首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pot experiment was carried out to study the effects of three arbuscular mycorrhizal fungi (AMF), including Glomus intraradices, Glomus constrictum and Glomus mosseae, on the growth, root colonization and Cd accumulation of marigold (Tagetes erecta L.) at Cd addition levels of 0, 5 and 50 mg kg-1 in soil. The physiological characteristics, such as chlorophyll content, soluble sugar content, soluble protein content and antioxidant enzyme activity, of Tagetes erecta L. were also investigated. The symbiotic relationship between the marigold plant and arbuscular mycorrhizal fungi was well established under Cd stress. The symbiotic relationship was reffected by the better physiobiochemical parameters of the marigold plants inoculated with the three AMF isolates where the colonization rates in the roots were between 34.3% and 88.8%. Compared with the non-inoculated marigold plants, the shoot and root biomass of the inoculated marigold plants increased by 15.2%- 47.5% and 47.8%-130.1%, respectively, and the Cd concentration and accumulation decreased. The chlorophyll and soluble sugar contents in the mycorrhizal marigold plants increased with Cd addition, indicating that AMF inoculation helped the marigold plants to grow by resisting Cd stress. The antioxidant enzymes reacted differently with the three AMF under Cd stress. For plants inoculated with G. constrictum and G. mosseae, the activities of superoxide dismutase (SOD) and catalase (CAT) increased with increasing Cd addition, but peroxidase (POD) activity decreased with increasing Cd addition. For plants inoculated with G. intraradices, three of the antioxidant enzyme activities were significantly decreased at high levels of Cd addition. Overall, the activities of the three antioxidant enzymes in the plants inoculated with AMF were higher than those of the plants without AMF inoculation under Cd stress. Our results support the view that antioxidant enzymes have a great influence on the biomass of plants, and AMF can improve the capability of reactive oxygen species (ROS) scavenging and reduce Cd concentration in plants to alleviate Tagetes erecta L. from Cd stress.  相似文献   

2.
铅锌矿区分离丛枝菌根真菌对万寿菊生长与吸镉的影响   总被引:3,自引:0,他引:3  
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

3.
Heavy metal(HM) contamination in soils is an environmental issue worldwide that threatens the quality and safety of crops and human health. A greenhouse experiment was carried out to investigate the growth, mycorrhizal colonization, and Pb and Cd accumulation of pakchoi(Brassica chinensis L. cv. Suzhou) in response to inoculation with three arbuscular mycorrhizal(AM) fungi(AMF), Funneliformis mosseae, Glomus versiforme, and Rhizophagus intraradices, aimed at exploring how AMF inoculation affected safe crop production by altering plant-soil interaction. The symbiotic relationship was well established between pakchoi and three AMF inocula even under Pb or Cd stress, where the colonization rates in the roots ranged from 24.5% to 38.5%. Compared with the non-inoculated plants, the shoot biomass of the inoculated plants increased by 8.7%–22.1% and 9.2%–24.3% in Pb and Cd addition treatments, respectively. Both glomalin-related soil protein(GRSP) and polyphosphate concentrations reduced as Pb or Cd concentration increased. Arbuscular mycorrhizal fungi inoculation significantly enhanced total absorbed Pb and Cd(except for a few samples) and increased the distribution ratio(root/shoot) in pakchoi at each Pb or Cd addition level. However, the three inocula significantly decreased Pb concentration in pakchoi shoots by 20.6%–67.5% in Pb addition treatments, and significantly reduced Cd concentration in the shoots of pakchoi in the Cd addition treatments(14.3%–54.1%), compared to the non-inoculated plants.Concentrations of Pb and Cd in the shoots of inoculated pakchois were all below the allowable limits of Chinese Food Safety Standard.The translocation factor of Pb or Cd increased significantly with increasing Pb or Cd addition levels, while there was no significant difference among the three AMF inocula at each metal addition level. Meanwhile, compared with the non-inoculated plants, AMF inocula significantly increased soil p H, electrical conductivity, and Pb or Cd concentrations in soil organic matter in the soils at the highest Pb or Cd dose after harvest of pakchoi, whereas the proportion of bioavailable Pb or Cd fraction declined in the AMF inoculated soil. Our study provided the first evidence that AM fungi colonized the roots of pakchoi and indicated the potential application of AMF in the safe production of vegetables in Pb or Cd contaminated soils.  相似文献   

4.
Beneficial interactions of arbuscular mycorrhizal fungi (AM Fungi) and plant growth promoting rhizobacteria (PGPR) have an important role in keeping agriculture sustainable. The present study reports the positive effects of AM fungi (Rhizophagus intraradices, Rhizophagus fasciculatum), Burkholderia seminalis and dual inoculation of these two strains on growth of Lycopersicon esculatum and Capsicum annuum plant under drought stress conditions. Each treatment was replicated six times and was arranged in a complete randomized block design. A significant increase in terms of biomass, root length, shoot length, and chlorophyll content was observed with the plants inoculated with these beneficial microorganisms. Accumulation of proline was found to be less in AM fungi inoculated plants suggesting the role of it in mitigating the water stress. A positive correlation between % colonization and chlorophyll content, root length, catalase activity, and guaiacol peroxidase has been observed depicting the importance of the AM fungi in drought tolerance.  相似文献   

5.
A field experiment was carried out to evaluate the effectiveness of mycorrhizal inoculation with three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge), and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and the addition of composted sewage sludge (SS) with respect to the establishment of Retama sphaerocarpa L. seedlings, in a semiarid Mediterranean area. Associated changes in soil chemical (nutrient content and labile carbon fractions), biochemical (enzyme activities), and physical (aggregate stability) parameters were observed. Six months after planting, both the addition of composted SS and the mycorrhizal‐inoculation treatments had increased total N content, available‐P content, and aggregate stability of the soil. Values of water‐soluble C and water‐soluble carbohydrates were increased only in the mycorrhizal‐inoculation treatments. Rhizosphere soil from the mycorrhizal‐inoculation treatments had significantly higher enzyme activities (dehydrogenase, protease‐BAA, acid phosphatase, and β‐glucosidase) than the control soil. In the short‐term, mycorrhizal inoculation with AM fungi was the most effective treatment for enhancement of shoot biomass, particularly with G. mosseae (about 146% higher with respect to control plants). The addition of the composted SS alone was sufficient to restore soil structural stability but was not effective with respect to improving the performance of R. sphaerocarpa plants.  相似文献   

6.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

7.
The present study investigated the effects of arbuscular mycorrhizal (AM) fungus, Glomus mosseae on the growth and physiology state of Erythrina variegata Linn, grown in sandy loam soil with four water stress levels viz. ?0.06 MPa (well watered/control), ?1.20 MPa (mild), ?2.20 MPa (moderate) and ?3.20 MPa (severe) in a completely randomized design. Plants were harvested after 90 days (60 days after stress induction) of growth. Growth parameters (root &, shoot, dry weight and, leaf area); physiological parameters (chlorophyll content, carotenoids, soluble starch, sugar, protein and proline in shoots); and microbiological parameter (percentage of mycorrhizal infection) were determined. AM fungal plants had significantly higher plant biomass, higher chlorophyll content (chlorophyll a and b), carotenoids and protein content in shoots than non-AM-plants. The AM-inoculation in stressed plants significantly declined the soluble sugar and starch in shoots. Moreover, AM-inoculation also reduced the proline accumulation in shoots and the reduction was significant when plants were severely stressed (?3.2 MPa). Mycorrhizal colonization in roots of E. variegata depressed significantly due to increased water stress. However, the AM colonization did not decline below 11% and enabled the plants to maintain osmotic adjustments and enhanced the plants tolerance against water stress.  相似文献   

8.
Effect of arbuscular mycorrhizal fungi (AMF) on heavy metal tolerance of alfalfa (Medicago sativa L.) and oat (Avena sativa L.) on a sewage-sludge treated soil In pot experiments with a sewage sludge treated soil, the influence of two arbuscular mycorrhizal fungi (AMF) isolates of Glomus sp. (T6 and D13) on plant growth and on the uptake of heavy metals by alfalfa (Medicago sativa L.) and oat (Avena sativa L.) was investigated. Alfalfa showed an increase of biomass with mycorrhizal infection only to a small extent. In oat AMF inoculation increased the growth of both root and shoot by up to 70% and 55% respectively. Mycorrhization raised the P-content and -uptake in alfalfa, but not in oat, in both roots and shoots. Mycorrhizal alfalfa showed lower Zn-, Cd- and Ni-contents and uptake in roots and shoots. The root length was significantly decreased in mycorrhizal alfalfa plants (up to 38%). The translocation of heavy metals into the shoot of mycorrhizal alfalfa was slightly increased. Mycorrhizal infection of oat led to higher concentrations of Zn, Cd and Ni in the root but to less Zn in the shoot. The translocation of heavy metals to the oat shoot was clearely decreased by mycorrhizal colonisation. This may be based on the ability of fungal tissues to complex heavy metals at the cell walls, thus excluding metals from the shoot. This conclusion is supported by the enhanced root length (up to 78%) of mycorrhizal oat plants in this experiment. The mycorrhizal infection seemed to protect plants against heavy metal pollution in soils. It was obvious that different host plants reacted in different ways.  相似文献   

9.
接种AM真菌对采煤沉陷区文冠果生长及土壤特性的影响   总被引:2,自引:2,他引:0  
煤炭井工开采往往造成地表塌陷,导致了土壤养分贫瘠和水分缺乏,土壤沙化和水土流失,从而限制了当地矿区植被生长,而丛枝菌根真菌(arbuscular mycorrhiza fungi,AM真菌)对植被生长有促进作用。以文冠果为宿主植物,采用野外原位监测和室内分析方法,研究了未接种和接种丛枝菌根真菌对采煤沉陷区复垦植物文冠果生长和土壤特性的影响。结果表明:与未接种AM真菌处理相比,接种AM真菌显著提高了文冠果根系菌根侵染率和土壤根外菌丝密度,7月接种AM真菌文冠果的株高、冠幅和地径提高了31.89%,23.07%,9.89%。同时,9月接种AM真菌处理的根际土壤全氮、碱解氮和有机碳含量分别比对照组增加0.29g/kg、13.0mg/kg和1.4g/kg,接种AM真菌显著提高了根际土壤的含水率、总球囊霉素和易提取球囊霉素,而速效磷和速效钾的含量显著降低。相关分析结果表明,菌根侵染率、土壤根外菌丝密度与根际土壤理化性质之间存在协同反馈效应。因此,接种AM真菌促进了采煤沉陷区复垦植被文冠果的生长和土壤的改良,这对矿区水土保持、维持生态系统稳定性和持续性具有重要意义。  相似文献   

10.
The effect of the dual inoculation with arbuscular mycorrhizal (AM) and saprophytic fungi and a combination of wheat straw and sewage sludge residues were studied by determining their effect on dry weight of tomato and on chemical and biochemical properties of soil. Incubation of organic residue (sewage sludge combined with wheat straw) with saprophytic fungi and plant inoculation with mycorrhizal fungi was essential to study plant growth promotion. Soil application of organic residues increased the dry weight of tomato inoculated with Rhizophagus irregularis. The greatest shoot dry mass was obtained when the organic residues were incubated with Trichoderma harzianum and applied to AM plants. However, the greatest percentage of root length colonized with AM in the presence of the organic residues was obtained with inoculation with Coriolopsis rigida. The relative chlorophyll was greatest in mycorrhizal plants regardless of the presence of either saprophytic fungus. The presence of the saprophytic fungi increased soil pH as the incubation time increased. Soil nitrogen and phosphorus contents and acid phosphatase were stimulated by the addition of organic residues, and contents of N and P. Total N and P content in soil increased when the organic residue was incubated with saprobe fungi, but this effect decreased as the incubation period of the residue with saprobe fungi increased. The same trend was observed for soil β‐glucosidase and fluorescein diacetate activities. The application of organic residues in the presence of AM and saprophytic fungi seems to be an interesting option as a biofertilizer to improve plant growth and biochemical parameters of soils.  相似文献   

11.
红壤中丛枝菌根真菌对污泥态铜生物有效性的影响   总被引:9,自引:0,他引:9  
以玉米为宿主植物 ,研究了不同污泥量 (0、1 %、4% )施入红壤后接种丛枝菌根真菌Acaulosporalaevis、Glomuscaledonium和Glomusmanihotis对菌根侵染率、孢子密度、玉米生长和铜生物有效性的影响。结果表明 ,施用 1 %的污泥可增加接种A laevis的菌根侵染率和孢子密度 ,其玉米地上部和地下部生物量也有显著增加 ,而不接种 (含土著菌根真菌 )、接种G caledonium和G manihotis的菌根侵染率、孢子密度、玉米地上部和地下部生物量却有显著下降 (p<0 0 5 )。施用 1 %的污泥时接种A laevis降低了玉米地上部铜浓度 ,而接种G caledonium和G manihotis却增加了玉米地上部铜浓度 ,另外 ,接种处理增加玉米根部对铜的吸收总量。不同的菌根真菌对重金属的耐受力是不同的 ,只有施入一定的污泥量即在一定污染程度下才能发挥菌根真菌A laevis对污染土壤的修复作用  相似文献   

12.
It has been previously indicated that arbuscular mycorrhizal (AM) fungi can enhance the bioremediation abilities of their host plant. Barley (Hordeum vulgare L.) is a crop plant with some unique physiological properties, such as tolerance to salinity. However, its tolerance to other stresses such as heavy metals must be tested. Accordingly, it was hypothesized that barley can be efficiently used to treat heavy metals in symbiotic and non-symbiotic association with AM fungi. In a greenhouse experiment barley plants were inoculated with the AM species Glomus mosseae and grown in a soil polluted with cadmium (Cd), cobalt (Co), and lead (Pb). Relative to Cd and Co, mycorrhizal barley absorbed significantly higher amounts of Pb. AM species also significantly decreased Cd and Co uptake by barley indicating the alleviating effects of G. mosseae on the stress of such heavy metals.  相似文献   

13.
The effects of inoculating arbuscular mycorrhizal (AM) fungi on the growth, phosphorus (P) uptake, and yield of Welsh onion (Allium fistulosum L.) were examined under the non-sterile field condition. Welsh onion was inoculated with the AM fungus, Glomus R-10, and grown in a glasshouse for 58?days. Non-inoculated plants were grown as control. Inoculated and non-inoculated seedlings were transplanted to a field with four available soil P levels (300, 600, 1,000, and 1,500?mg P2O5?kg?1 soil) and grown for 109?days. AM fungus colonization, shoot P concentration, shoot dry weight, shoot length, and leaf sheath diameter were measured. Percentage AM fungus colonization of inoculated plants was 94% at transplant and ranged from 60% to 77% at harvest. Meanwhile, non-inoculated plants were colonized by indigenous AM fungi. Shoot length and leaf sheath diameter of inoculated plants were larger than those of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Shoot P content of inoculated plants was higher than that of non-inoculated plants grown in soil containing 300 and 600?mg P2O5?kg?1 soil. Yield (shoot dry weight) was higher for non-inoculated plants grown in soil containing 1,000 and 1,500?mg P2O5?kg?1 soil than for those grown in soil containing 300 and 600?mg?P2O5 kg?1 soil. Meanwhile, the yields of inoculated plants (200?g plant?1) grown in soils containing the four P levels were not significantly different. Yield of inoculated plants grown in soil containing 300?mg P2O5 kg?1 soil was similar to that of non-inoculated plants grown in soil containing 1,000?mg P2O5?kg?1 soil. The cost of AM fungal inoculum for inoculated plants was US$ 2,285?ha?1 and lower than the cost of superphosphate (US$ 5,659?ha?1) added to soil containing 1,000?mg P2O5 kg?1 soil for non-inoculated plants. These results indicate that the inoculation of AM fungi can achieve marketable yield of A. fistulosum under the field condition with reduced application of P fertilizer.  相似文献   

14.
ABSTRACT

The effect of excess Zn and arbuscular mycorrhizal (AM) fungus on bioproduction and trace element nutrition were investigated in tomato. In a completely randomized factorial design, the experimental treatments – Zn addition at 0 (normal) and 300 (excess) mg Zn kg?1 soil, and AM inoculation (non-AM and Rhizophagus irregularis) – were set up in a growth chamber for 10 weeks. Generally, AM effects on the available Zn, Mn, Cu, and Fe in the rhizosphere soil were in tandem with the effects in host tissues. Under normal Zn condition, AM enhanced Cu availability in the rhizosphere, optimized the Cu:Zn balance in shoots, and increased the host biomass production. Excess Zn reduced mycorrhizal colonization in AM plants and the total plant biomass in both AM and non-AM plants. Although AM decreased the Zn concentrations in soil and host tissues under excess Zn, the distortions in host TE balance were not significantly ameliorated by the fungus. While Zn in fruit was within the safety threshold, Mn deficiency in the fruit was observed under excess Zn, alongside increased root-to-fruit Fe and Cu translocations. Mycorrhizal reductions in soil and tissue Mn concentrations were considered a minus in terms of probable symbiont amelioration of Mn:Zn in-balance under excess Zn. Additional microbe(s) that can enhance Mn homeostasis might be helpful in tomato under elevated soil Zn.  相似文献   

15.
Excess available K and Fe in Fe ore tailings with organic matter amendment and water-deficiencies may restrain plant colonization and growth, which hinders the formation of eco-engineered soil from these tailings for sustainable and cost-effective mine site rehabilitation. Arbuscular mycorrhizal (AM) fungi are widely demonstrated to assist plant growth under various unfavorable environments. However, it is still unclear whether AM symbiosis in tailings amended with different types of plant biomass and under different water conditions could overcome the surplus K and Fe stress for plants in Fe ore tailings, and if so, by what mechanisms. Here, host plants (Sorghum sp. Hybrid cv. Silk), either colonized or noncolonized by the AM fungi (Glomus spp.), were cultivated in lucerne hay (LH, C:N ratio of 18)- or sugarcane mulch (SM, C:N ratio of 78)-amended Fe ore tailings under well-watered (55% water-holding capacity (WHC) of tailings) or water-deficient (30% WHC of tailings) conditions. Root mycorrhizal colonization, plant growth, and mineral elemental uptake and partitioning were examined. Results indicated that AM fungal colonization improved plant growth in tailings amended with plant biomass under water-deficient conditions. Arbuscular mycorrhizal fungal colonization enhanced plant mineral element uptake, especially P, both in the LH- and SM-amended tailings regardless of water condition. Additionally, AM symbiosis development restrained the translocation of excess elements (i.e., K and Fe) from plant roots to shoots, thereby relieving their phytotoxicity. The AM fungal roles in P uptake and excess elemental partitioning were greater in LH-amended tailings than in SM-amended tailings. Water deficiency weakened AM fungal colonization and functions in terms of mineral element uptake and partitioning. These findings highlighted the vital role AM fungi played in regulating plant growth and nutrition status in Fe ore tailings technosol, providing an important basis for involvement of AM fungi in the eco-engineered pedogenesis of Fe ore tailings.  相似文献   

16.
The effect of indigenous soil and selected mycorrhizal inoculation and phosphorus (P) applications on wheat yield, root infection and nutrient uptake was monitored for two successive years under field conditions. In addition, phosphorus efficiency and inoculation effectiveness (IE) were determined. Wheat (Triticum aestivum L.) plants were used as host plants in a Menzilat soil series (Typic Xerofluvents) in the Mediterranean coastal region of Turkey. Three levels of phosphorus were applied with Glomus mosseae to wheat plants over two successive years. Mycorrhizal inoculation significantly increased root colonization. G. mosseae-inoculated plants in both years exhibited a two-fold higher root colonization than the indigenous mycorrhizal colonization. Compared with non-inoculated plants, mycorrhizal inoculation increased wheat yield for both years. In addition, increasing P fertilizer levels enhanced the wheat grain yield. In both years, the inoculum efficiency (IE) decreased with increasing P level addition. Phosphorus efficiency is higher under low P application than the higher P application. However, with mycorrhizal inoculation P efficiency is higher than the non-inoculated treatment.

The effects of mycorrhizal inoculation on plant nutrient concentrations were determined: mycorrhiza-inoculated plants exhibited a higher zinc (Zn), manganese (Mn), copper (Cu), iron (Fe) nutrients concentration than non-inoculated plants. After two years of field experiments, it is concluded that mycorrhizal inoculation can be used in large arable areas; however, it is also very important to manage the indigenous mycorrhiza of arable land.  相似文献   


17.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

18.
 The effect of the interaction between a vesicular-arbuscular (VA)-mycorrhiza (Glomus intraradices no. LAP8) and Streptomyces coelicolor strain no. 2389 on the growth response, nutrition and metabolic activities of sorghum (Sorghum bicolor) plants grown in non-sterilized soil amended with chitin waste was studied in a greenhouse over 8 weeks. Chitin amendment resulted in an increase in the microbial population and chitinase activity in soils. Growth of mycorrhizal G. intraradices no. LAP8 and non-mycorrhizal sorghum plants increased as compared with other treatments either in the presence or absence of S. coelicolor strain 2389. VA-mycorrhizal inoculation significantly increased the growth, photosynthetic pigments, total soluble protein and nutrient contents of sorghum compared to non-mycorrhizal sorghum. Such increases were related to increased mycorrhizal colonization. Inoculation with S. coelicolor 2389 significantly increased the intensity of mycorrhizal root colonization and arbuscular formation, but the levels of mycorrhizal infection and their beneficial effects were significantly reduced with the addition of chitin waste to the soil. Analysis of the content of total amino acids and ammonia in leaves on the basis of dry matter production showed that, in most instances, total amino acids of mycorrhizal plants were significantly higher than those of non-inoculated plants. The microflora of the rhizosphere was highly affected by mycorrhizal inoculation. Quantitative changes in acid and alkaline phosphatase activities of the roots in response to the mycorrhizal inoculation are discussed. Received: 11 August 1999  相似文献   

19.
 We investigated the effect of nursery inoculation techniques on mycorrhizal colonization and sporulation, growth responses, and nutrient (N and P) uptake to determine the suitable nursey inoculation method of wetland rice (Oryza sativa L.) under high-fertility soil conditions. Seedlings were produced in dry-nursery (DN, watered to 60% of –0.03 MPa) and wet-nursery (WN, 3–5 cm water from the soil surface) conditions with or without arbuscular mycorrhizal fungal (Glomus spp.) inoculation. Soil was γ-ray sterilized before use in this experiment. Mycorrhizal fungal colonization was 56% in DN and 23% in WN plants at 6 weeks of growth. The arbuscular mycorrhizal fungal colonization was significantly higher in plants of DN origin than in WN plants after transplantation to the pots, irrespective of growing stages. Mycorrhizal colonization was significantly decreased to 28% in DN plants and to 25% in WN plants at harvest. The grain yield was significantly influenced by nursery conditions. N and P acquisition of wetland rice plants inoculated with Glomus spp. was significantly greater than that of non-inoculated plants at maturity, especially in those originating from DN conditions. P translocation from shoots to grain was accelerated by mycorrhizas. Received: 6 April 1997  相似文献   

20.
Mycorrhizae are ubiquitous symbiosis which can mediate uptake of some plant nutrients. In polluted soils they could be of great importance in heavy metal availability and toxicity to plants. Mycorrhizae have also been reported to protect plants against toxic metals. We investigated the occurrence and infectivity of arbuscular mycorrhizal (AM) spores as affected by heavy metal levels and other soil properties in Norwegian soils collected from heavy metal polluted, high natural background and non-polluted areas. Spore numbers, mycorrhizal infectivity and spore germination of indigenous mycorrhizal fungi and of a reference strain (Glomus mosseae) in soils showed lower values in two soils with high metal concentrations and in one soil with a low pH. Mycorrhizal infectivity was negatively correlated with extractable metals. Spore number and mycorrhizal infectivity in a soil with naturally high heavy metal content were not different to in non-polluted soils, and indigenous AM fungi appeared more tolerant to metals than those in non-polluted soils. Mycorrhizal infectivity, expressed as MSI50 values, was significantly correlated (r′=0.89, P< 0.05) with the percentage of germinating G. mosseae spores in the soils. However, the number of spores per volume of soil was not significantly correlated with infectivity or spore germination of the reference strain. The spore germination method is discussed as a bioassay of heavy metal toxicity in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号