. The root productivity at 0--30 cm depth varied from 8 to 180 g m-2 month-1. Microbial and root respiration rates ranged from 1.35 to 5.51 and 2.72 to 12.06 μmol CO2 m-2 s-1, respectively. The contribution of root respiration to the total soil CO2 efflux averaged 53%, ranging from 33% to 72%. The microbial respiration rate was exponentially related to soil temperature at 10 cm depth (R2 = 0.9400, P = 0.002, n = 6), and the root respiration rate was linearly related to the root production at 0--30 cm depth (R2 = 0.6561, P = 0.042, n = 6). 相似文献
11.
Haizhen Sun Terry L. Clark Roland B. Stull T. Andrew Black 《Agricultural and Forest Meteorology》2006,140(1-4):352
We apply a high-resolution atmospheric model to assess the influence of mesoscale advection of CO2 on the estimation of net ecosystem exchange (NEE) using eddy-covariance CO2 flux measurements at a Fluxnet-Canada forest site located on sloping terrain on Vancouver Island, Canada. The numerical simulation is performed for fair-weather conditions over an idealized two-dimensional mountain bounded by water. The model is enhanced to include a CO2 budget with a treatment of canopy photosynthesis and soil respiration.The simulation captures the transport of CO2 by nocturnal drainage flows and weak land breezes. The resulting vertical profiles and time evolution of CO2 concentration show a significant variation near the ground, associated with stability changes in the atmospheric boundary layer. The simulated vertical CO2 gradients are found to be large around sunset and sunrise. The decrease of CO2 concentration over land after midnight and the CO2 accumulation over the neighboring water surface indicate CO2 advection.A CO2 budget analysis of the numerical-model output shows that the mean horizontal and vertical advection have significant fluctuations and opposite signs during daytime, with the net result that they largely counteract each other. At night, mean advection results in the underestimation by 20% of the nocturnal respiration. The estimated NEE at night is dominated by sub-grid-scale vertical flux in this simulation. Further evaluation using 3D simulations with higher resolution is needed to see if our results hold where vertical fluxes are much better resolved. 相似文献
12.
日本北海道农村生态系统中N循环研究 总被引:2,自引:0,他引:2
This study of Mikasa City in 2001, which analyzed N flow between N production and N load in seven agricultural and settlement subsystems, i.e., paddy, onion, wheat, vegetable, dairy, chicken, and citizen subsystems, aimed to compare N flow in each subsystem, to determine the main sources of the N load, and to evaluate the influence of agricultural production and food consumption on N cycling in a rural area. The results showed that in Mikasa city, 38.5% of the N load came from point sources and the remainder from non-point sources with intensive vegetable farming imparting a serious N load. Because of the internal N cycling in the dairy subsystem, chemical fertilizer application was reduced by 70.2%, and 23.72 Mg manure N was recycled to the field; therefore, the N utilization efficiency was raised from 18.1% to 35.1%. If all the manure N in the chicken subsystem was recycled, chemical fertilizer application would be reduced by 8.1% from the present level, and the point sources of N pollution would be reduced by 20.8%. 相似文献
13.
草地净第一性生产力(NPP)是全球变化与陆地生态系统研究的核心内容之一。草地NPP的模拟方法从站点实测法、统计模型发展到了机理性的过程模型,NPP的站点实测数据为统计模型和过程模型模拟结果提供参考。统计模型通过NPP和温度、降雨等气候因子或者直接与遥感获得的植被指数建立统计关系计算NPP;过程模型从机理上对植物的生物生理过程进行模拟并能够对NPP的影响因子进行分析,主要过程包括了光合作用、生长和维持呼吸、蒸散、氮吸收和释放、光合物质分配与分解,和季相变化等。遥感过程模型通过遥感手段获得地表覆盖状况、植被冠层结构变量值(如LAI)、地表反射率、地表辐射温度及土壤水分状况等作为重要参数应用到模型中,改善了模拟结果的时空精度,成为当前草地生产力模型的主要研究方向。最后对遥感监测草地NPP研究中存在的问题进行了分析并提出了展望。 相似文献
14.
Eva Kaštovská Hana Šantrůčková Tomáš Picek Martina Vašková Keith R. Edwards 《植物养料与土壤学杂志》2010,173(5):706-714
Response of microbial metabolism (growth, substrate utilization, energetic metabolism) to fertilization by N and P and resulting changes in soil‐organic‐matter (SOM) decomposition (priming effect) were studied in grassland soils with relatively high organic‐matter content. Treatments with and without glucose addition were studied to simulate difference between rhizosphere and bulk soil. Our expectation was that fertilization would decrease soil respiration in both treatments due to an increased efficiency of microbial metabolism. At first, fertilization activated microbial metabolism in both treatments. In glucose‐nonamended soils, this was connected with a short‐term apparent priming effect but if glucose was available, the higher energetic demand was covered by its mineralization in preference against SOM, causing significant SOM savings as compared to unfertilized soils. After a relatively short period of 1–3 d, however, the phase of deprived microbial metabolism occurred in both treatments, which was characterized by lower soil respiration in fertilized than in unfertilized soils. Fertilization further decreased net microbial growth following glucose addition, shortened turnover time of microbial biomass and changed the partitioning of assimilated glucose within microbial biomass (decreased accumulation of storage compounds and increased the proportion of mineralized glucose). As a result, fertilization reduced soil respiration mainly due to a deprivation of microbial metabolism. The rate and range of microbial response to fertilization and also the amount of saved soil C were larger in the soil with higher SOM content, likely driven by the higher content of microbial biomass. 相似文献
15.
ABSTRACTRhizodeposition is an important component of carbon cycling in terrestrial ecosystems. However, there remains tremendous uncertainty in its quantification due to the methodological limitations. In the present study, we propose a method to evaluate the rhizodeposition by plants by observing carbon flux. We investigated the ecosystem CO2 flux variability and calculated the rhizodeposition of carbon by the rice rhizosphere, by using the carbon flux, meteorological data, and biomass observation from 2003 to 2011 at the Taoyuan Agro-ecological Experimental Station, a representative subtropical paddy ecosystem. Our data indicated that the process of rhizodeposition is the major reason for the discrepancy between the biomass and net primary productivity of the paddy ecosystem under intensive human interference. Both the amount and ratio of rhizodeposition of carbon in this paddy ecosystem were assessed; this provides important theoretical and methodological support for further investigating rhizodeposition by rice under field conditions. The rhizodeposition amount in the growing season of early rice, late rice, and for the entire planting period was 0.52–2.56, 0.74–3.75, and 1.61–5.24 t ha?1, respectively, with the corresponding mean (±SD) rhizodeposition ratios of 23.16 ± 8.87%, 28.16 ± 12.94%, and 27.00 ± 9.3%. This method enabled us to calculate rhizodeposition under in situ conditions, and the results showed that the growing season of late rice was the primary period for rhizodeposition in rice ecosystem. 相似文献
16.
《Soil Science and Plant Nutrition》2013,59(6):800-819
Abstract Dairy farming regions are important contributors of nitrogen (N) to surface waters. We evaluated the N budget and relationships to riverine N exports within the Shibetsu River catchment (SRC) of a dairy farming area in eastern Hokkaido, Japan. Five drainage basins with variable land-cover proportions within the SRC were also evaluated individually. We quantified the net N input (NNI) to the catchment from the difference between the input (atmospheric deposition, chemical fertilizers, N fixation by crops and imported food and feed) and the output (exported food and feed, ΔS liv and ΔS hu, which are the differences between input and output in livestock and human biomass, respectively) using statistical and measured data. Volatilized ammonia (NH3) was assumed to be recycled within the catchment. The riverine export of N was quantified. Agricultural N was a dominant source of N to the SRC. Imported feed was the largest input (38.1?kg?N?ha?1?year?1), accounting for 44% of the total inputs, followed by chemical fertilizers (32.4?kg?N?ha?1?year?1) and N fixation by crops (13.4?kg?N?ha?1?year?1). The exported food and feed was 24.7?kg?N?ha?1?year?1 and the ΔS liv and ΔS hu values were 7.6 and 0.0?kg?N?ha?1?year?1, respectively. As a result, the NNI amounted to 54.6?kg?N?ha?1?year?1. The riverine export of total N from the five drainage basins correlated well with the NNI, accounting for 27% of the NNI. The fate of the missing NNI that was not measured as riverine export could possibly have been denitrified and/or retained within the SRC. A change in the estimate of the deposition rate of volatilized NH3 from 100 to 0% redeposited would have decreased the NNI by 37%, although we believe that most NH3 was likely to have been redeposited. The present study demonstrated that our focus should be on controlling agricultural N to reduce the impact of environmental pollution as well as on evaluating denitrification, N stocks in soil and the fate of NH3 volatilization in the SRC. 相似文献
17.
Thinning is an important forest management practice that has great potential to influence regional soil carbon storage and dynamics.The present study measured soil respiration(RS,the efflux of CO2 emitted)and its two components(heterotrophic(RH)and autotrophic(RA)respiration)from soil 42 years after thinning in comparison to un-thinning(control).Autotrophic respiration was significantly greater in the thinning plot,approximately 44%higher compared to the control,while both RSand RHwere slightly,but not significantly,higher in the thinning plot.Higher fine root biomass might have contributed to the higher RAin the thinning plot.Both RSand RHshowed clear soil temperature-dependent seasonal patterns,whereas RAwas less responsive to changes in temperature,especially within one specific season.The annual and season-specific temperature sensitivities of RSand RHwere lower in the thinning plot,specifically during the mid-growing season.Furthermore,variations in the season-specific temperature sensitivity of RSand RHwere less intense in the thinning plot.We conclude that forest thinning can reduce the temperature sensitivity of RSand RHduring the mid-growing season and increase soil CO2 emission in the long term. 相似文献
18.
19.
基于通量观测数据的玉米水碳交换量及水分利用效率分析 总被引:2,自引:3,他引:2
揭示玉米生长期内水分、二氧化碳交换量及水分利用效率的变化规律,对于认识玉米生长规律,指导农业灌溉具有重要意义。该文采用美洲通量网(Ameri Flux)3个农田通量站的数据,计算玉米生育期内的水分消耗量ET(evapotranspiration)、总初级生产力GPP(gross primary productivity)和生态系统净交换量NEE(net ecosystem exchange)及水分利用效率,并采用统计分析方法分析饱和水汽压差和光合有效辐射对水分利用效率的影响。结果表明,该区域玉米整个生育周期约为156~180 d,ET为440~520 mm,GPP为1 320~1 640 g/m2,以C计,NEE为-560~-620 g/m2,以C计;水分利用效率,NEE/ET为1.2~1.4 g/kg,GPP/ET为3.0~3.5 g/kg。水分利用效率与饱和水汽压差(VPD)成负指数关系,存在常数k使得GPP/ET正比于VPD-k,最优k值为0.42~0.63。水分利用效率与光合有效辐射无显著相关性。 相似文献
20.
半干旱黄土区沙棘的水分生理生态与形态解剖学特性研究 总被引:6,自引:0,他引:6
1986~1997年在半干旱黄土区的陕西吴旗、安塞县和宁夏固原县,对沙棘进行了蒸腾、净初级生产量、土壤水分等生理生态和形态解剖学特性研究。试验结果表明:沙棘每生产lg地上干物质,总耗水量为711~829g,其中蒸腾耗水量为551~654g,该地区荒山植被生产lg地上干物质蒸腾耗水量为343~709g,总耗水量却达2540~4501g。水分利用效率为1.21~1.53g/(m2·mm),是荒山植被的3.1~6.4倍。沙棘水分利用效率较高,水分生产潜力较大。观察沙棘叶、根具有耐大气干旱、耐高温和水湿的形态解剖学特性,说明沙棘有较强的生态适应性。因而在半干旱黄土区的荒山、荒沟,营造沙棘林,能有效利用水土资源,这是快速治理荒山,提高土地生产力的有效途径之一。 相似文献