共查询到20条相似文献,搜索用时 32 毫秒
1.
Takashi Sato Yoshihiro Kaneta Noritoshi Furuta Hitomi Kobayashi Hayato Shindo Takeshi Ota 《Soil Science and Plant Nutrition》2013,59(5):695-702
We studied the effect of the soil physical properties on soybean nodulation and N2 fixation in the heavy soil of an upland field (UF) and an upland field converted from a paddy field (UCPF) in the Hachirougata polder, Japan. Seeds of the soybean cultivar Ryuho were sown in each field with or without inoculation of Bradyrhizobium japonicum A1017. The soybean plants were sampled at 35 (V3) and 65 (Rl) d after sowing (DAS), and then nodulation and the percentage of N derived from N2 fixation in the xylem sap were determined. The soil physical properties were different between UF and UCPF, especially the air permeability and soil water regime. Nodule growth was restricted in UCPF irrespective of rhizobial inoculation, though rhizobial infection was not inhibited by the unfavorable soil physical conditions. Soybean plant growth was closely related to the nodule mass and N2 fixation activity, and the inoculation of a superior rhizobium strain was effective only at 35 DAS. These results indicate that soybean nodulation and N2 fixation was considerably affected by the physical properties of heavy soil, and that it is important to maintain the N2 fixation activity and inoculate the soybean plants with a superior rhizobium strain at a later growth stage in order to increase soybean production in heavy soil fields. 相似文献
2.
Hiroyuki Fujikake Hiroyuki Yashima Takashi Sato Norikuni Ohtake Kuni Sueyoshi Takuji Ohyama 《Soil Science and Plant Nutrition》2013,59(2):211-217
Nodulated soybean (Glycine max. (L) Merr. cv. Williams) plants were hydroponically cultured, and various combinations of 1-week culture with 5 or 0 mm nitrate were applied using 13-d-old soybean seedlings during three successive weeks. The treatments were designated as 0-0-0, 5-5-5, 5-5-0, 5-0-0, 5-0-5, 0-5-5, and 0-0-5, where the three sequential numbers denote the nitrate concentration (mm) applied in the first-second-third weeks. The size of the individual nodule was measured periodically using a slide caliper. All the plants were harvested after measurement of the acetylene reduction activity (ARA) at the end of the treatments. In the 0-0-0 treatment, the nodules grew continuously during the treatment period. Individual nodule growth was immediately suppressed after 5 mm nitrate supply. However, the nodule growth rapidly recovered by changing the 5 mm nitrate solution to a 0 mm nitrate solution in the 5-0-0 and 5-5-0 treatments. In the 5-0-5 treatment, nodule growth was completely inhibited in the first and the third weeks with 5 mm nitrate, but the nodule growth was enhanced in the second week with 0 mm nitrate. The nodule growth response to 5 mm nitrate was similar between small and large size nodules. After the 5-5-5, 5-0-5, 0-0-5, and 0-5-5 treatments, where the plants were cultured with 5 mm nitrate in the last third week, the ARA per plant was significantly lower compared with the 0-0-0 treatment. On the other hand, the ARA after the 5-0-0 and 5-5-0 treatments was relatively higher than that after the 0-0-0 treatment, possibly due to the higher photosynthate supply associated with the vigorous vegetative growth of the plants supplemented with nitrate nitrogen. It is concluded that both soybean nodule growth and N2 fixation activity sensitively responded to the external nitrate level, and that these parameters were reversibly regulated by the current status of nitrate in the culture solution, possibly through sensing of the nitrate concentration in roots and / or nodules. 相似文献
3.
《Communications in Soil Science and Plant Analysis》2012,43(4):487-497
A field experiment was conducted to study the effect of adding different phosphorus (P) fertilizer levels [0, 40, and 80 kg phosphorus pentoxide (P2O5) ha?1 (abbreviated as P0, P1, and P2, respectively)] and rates of sheep manure (M) [0, 20, and 40 ton ha?1 (abbreviated as M0, M1, and M2, respectively)] on growth and nitrogen (N2) fixation of soybean (Glycine max L.). Sorghum bicolor L. was employed as a reference crop to evaluate N2 fixation using the 15N-isotpic dilution technique. Results showed that addition of P fertilizer or sheep manure had positive effects on dry-matter production, N accumulation, and seed yield. Such effects were more pronounced when adding sheep manure and P together than adding separately. Solely P fertilizer had a small impact on N2 fixation. A tangible increase in the amounts of N2 fixed due to manure addition occurred. The efficient use of N fertilizer (%NUE) increased significantly as the result of adding a high level of P fertilizer. However, a drastic decrease in %NUE was observed when sheep manure was added solely or in combination with P fertilizer. From productivity and ecological standpoints, P2M1 and P2M2 surpassed the other treatments in showing greater grain yield and greater N2 fixation. However, considering the high cost of sheep manure, P2M1 was the optimal treatment for improving growth and N2 fixation in soybean plants with minimal manure consumption. In conclusion, the integrated use of manure and P fertilizer could be considered a useful agricultural practice for improving the performance of soybean plants grown in an Aridisol. Their beneficial effects were mainly attributed to the enhancement of N2 fixation through root growth and soil property improvements besides being a source of P and other nutrients that are essential for N2-fixation process. 相似文献
4.
An experiment was conducted to identify the main nitrogenous compound transported in the xylem sap of soybean plants nodulated with Rhizobium fredii. Soybean (Glycine max L. Merr.) cultivars, wild type Bragg (nod+, fix+) and its nitrate tolerant, hypernodulating mutant ntsll16 (nod++, fix+) were used for this experiment. These soybean plants were inoculated with a slowgrowing rhizobium, Bradyrhizobium japonicum USDAllO or fast-growing rhizobia consisting of a mixture of R. fredii USDA191, USDA193, and USDA-194 and grown in a phytotron under natural light and controlled temperature conditions. Xylem sap was collected from Bragg and ntsll16 plants at the flowering and pod elongation stages. Acetylene reduction activity per plant or per nodule weight was not different between soybean lines and inoculums. The composition of the nitrogenous compounds in the xylem sap was compared between the symbionts, with B. japonicum and R. fredii. At the flowering stage, ureide-N and amide-N accounted for 53 to 70% and 20 to 27% respectively of the total N in the sap collected from the plants inoculated either with B. japonicum or R. fredii. At the pod elongation stage, ureide-N and amide-N accounted for 74 to 85%, and 7 to 19% of total sap N. With the growth of the soybean plants, the ratio of ureide-N in the xylem sap increased. These results suggest that in the case of wild soybean and the hypernodulating mutant line nodulated by R. fredii, ureide is transported as the main nitrogenous compound of fixed nitrogen in the xylem sap in the same way as in plants nodulated with B. japonicum. 相似文献
5.
Toshio Sugimoto Ryoichi Masuda Makoto Kito Naomasa Shiraishi Yoshikiyo Oji 《Soil Science and Plant Nutrition》2013,59(2):273-279
We compared the concentrations and contents of protein and oil in mature seeds from nodulated and non-nodulated soybean plants grown on soils with four different N levels during maturation. We observed a positive correlation between the contents of protein and oil in seeds from nodulated plants. Seeds from nodulated plants grown on urea-treated soil showed higher protein and lower oil contents than those from plants grown on soil treated with coated slow release N fertilizer (LP-100). Contents of these compounds in seeds from nodulated plants grown on LP-100 soil were almost the same as those from non-nodulated plants on the same soil. These observations indicated that N economy in roots during seed maturation affects the contents of storage compounds. We suggested that the control of the N2 fixation activity of soybean plants and management of soil N level during seed maturation are important to determine the contents of protein and oil in seeds. 相似文献
6.
Moe Shimotsuma Yasuhiro Nakajima Hiroko Akiyama 《Soil Science and Plant Nutrition》2013,59(2):178-184
ABSTRACTLegumes, including hairy vetch (Vicia villosa Roth), are widely used as green manures. They fix nitrogen (N) and provide the N to other crops when they decompose, and thus are considered alternatives for chemical N fertilizers. However, N-rich plant residues, including hairy vetch, are also sources of soil nitrous oxide (N2O) emissions, a greenhouse gas. On one hand, rice (Oryza sativa L. ssp. japonica) husk biochar is widely used as a soil conditioner in Japan and has been reported as a tool to mitigate soil N2O emissions. We conducted a soil core incubation experiment (1.5 months) to compare the N2O emissions during the decomposition of surface-applied hairy vetch (0.8 kg dried hairy vetch m?2 soil) under semi-saturated soil moisture conditions (~100% water-filled pore space (WFPS)), using two soil types, namely Andosol and Fluvisol. Throughout the incubation period, the use of biochar suppressed soil NH4+-N concentrations in Andosol, whereas the effect of biochar on NH4+-N was not clear in Fluvisol. Biochar increased the nitrate (NO3?-N) levels both in Andosol and Fluvisol, suggesting a negative influence on denitrification and/or a positive influence on nitrification. Biochar application did not influence the cumulative N2O emissions. Our study suggests that rice husk biochar is not a good option to mitigate N2O emissions during the decomposition of surface-applied hairy vetch, although this study was performed under laboratory conditions without plants. However, the trends of the inorganic-N concentration changes followed by the addition of hairy vetch and biochar were markedly different between the two soil types. Thus, factors behind the differences need to be further studied. 相似文献
7.
Ireneo J. Manguiat Danilo M. Mendoza Arnel M. Perez Tadakatsu Yoneyama 《Soil Science and Plant Nutrition》2013,59(4):593-604
Abstract A study was carried out to compare the difference or N-yield method with the 15N natural abundance method for the estimation of the fractional contribution of biological N2 fixation in the different plant parts of nodulating and non-nodulating isolines of soybeans. The results indicated that the δ15N values of most plant parts of soybeans were significantly lower (p<0.05) in the nodulating than in the non-nodulating isoline. However, in the case of the root+nodule component, the δ15N value was higher in the nodulating than in the non-nodulating isoline possibly due to isotopic discrimination of 15N over 14N which may have occurred in the nodules. Inoculation of soybeans with the Bradyrhizobium japonicum strain CB 1809 increased significantly (p<0.05) the δ15N value of the root+nodule component implying that the effectiveness of the soybean-rhizobium symbiosis had increased by inoculation. Percentage of plant N derived from atmospheric N2 fixation (%Ndfa) estimated by the 15N natural abundance method was highly correlated (r=0.762, p<0.01) with that by the difference or N-yield method and the differences between the two methods were not statistically significant. The agreement between the two methods was closer at maturity than at the early reproductive stage. The %Ndfa obtained by the difference method ranged from 48.4 to 92.6% whereas the %Ndfa obtained by the 15N natural abundance method ranged from 43.2 to 92.4% in the different plant parts. Based on the 15N natural abundance method, approximately 15% of the N in pod, shoot, grain, and shell was derived from the soil but in the case of stover, this fraction was about 55%. 相似文献
8.
Hidenori Wada Supamard Panichsakpatana Makoto Kimura Yasuo Takai 《Soil Science and Plant Nutrition》2013,59(3):449-452
Abstract Recently there has been developments in the measurement of N2 fixation due mainly to the C2H2 reduction method (1). This method, however, has several disadvantages, especially for submerged soil, and the estimated amount of fixed N2 on the basis of the C2H2 reduction activity is not very reliable. The tracer 15N2 technique which gives a reliable estimation of the fixed N2 is too expensive for common use. Development of an alternative method suitable for submerged soil would therefore be desirable. The present authors expected that the measurement of the ratio N2/Ar in the soil solution might provide advantages for the estimation of the fixed N2 in submerged soil. 相似文献
9.
Five barley cultivars were grown together in complete, low-P·low-pH and high-Al medium containing only NO3, only NH4 or both NO3 and NH4 as N sources, respectively using an automatic control system of pH for water culture, and the relationship between the differential Al tolerance and the plant-induced pH change of medium among the barley cultivars was investigated. The pH of the medium containing only NO3 as N source tended to increase, whereas the pH of the other media containing only NH4 or both NO3 and NH4 as N sources tended to decrease, but the fluctuations of the medium pH could be maintained within the value of 0.2 pH in the complete medium and within the value of 0.1 pH in the high-Al medium. Barley cultivars still differed in their Al tolerance in the medium which was continuously stirred and circulated at a constant pH. The pattern of Al tolerance was not affected by the N sources in the medium. The plant-induced pH change of medium for each cultivar was influenced by the N sources in the medium, and was not correlated positively with Al tolerance. The contents of Al and Ca or other nutrient cations in roots were positively correlated with Al tolerance and positive correlations were recognized also between the contents of Al and Ca or some other nutrient cations in the roots. In conclusion, the following mechanisms are proposed. Al tolerant barley cultivars exclude Al actively outside the plasmalemma of the root cells, and the excluded Al may polymerize and or react with P to form Al precipitates. Consequently, in the Al tolerant barley cultivars the Al content may be low in the root protoplasts, high in the whole root tissues and the contents of Ca or other nutrients may be high in the roots. The plant-induced pH change of medium is not considered to be the cause of the differential Al tolerance among barley cultivars. 相似文献
10.
Ichiro Kanno 《Soil Science and Plant Nutrition》2013,59(1):1-2
Introduction In Tottori district, there can be seen an extensive sand-dune region, which develops on the coastal terrace of the volcanogenous diluvium running from east to west along the shore of the Japan Sea. There is about 9750 hectares in total area: 5265 hectares comprising numerous inter-dune depressions are used for tillage field, 1207 hectares afforested and 3278 hectares left barren. 相似文献
11.
Supika Vanitchung Ralf Conrad Narumon W. Harvey 《Soil Science and Plant Nutrition》2013,59(5):650-658
Nitrous oxide (N2O) emissions from the soil surface of five different forest types in Thailand were measured using the closed chamber method. Soil samples were also taken to study the N2O production pathways. The monthly average emissions (±SD, n?=?12) of N2O from dry evergreen forest (DEF), hill evergreen forest (HEF), moist evergreen forest (MEF), mixed deciduous forest (MDF) and acacia reforestation (ARF) were 13.0?±?8.2, 5.7?±?7.1, 1.2?±?12.1, 7.3?±?8.5 and 16.7?±?9.2?µg N m?2 h?1, respectively. Large seasonal variations in fluxes were observed. Emission was relatively higher during the wet season than during the dry season, indicating that soil moisture and denitrification were probably the main controlling factors. Net N2O uptake was also observed occasionally. Laboratory studies were conducted to further investigate the influence of moisture and the N2O production pathways. Production rates at 30% water holding capacity (WHC) were 3.9?±?0.2, 0.5?±?0.06 and 0.87?±?0.01?ng N2O-nitrogen (N) g-dw?1day?1 in DEF, HEF and MEF respectively. At 60% WHC, N2O production rates in DEF, HEF and MEF soils increased by factors of 68, 9 and 502, respectively. Denitrification was found to be the main N2O production pathway in these soils except in MEF. 相似文献
12.
不同利用方式红壤反硝化势和气态产物排放特征 总被引:1,自引:1,他引:1
采用厌氧培养-乙炔抑制法测定了4种不同利用方式红壤的反硝化势和气态产物N2O和N2的排放速率。结果表明,不同利用方式红壤反硝化势和N2O和N2的排放速率差异明显,土壤反硝化势强弱顺序依次为:竹林>茶园>林地>旱地。反硝化势与土壤有机碳(P<0.05)、厌氧培养期间土壤CO2累积排放量(P<0.01)、nirS基因丰度( P<0.05)和nirK基因丰度(P<0.05) 呈显著正相关关系。逐步回归分析结果表明,CO2累积排放量表征的易矿化碳是造成不同利用方式红壤反硝化势差异的主要原因,可以解释反硝化势变化的66%(P<0.01)。不同利用方式红壤N2O和N2排放速率差异明显,旱地红壤N2O和N2排放速率均最低,表明土壤pH的提升并没有增加旱地红壤的反硝化损失风险和N2O排放速率。土壤易矿化有机碳含量也是影响不同利用方式红壤N2O和N2排放速率的主要因素。反硝化功能基因nirS、nirK和nosZ的丰度均与CO2累积排放量呈显著正相关关系,进一步支持了土壤易矿化有机碳含量是影响不同利用方式红壤反硝化势和气态产物排放的主要因子。土壤pH是影响不同利用方式红壤反硝化气态产物N2/N2O的主要因素,但是pH影响红壤N2/N2O的微生物机制仍需要进一步研究。 相似文献
13.
Effects of phosphorus (P) deficiency on nodulation were examined in soybean grown in nutrient solution for 7 weeks. Increasing P supply increased shoot growth of nitrogen (N2)-fixing plants from week 5 and that of nitrate-fed plant from week 4 after treatment. Nitrogen (N2)-fixing plants had a greater P requirement for maximum growth at week 5. Increasing P supply from 1 to 16 μ M increased N concentration in N2-fixing plants at week 4 but did not affect it from week 5. By contrast, P deficiency increased N concentration in nitrate-fed plants. Increasing P supply improved nodule formation from week 3. Nodule mass was affected more by P supply than nodule number, which, in turn, was affected more than plant growth. However, P supply did not decrease nodule specific N2 fixation from week 5. The results suggest that P deficiency impaired symbiotic N2 fixation through delaying onset of nodule function and decreasing nodule development. 相似文献
14.
Supamard Panichsakpatana Hidenori Wada Makoto Kimura Yasuo Takai 《Soil Science and Plant Nutrition》2013,59(2):165-171
Several important features of the N. fixation in paddy fields which were reported previously were confirmed and some new additional results regarding the evaluation of the N2 fixation in the rhizosphere were obtained by reinvestigation in the fields. In addition, rice plants were cultivated in the submerged soil in pots and various parts of the soil were analyzed for the N2-fixing activity as well as several other properties. The results of the pot experiments were found to be fairly similar to those observed in the field investigations, indicating the validity of the submerged soil in a pot as a rather simulated model for the actual paddy field. By using this model system, the following facts were ascertained: (1) Water-percolation had almost no effect on the N2-fixing activities of both the rhizosphere and the non-rhizosphere soils. (2) Suppressing effect of washing the root of rice plant on the N2-fixing activity was slight in the seedling stage and marked in the tillering and flowering stages. (3) The N2-fixing activity of a single rice root varied from tip to base. 相似文献
15.
YuHua Kong Mirai Watanabe Hirohiko Nagano Keiji Watanabe Miwa Yashima 《Soil Science and Plant Nutrition》2013,59(5):790-799
Land-use type and nitrogen (N) addition strongly affect nitrous oxide (N2O) and carbon dioxide (CO2) production, but the impacts of their interaction and the controlling factors remain unclear. The aim of this study was to evaluate the effect of both factors simultaneously on N2O and CO2 production and associated soil chemical and biological properties. Surface soils (0–10 cm) from three adjacent lands (apple orchard, grassland and deciduous forest) in central Japan were selected and incubated aerobically for 12 weeks with addition of 0, 30 or 150 kg N ha–1 yr–1. Land-use type had a significant (p < 0.001) impact on the cumulative N2O and CO2 production. Soils from the apple orchard had higher N2O and CO2 production potentials than those from the grassland and forest soils. Soil net N mineralization rate had a positive correlation with both soil N2O and CO2 production rates. Furthermore, the N2O production rate was positively correlated with the CO2 production rate. In the soils with no N addition, the dominant soil properties influencing N2O production were found to be the ammonium-N content and the ratio of soil microbial biomass carbon to nitrogen (MBC/MBN), while those for CO2 production were the content of nitrate-N and soluble organic carbon. N2O production increased with the increase in added N doses for the three land-use types and depended on the status of the initial soil available N. The effect of N addition on CO2 production varied with land use type; with the increase of N addition doses, it decreased for the apple orchard and forest soils but increased for the grassland soils. This difference might be due to the differences in microbial flora as indicated by the MBC/MBN ratio. Soil N mineralization was the major process controlling N2O and CO2 production in the examined soils under aerobic incubation conditions. 相似文献
16.
Hidenori Wada Supamard Panichsakpatana Makoto Kimura Yasuo Takai 《Soil Science and Plant Nutrition》2013,59(3):357-365
The 4 long-term experimental plots (Umbric haplaquept) with different fertilizer treatment at Cent. Agric. Exp. Sta. in Konosu City, Saitama Prefecture, were used for the sites of investigation. The 4 plots were NF (applied with no fertilizer), IF (applied with inorganic fertilizers), GM (applied with green manure and CaCO2), and OM (applied with manure and inorganic fertilizers). Flooded water, floating weed, upper (0-2cm) and lower (2-10cm) parts of Apg horizon and rhizosphere were collected from each plot before flooding, during flooding, and after drainage. These samples were analyzed for N2-fixing activity by acetylene reduction method, pH, Eh, and contents of Fe2+, NH4 +, chlorophyll-type compounds, and water-soluble carbohydrates. The N2-fixing activity of all samples showed almost the same pattern of change with time: very low before flooding, rapidly increased after flooding, the maximum value at the maximum tillering stage of rice plant, declined afterwards and reached a very low value after drainage. Rough estimation of the “N2-fixing capacity” of each part of the paddy field revealed that the most important site of the N2 fixation was the reduced Apg horizon, that the importance of flooded water and/or the oxidized layer in the N2 fixation was rather low except in infertile soil, and that the role of rhizosphere in the N2 fixation could not be neglected also in Japan. Reduced condition and content of easily decomposable organic substances were judged to be main factors which control the N2-fixing activity in the flooded soil on the basis of correlations between the Nt-fixing activity and several analytical data of the paddy soils. 相似文献
17.
Soil heterotrophic respiration during decomposition of carbon (C)-rich organic matter plays a vital role in sustaining soil fertility. However, it remains poorly understood whether dinitrogen (N2) fixation occurs in support of soil heterotrophic respiration. In this study, 15N2-tracing indicated that strong N2 fixation occurred during heterotrophic respiration of carbon-rich glucose. Soil organic 15N increased from 0.37 atom% to 2.50 atom% under aerobic conditions and to 4.23 atom% under anaerobic conditions, while the concomitant CO2 flux increased by 12.0-fold under aerobic conditions and 5.18-fold under anaerobic conditions. Soil N2 fixation was completely absent in soils replete with inorganic N, although soil N bioavailability did not alter soil respiration. High-throughput sequencing of the 16S rRNA gene further indicated that: i) under aerobic conditions, only 15.2% of soil microbiome responded positively to glucose addition, and these responses were significantly associated with soil respiration and N2 fixation and ii) under anaerobic conditions, the percentage of responses was even lower at 5.70%. Intriguingly, more than 95% of these responses were originally rare with < 0.5% relative abundance in background soils, including typical N2-fixing heterotrophs such as Azotobacter and Clostridium and well-recognized non-N2-fixing heterotrophs such as Sporosarcina, Agromyces, and Sedimentibacter. These results suggest that only a small portion of the soil microbiome could respond quickly to the amendment of readily accessible organic C in a fluvo-aquic soil and highlighted that rare phylotypes might have played more important roles than previously appreciated in catalyzing soil C and nitrogen turnovers. Our study indicates that N2 fixation could be closely associated with microbial turnover of soil organic C when available in excess. 相似文献
18.
Pot experiments were carried out to estimate N2 fixation by vetch,milk vetch,sickle alfalfa and broadbean in pure stand using a ^15N-labelled soil.Winter wheat was used as the non-fixing control.The 15N-labelled soil used was prepared by growing corn-wheat-corn successively on a nearly organic-matter-free Xiashu loess supplemented with adequate amounts of (15NH4)2SO4,P,K and micronutrients,then incorporating these 15N-labelled plant materials into the soil after each havest,and allowing the plant materials to be decomposed aerobically for 410d after incorporation of the plant material of the thire crop.The 15N enrichment of wheat plant-N varied slightly with organs,with a maximum difference of 9.8%,Based on 15N enrichment of soil N inferred from the mean value of the 15N enrichment in different organs of wheat 79%-91% of total N in the tops and 67%-74% of total N in the roots of legumes studied were derived from atmosphere .Estimate by isotope dilution method was in good agreement with that by the conventional difference method provided values obtained by the latter were corrected for seed N,and also with that from the measurement of N accumulated in the tops of the legumes. 相似文献
19.
A relationship among Cu, N, and Rhizobium japonicum was hypothesized because previous research had shown that (a) 35% or more legumes in the Atlantic Coastal Plain have Cu concentrations of 6 mg kg‐1 or less, (b) Cu influences N fixation in some legumes, and (c) irrigated soybean (Glycine max L. Merr.) can accumulate most of its N through fixation. Soybean were grown on a Cu‐deficient Norfolk (fine‐loamy, siliceous, thermic Typic Paleudult) loamy sand with 3 fertilizer sources of Cu, 2 strains of R. japonicum, and with or without 336 kg ha‐1 of N fertilizer. Application of Cu significantly increased the number of pods plant‐1 suggesting pod abortion in determinate soybean may be caused by low Cu, but seed yield was not increased. Fertilization with N increased vegetative growth, but not total biomass or seed yield. Inoculation with R. japonicum strain 110 significantly increased seed yield by 0.3 Mg ha‐1 compared to strain 587. The yield increase was similar with or without fertilizer N application indicating strain response was not totally caused by improved N efficiency. There was no relationship between seed yield and nodule occupancy as measured by the ELISA technique. 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(11):1133-1149
Abstract Excessive soil erosion and use of nitrogen fertilizer are costly to the Atlantic Coastal Plain corn (zea mays L., ’Funks G 4507') producer and both may serve to create environmental hazards. An in‐row chisel (36 cm deep) tillage method was compared with the standard 5 cm fluted coulter method for planting corn in premature wheat (Triticim aestivum L.) residues grown on an Orangeburg sandy loam (Typic Paleudult). Five orthogonal N levels ranging up to 440 kg of N/ha were used to determine an economic N optimum for each tillage method. The in‐row chisel tillage method provides a possible yield advantage in the Atlantic Coastal Plain because of observed restricting soil layers within the normal corn rooting zone. The estimated profit‐maximizing quantities of N fertilizer were 262 and 295 kg of N/ha (234 and 263 1b of N/acre) for the fluted coulter and in‐row tillage procedures, respectively. Corn grain yields associated with these inputs were 9.6 × 103 and 12.6 × 103 kg/ha (153 and 200 bu/acre), respectively. The yield increase associated with in‐row chiseling through a 2.5 metric ton mulched surface is attributed to potentially improved rooting and more efficient water storage and use. 相似文献