首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays L.) plants in the early stage of development were treated with 80 mM sodium chloride (NaCl) with or without supplemental calcium (Ca2+) (8.75 mM) for a seven day period. The effects of salinity on dry matter production and shoot and root concentrations of sodium (Na+), Ca2+, and potassium (K+) were measured for seven Pioneer maize cultivars. Salinity significantly reduced total dry weight, leaf area, and shoot and root dry weight below control levels. For all seven cultivars, Na+concentrations were reduced and leaf area was significantly increased by supplementing salinized nutrient solutions with 8.75 mM calcium chloride (CaCl2). The two cultivars with the lowest shoot and root Na+ concentrations under NaCl‐salinity showed the greatest increases in total, shoot and root dry weights with the addition of supplemental Ca. Shoot fresh weight/dry weight ratios for all cultivars were decreased significantly by both salinity treatments, but supplemental Ca2+ increased the ratio relative to salinity treatments without supplemental Ca. Root fresh weight/dry weight ratios were decreased only by salinity treatments with supplemental Ca. With NaCl‐salinity, cultivars which had lower shoot and root Na+ concentrations were found to be more salt sensitive and had significantly lower amounts of dry matter production than those cultivars which had higher shoot and root Na+ concentrations. It was concluded that Na+ exclusion from the shoot was not correlated with and was an unreliable indicator of salt tolerance for maize.  相似文献   

2.
The effect of potassium sulfate (K2SO4) on adaptability of sugarcane to sodium chloride (NaCl) stress was investigated under hydroponic conditions. Two sugarcane cultivars, differing in salinity tolerance, were grown in half strength Johnson's solution at 80 mM NaCl with 0, 2.5 and 5.0 mM potassium (K) as K2SO4. Salinity disturbed above and below-ground dry matter production in both sugarcane cultivars. However, salt sensitive cultivar showed more reduction in shoot dry matter and higher root:shoot ratio compare to the salt tolerant cultivar under. Application of K significantly (p < 0.05) improved dry matter production in both sugarcane cultivars. The concentration of Na was markedly increased with increasing salinity; however, the application of K reduced its uptake, accumulation and distribution in plant tissues. Salinity induced reduction in K concentration, K-uptake, K utilization efficiency (KUE) and K:Na ratio in both sugarcane cultivars was significantly improved with the addition of K to the saline growth medium.  相似文献   

3.
ABSTRACT

This study was conducted in a greenhouse to evaluate the root and shoot response of canola (Brassica napus L.) to salt-stress conditions and the remobilization, deposition, and input rate of sodium (Na), potassium (K), and magnesium (Mg) at different salinity levels using two canola cultivars. A salt-tolerant (‘Kristina’) cultivar and a salt-sensitive (‘Hyola 308’) cultivar were grown in nutrient solutions with 0, 50, 100, 150, and 200 mol m?3 NaCl for 7 d. The plants were harvested after 6, 12, 18, and 24 h and 3 and 7 d after salt treatment. The results indicated that increasing salinity significantly decreased shoot and root weights 7 d after treatment. Also, K content and K-Na selectivity decreased in both cultivars, but the changes in ‘Hyola 308’ were greater than in ‘Kristina.’ Electrolyte leakage was increased significantly by salinity, and cell-membrane stability of ‘Hyola 308’ was damaged more than that of ‘Kristina’. Sodium import, transport, and deposition was increased by salinity concentration but remobilization was decreased. The K and Mg import, deposition, and remobilization were also decreased. From this experiment we can conclude that greater K and Mg remobilization in ‘Kristina’ could be a mechanism of salt tolerance in canola.  相似文献   

4.
Three tomato cultivars were used to examine the influence of the genetic background on the regeneration efficiency. White embryonic calli were formed within two weeks of culture. Shoots emerged either directly from the explant or indirectly from the embryonic callus. Multiple adventitious shoots were formed by clonal propagation of somatic embryos in the presence of 2 mg zeatin L-1. The meristematic end of the hypocotyl of the cultivar Pontaroza showed a high regeneration frequency (70.2%) compared with the cotyledonary leaf explant (35.3%). The plants grown in the green house and the regenerants obtained showed a similar peroxidase banding pattern. The combined analysis of variance indicated that the difference in shoot induction between cultivars was highly significant. Shoot induction frequency was 57.2%, 43.5%, and 35.5% for the cultivars UC-97, Pontaroza, and Zuishi, respectively. The regeneration frequency was 50%, 28%, and 20% for the cultivars UC-97, Pontaroza, and Zuishi, respectively. The observed differences in shoot induction between cultivars were due to the genetic difference between them.  相似文献   

5.
The absorption and transport of Na and Cl from 0.1 mM and 10 mM 22Na labelled NaCl or 36Cl labelled KCl were examined in 15 days old seedlings of 3 cultivars of rice differing in their tolerance to salinity. Furthermore, the effects of 10, 100 and 1000 ppm (N)2S on their uptake were studied. It was found that in general, the salt‐tolerant cultivars BR and PNL‐1 absorbed more Na and translocated a lesser proportion of it to the shoot, compared to the salt‐sensitive IR‐8, from 0.1 mM NaCl. The presence of (N)2S reduced the uptake of Na in all the cultivars. It was also found that the presence of 100 ppm K, KN or NNreduced Na absorption from 0.1 mM NaCl significantly in all the cultivars, and the translocation to shoot in BR‐ Chloride transport from 0.1 mM NaCl was reduced by (N)2S in all the cultivars. The 3 cultivars differed significantly in the rates of absorption and transport of Na and Cl. The results indicate that PNL‐1 which is a cross of IR‐8 X BR, has inherited the salt tolerance trait from BR. Lower rates of Na translocation to the shoot can be used as an index of salt tolerance in rice.  相似文献   

6.
Physiological responses to salt stress were investigated in two cotton (Gossypium hirsutum L.) cultivars (Pora and Guazuncho) grown hydroponically under various concentrations of NaCl. Dry matter partitioning, plant water relations, mineral composition and proline content were studied. Proline and inorganic solutes were measured to determine their relative contribution to osmotic adjustment. Both leaf water potential (Ψw) and osmotic potential (Ψs)decreased in response to NaCl levels. Although Ψwand Ψs decreased during salt stress, pressure potential Ψp remained between 0.5 to 0.7 MPa in control and all NaCl treatments, even under 200 mol m?3 NaCl. Increased NaCl levels resulted in a significant decrease in root, shoot and leaf growth biomass. Root / shoot ratio increased in response to salt stress. The responses of both cultivars to NaCl stress were similar. Increasing salinity levels increased plant Na+ and Cl?. Potassium level remained stable in the leaves and decreased in the roots with increasing salinity. Salinity decreased Ca2+ and Mg2+ concentrations in leaves but did not affect the root levels of these nutrients. The K/Na selectivity ratio was much greater in the saline treated plants than in the control plants. Osmotic adjustment of roots and leaves was predominantly due to Na+ and Cl? accumulation; the contribution of proline to the osmotic adjustment seemed to be less important in these cotton cultivars.  相似文献   

7.
The present study was conducted to assess the effect of soil salinity on yield attributes as well as nutrient accumulation in different plant parts of seven Brassica cultivars from two different species raised in pot culture experiment with two levels of salinity treatments along with control corresponding to soil electrical conductivity (EC) values of 1.65 (S0), 4.50 (S1) and 6.76 (S2) dS m?1. The experiment was consisted of twelve replications in a completely randomized design. Imposition of salinity stress affected various yield attributing characters including plant height, which ultimately led to severe yield reduction. However, tolerant cultivars, CS 52 and CS 54 performed better under salt treatment showing lesser yield loss. Salinity stress reduced the nitrogen (N) content in leaves of the Brassica plants, which reflected in decreased seed protein content. Reduced accumulation of iron (Fe), manganese (Mn) and zinc (Zn) was observed in leaf, stem and root at flowering and post-flowering stages, while CS 52 and CS 54 showed less reduction than susceptible cultivars under salinity stress.  相似文献   

8.
Three cultivars of tomato (Lycopersicon esculentum Mill., cvs. Sera, 898, Rohaba) were grown under different levels of NaCl in nutrient solution to determine effects of salt stress on shoot and root dry matter (DM), plant height, water use efficiency (WUE, g DM kg‐1 water evapotranspired), shoot sodium (Na) and potassium (K) concentrations, and K versus Na selectivity (SK,Na). Increasing NaCl concentration in nutrient solution adversely affected shoot and root DM, plant height, WUE, K concentration, and K/Na ratio of all cultivars. Shoot Na concentrations increased with increasing NaCl concentration in the nutrient solution. Although increasing salt concentration in the solution adversely affected growth of all cultivars, the cultivar Sera had the highest shoot and root DM than the other two cultivars (898 and Rohaba). Shoot and root DM of cultivar 898 was most affected by salt, while cultivar Rohaba had an intermediate salt sensitivity. The cultivar Sera generally had higher WUE values, shoot K concentrations, and SK,Na, but had lower shoot Na concentrations than the other two cultivars when plants were grown under different salt levels. Greater Na exclusion, higher K uptake and shoot SK,Na are suggested as being plant strategies for salt tolerance.  相似文献   

9.
A trial was conducted on the effect of salinity and method of fertilizer application on two varieties of cultivated tomato, i.e. VF 145 and Edkawi. Salinity ranged from 0.52 to 11 dS/m, and fertilizer was applied by either broadcasting in small doses or added with irrigation water. Weight of shoots, fruit yield, and sodium (Na), calcium (Ca), chloride (Cl), free proline contents in both developing and mature leaves, and total soluble salts and ascorbic acid contents in fruits were taken as evaluating criteria. Salinity depressed both growth and fruit yield, and simultaneously increased ion concentration in plant leaves. Sodium and Cl accumulated with salinity, being greater in mature leaves, while proline accumulation in developing leaves was much higher than in mature leaves. Total soluble salts and ascorbic acid were not affected. Liquid fertilization resulted in higher fruit yields than that obtained with the solid fertilizer treatments as well as better alleviating the depressive effects of salinity on plant growth and yield, especially at the lower salinity level where it was more beneficial to fruit yield. The VF 145 tomato variety was found a bit more sensitive to salinity than the Edkawi variety, and was affected differently by salinity, regarding both the yield and the pattern of organic and inorganic ion accumulation. Our results suggest that there exists a physiological mechanism that is involved in the salt tolerance difference observed between the two varieties that needs to be investigated.  相似文献   

10.
Rice (Oryza sativa L.) is one of the most sensitive crops to drought, salt and cold stresses, particularly at post germination stage. The effects of these stresses on some physiological responses of two (a salt tolerant and a sensitive) rice cultivars ‘FL478’ and ‘IR29’ were investigated in this study. Two-day seedlings were transferred to MS media complemented with iso-osmotic concentrations of sodium chloride (NaCl; 0, 50, 100, and 150 mM) or mannitol (0, 100, 180, and 275 mM) at 25°C or four and 15°C for 10 days. Experiments were carried out based on completely randomized design, with at least three replicates. All three stresses decreased shoot growth, chlorophylls, carotenoids and root starch while increased shoot soluble sugars. The effect of exerted cold stress on growth, hydrogen peroxide (H2O2) and malonyldialdehyde levels, electrolyte leakage, chlorophylls and carotenoids contents was more than or comparable with drought, but greater than salinity. The results also indicated higher tolerance of ‘‘FL478’’ not only to salinity but also to drought compared to ‘‘IR29’’. Therefore, a mechanism for osmotic stress adjustment is probable in ‘‘FL478’’ in addition to low sodium (Na+) to potassium (K+) ratio in shoot tissues under salinity.  相似文献   

11.
ABSTRACT

The effect of salinization of soil with Na2SO4, CaCl2, MgCl2, and NaCl (70:35:10:23) on the biochemical characteristics of three wheat (Triticum aestivum L.) cultivars (‘LU-26S,’ ‘Sarsabaz’ and ‘Pasban-90’) was investigated under natural environmental conditions. Twenty-day-old seedlings of all three cultivars were subjected to three salinity treatments: 1.3 (control), 5.0, and 10 dSm?1 for the entire life period of plants. After 120 d of seed sowing, plant biomass production decreased by 49% and 65%, respectively, in response to 5 and 10 dSm?1 salinity levels. Addition of salts to growth medium also had a significant adverse effect on plant height. Increasing salinity treatments caused a great reduction in nitrate reductase activity (NRA) of the leaf. The inhibitory effect of salinity on nitrate reduction rate was more pronounced at the reproductive stage than at the vegetative stage of plant growth. Wheat cultivars ‘LU-26S’ and ‘Sarsabaz’ showed less reduction in NRA due to salinity compared with ‘Pasban-90.’ Ascending salinity levels significantly reduced potassium (K+) and calcium (Ca2+) accumulation in shoots, while the concentration of sodium (Na+) was increased. Salts of growth medium increased the shoot nitrogen (N) concentration, whereas phosphorous (P) concentration of shoots was significantly reduced due to salinity. Wheat cultivars ‘LU-26S’ and ‘Sarsabaz’ proved to be the salt-tolerant ones, producing greater biomass, showing less reduction in NRA, maintaining low sodium (Na+), and accumulating more K+ and Ca2+ in response to salinity. These two cultivars also showed less reduction in shoot K+/Na+ and Ca+/Na+ ratios than in ‘Pasban-90,’ particularly at the 10 dSm?1 salinity level.  相似文献   

12.
Soil salinity imposes an unprecedented risk to the soil fertility and availability of plant nutrients. The present proposal is designed to address the effect of salt stress on photosynthetic apparatus of maize including chlorophyll a fluorescence and how silicon nutrition helps to overcome this issue. In a sand culture experiment, two maize cultivars were sown in small pots with two levels of silicon (0 and 2 mM H2SiO3) and two levels of salinity stress (0 and 60 mM NaCl). Salinity stress reduced dry matter yield and potassium (K) concentration in both maize cultivars and also induced inefficient working of photosynthetic apparatus including photochemical efficiency of photosystem II. Silicon addition alleviated NaCl stress on maize crop by improving the dry matter yield and water use efficiency (WUE). It decreased shoot Na concentration by increasing root and shoot K concentration of maize plants. It enhanced maximum quantum yield of primary photochemistry which leads to smooth electron transport chain. It also significantly enhanced shoot silicon concentration and has a significant positive correlation with WUE. Therefore, silicon-treated maize plants have better chance to survive under salt stress conditions as their photosynthetic apparatus is working far better than non-silicon-treated plants.  相似文献   

13.
Abstract

The effect of NaCl stress on the growth, membrane permeability, anti-oxidant enzyme activities and ion content of cucumber seedlings was investigated. Two cultivars (Jinchun No. 2, a relatively salt-sensitive cultivar, and Zaoduojia, a relatively salt-tolerant cultivar) of cucumber were used. Shoot and root dry weights, plant height, stem diameter, leaf area and leaf number of both cultivars decreased when NaCl concentrations increased. The decreases in shoot and root dry weights and leaf area were more significant in Jinchun No. 2 than in Zaoduojia. Meanwhile, the salt injury index, the membrane permeability, malondialdehyde (MDA) contents, superoxide dismutase (SOD) and peroxidase (POD) activities of both cultivars increased significantly with salt stress, and the increases in the salt injury index and MDA were higher in Jinchun No. 2 than in Zaoduojia, whereas the increase in POD activity was lower in Jinchun No. 2 than in Zaoduojia. Free proline content of Zaoduojia increased markedly with increasing concentrations of NaCl, whereas the content of Jinchun No. 2 was unaffected by salt stress. In addition, the contents of Na+ in the leaf, stem and root of both cultivars increased significantly, whereas the contents of K+ decreased significantly, resulting in an increase in the Na+/K+ ratio when NaCl concentrations increased. These results suggest that Zaoduojia exhibits a better protection mechanism against oxidative damage and lipid peroxidation by maintaining higher proline content and POD activity than the salt-sensitive Jinchun No. 2 cultivar.  相似文献   

14.
ABSTRACT

The interaction between soil salinity and infection caused by Verticillium dahliae was studied in pistachio (Pistacia vera) in a greenhouse experiment. Treatments consisted of 0, 1400, 2800, and 4200 mg sodium chloride (NaCl) kg? 1 soil and three rootstocks (Sarakhs, Badami, and Qazvini cultivars). They were gradually exposed to salinity stress before and/or after root inoculation with a water suspension of 107 conidia/mL of a pistachio isolate of V. dahliae. Salt stress significantly increased rootstock shoot and root colonization by V. dahliae. All rootstocks were susceptible to V. dahliae, but symptoms of the disease appeared earlier in Sarakhs, a salt sensitive cultivar. Moreover, salinity and V. dahliae interaction increased the concentrations of sodium (Na), potassium (K) and chloride (Cl), but decreased the K/Na ratio in all rootstocks. Shoot and root tissues of inoculated Sarakhs and Qazvini (a salt tolerant) contained the highest and the lowest concentrations of Na, K,and Cl, respectively. In salinity treatments, shoot and root dry weight of all rootstocks decreased as compared with controls. Sarakhs showed smaller shoot and root dry weight than Qazvini and Badami. Also, increasing the NaCl level increased accumulation of Na, K, and Cl in shoot and root of the rootstocks. Sarakhs showed higher concentrations of ions in the shoot and root. Based on shoot and root dry weights and ion accumulation, Sarakhs and Qazvini were susceptible and tolerant to salinity, respectively.  相似文献   

15.
Salt stress can affect alfalfa growth directly by adversely affecting metabolism, or indirectly by its effect on Rhizobium capacity for symbiotic N2 fixation. Growth and carbohydrate metabolism in leaves, roots and nodules of two alfalfa cultivars (Medicago sativa cv Apica and salt-tolerant cv Halo) in association with two rhizobial strains (A2 and salt-tolerant Rm1521) exposed to different levels of NaCl (0, 20, 40, 80 or 160 mM NaCl) were assessed under controlled conditions. For both cultivars, shoot and root biomasses and shoot to root ratio significantly declined with increasing NaCl concentrations. Under 80 mM NaCl, Halo plants yielded 20% more fresh shoot biomass than Apica while plants inoculated with Rm1521 allocated more biomass to the roots than to the shoots compared to A2. Halo plants maintained a steady shoot water content (about 80%) under the entire range of NaCl concentrations. Shoot water content was more variable in Apica. Apica in association with salt-tolerant strain Rm1521 maintained a better water status than with strain A2, as indicated by the higher shoot water content at 80 mM NaCl. Under salt stress, two major compatible sugars involved in plant osmoregulation, sucrose and pinitol, increased in leaves while a large accumulation of starch was observed in roots. In nodules, pinitol, sucrose and starch increased under salt stress and were much more abundant with strain Rm1521 than with A2. This suggests that there could be an active transport from the shoot to the nodules to help maintain nodule activity under NaCl stress and that strain Rm1521 increases the sink strength toward nodules. Our results show that combining cultivars and rhizobial strains with superior salt tolerance is an effective strategy to improve alfalfa productivity in salinity affected areas.  相似文献   

16.
According to the biphasic model of growth response to salinity, growth is first reduced by a decrease in the soil osmotic potential (Ψo), i.e., growth reduction is an effect of salt outside rather than inside the plant, and genotypes differing in salt resistance respond identically in this first phase. However, if genotypes differ in Na+ uptake as it has been described for the two maize cultivars Pioneer 3906 and Across 8023, this should result in differences in Na+ concentrations in the rhizosphere soil solution and thus in the concentration of salt outside the plant. It was the aim of the present investigation to test this hypothesis and to investigate the effect of such potential differences in soil Ψo caused by Na+ exclusion on plant water relations. Sodium exclusion at the root surface of intact plants growing in soil was investigated by sampling soil solution from the rhizosphere of two maize cultivars (Across 8023, Pioneer 3906). Plants were grown in a model system, consisting of a root compartment separated from the bulk soil compartment by a nylon net (30 μm mesh size), which enabled independent measurements of the change of soil solution composition and soil water content with increasing distance from the root surface (nylon net). Across 8023 accumulated higher amounts of sodium in the shoot compared to the excluder (Pioneer 3906). The lower Na+ uptake in the excluder was partly compensated by higher K+ uptake. Pioneer 3906 not only excluded sodium from the shoot but also restricted sodium uptake more efficiently from roots relative to Across 8023. This was reflected by higher Na+ concentrations in the rhizosphere soil solution of the excluder 34 days after planting (DAP). The difference in Na+ concentration in rhizosphere soil solution between cultivars was neither due to differences in transpiration and thus in mass flow, nor due to differences in actual soil water content. As the lower Na+ uptake of the excluder (Pioneer 3906) was only partly compensated by increased uptake of K+, soil Ψo in the rhizosphere of the excluder was more negative compared to Across 8023. However, no significant negative effect of decreased soil Ψo on plant water relations (transpiration rate, leaf Ψo, leaf water potential, leaf area) could be detected. This may be explained by the fact that significant differences in soil Ψo between the two cultivars occurred only towards the end of the experiment (27 DAP, 34 DAP).  相似文献   

17.
Olive trees (Olea europaea L.) are considered moderately tolerant to salinity, with clear differences found among cultivars. One‐year‐old self‐rooted olive plants of the Croatian cv. Oblica and Italian cv. Leccino were grown for 90 d in nutrient solutions containing 0, 66, or 166 mM NaCl, respectively. The shoot length and the number of nodes and leaves for both cultivars were not affected by salinity up to 66 mM NaCl. However, at 166 mM NaCl, growth of Leccino was reduced earlier and to a higher extent than growth of Oblica. After 10 d of exposure to 66 and 166 mM NaCl, increased activity of superoxide dismutase (SOD) was observed in Leccino, whereas there was almost no response in Oblica. Reduced SOD activity in Leccino at 166 mM NaCl was observed after prolonged stress (90 d), whereas in Oblica SOD was increased at 66 mM compared to control or 166 mM NaCl. Electrolyte and K+ leakage were increased and relative water content decreased as NaCl concentration increased with similar intensity of response measured in both cultivars. Oblica exhibited an ability to keep a higher K+ : Na+ ratio at all salinity levels compared to Leccino, but since no difference was found in leaf K+ concentration, this was mainly achieved by less Na+ ions reaching the younger leaves. The antioxidative system represents a component of the complex olive salt‐tolerance mechanism, and it seems that the role of SOD in protection from oxidative stress depends on sodium accumulation in leaves.  相似文献   

18.
Two Safflower (Carthamus tinctoriusL.) cultivars' seeds were used to study the influence of inoculation with mycorrhiza arbuscular fungi under salinity stress condition. Factorial experiment based on completely randomized design (three-way analysis of variance (ANOVA)) with 3 replications was used. Salinity treatment with 3 levels (0.5, 6, and 12 dS/m) and mycorrhizal arbuscular inoculation with two species (three levels consist of non-inoculation, and inoculation with Glomus intraradices and G. moseae) were applied on two cultivars of safflower (Goldasht and Padide) in this experiment. Some important biochemical, mineral, and growth traits were measured in this study. Salinity had a significant negative effect on all growth and morphological parameters including shoot and root dry weight, stem and root height. On the other hand, colonized plants showed better growth parameters under saline conditions compared with the control. The colonization of both mycorrhizal species decreased with salinity. Sugar and pigment content decreased with salinity, but their levels in colonized plants under saline conditions were higher than that in non-colonized plants. Mineral elements including phosphorus (P), nitrogen (N), and magnesium (Mg) were higher in colonized plants, while salinity decreased the absorption of these elements in both inoculated and non-inoculated plants. Higher activity of the enzymatic antioxidant means higher removal of these compounds and higher resistance to stress condition. Overall, it is clear that salinity had a negative effect on both cultivars of safflower, but these negative effects were lower in inoculated plants than in the non-inoculated ones; so, the use of mycorrhizal inoculation is a proper way to control the effect of salinity and maintain plant production.  相似文献   

19.
Salinity has a two‐phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build‐up in transpiring leaves. To elucidate salt‐resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt‐resistant and salt‐sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM–NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM–NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC‐1 produced the maximum and 7‐Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = –0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt‐resistant and salt‐sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up‐regulated, down‐regulated, disappeared, and new‐appeared) was only 1%–8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity.  相似文献   

20.
Two lettuce cultivars (Lactuca sativa L., cv. Calmar and cv. Climax) were selected to compare their tolerance to salt stress. The plants were grown in a hydroponic system using a 0.5 modified Hoagland solution. Treatments of 0, 40, 80, and 120 mol m–3 NaCl or 0 and 20 mol m–3 Na2SO4 were started when the second leaf above the cotyledons appeared. The plants were harvested 20 days later. Climax showed a greater tolerance to salinity at the 40 mol m–3 NaCl concentration; the % decrease in both shoot and root fresh weight was significantly less than Calmar. No differences between the cultivars were found in the Na2SO4 experiments. Differences in root Cl content at the 40 mol m–3 concentration corresponded to an enhanced water content of the roots. A mechanism for the observed differences in salt tolerance between the two cultivars is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号