首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotypic differences in arsenic (As) and cadmium (Cd) uptake and their translocation within rice seedlings grown in solution culture were investigated. Arsenic uptake and its translocation differed significantly between eight cultivars. The largest shoot and root As concentrations were found in cultivar ‘TN1’ and ‘ZYQ8’, while cultivar ‘JX-17’ had the lowest As concentration. Arsenic concentration in shoot or root of ‘JX-17’ was about 50% of that in cultivar ‘ZYQ8’. Specific Arsenic uptake (SAU) was found significantly different between rice cultivars, which was about 2-fold higher of ‘ZYQ8’ than that of ‘JX-17’. The Cd accumulation also differed significantly between cultivars. Rice cultivar ‘JX-17’ had the highest ability in Cd uptake, but the lowest ability in Cd translocation from root to shoot. The transfer factor (TF) of Cd had an important effect on Cd accumulation by rice seedlings. Arsenic can competitively inhibit P uptake by rice seedlings, P concentrations in shoots, or roots treated with As were significantly lower than those without As addition. However, the concentrations of P and As were positively correlated within these genotypes. The Cd immobilization by cell wall was an important mechanism for Cd detoxification. The cell wall bound 21–44% of total Cd in shoots and 25–59% of total Cd in roots of these tested genotypes. The genotypic differences in As and Cd uptake and translocation within rice seedlings provide the possibility of selecting and breeding genotypes and /or cultivars with reduced levels of As and Cd in rice grains.  相似文献   

2.
A hydroponic experiment was conducted to investigate the effect of sulfur (S) on growth inhibition and oxidative stress caused by Cd2+ toxicity, using two rice cultivars with different grain Cd2+ content. Treatments consisted of factorial arrangement of three S levels (0.2, 0.4, and 0.8 mmol), two cadmium (Cd) levels (0 and 1 μ mol), and two rice cultivars (‘Bing 97252,’ a cultivar with low grain Cd2+ content, and ‘Xiushui 63,’ a cultivar with high grain Cd2+ content). The results showed that Cd2+ addition in the medium generally increased Cd2+ and malondialdehyde (MDA) content in both roots and shoots; the increases were more pronounced in ‘Xuishui 63’ than in ‘Bing 97252.’ Dramatic reductions in growth parameters, including plant height, root and shoot weight, tillers per plant, chlorophyll content, and net photosynthetic rate were found in the plants exposed to Cd stress relative to the plants without Cd2+ treatment. ‘Xiushui 63’ showed more sensitivity than ‘Bing 97252’ under Cd2+ exposure. In comparison with the lower S level (0.2 mmol), the higher S levels (0.4 and 0.6 mmol) helped alleviate Cd toxicity, characterized by a significant increase in growth parameters, and a decrease in Cd2+ and MDA content in both roots and shoots. In addition, superoxide dismutase (SOD) activity in the plants varied among tissues, cultivars, and Cd treatments. High Cd2+ and MDA content was consistently accompanied by higher SOD activity, and higher S levels caused a marked increase in glutathione content and a reduction in SOD activity, indicating a positive effect of S in alleviating oxidative stress.  相似文献   

3.
[目的]研究一氧化氮(NO)对镉(Cd)胁迫下水稻苗期生理生化及氮代谢响应的调节作用,探讨通过清除NO提高水稻耐Cd能力的措施.[方法]以Cd高积累(TN1)和Cd低积累(春江06)品种为材料,进行了Cd胁迫(40 nmol/L)水培试验.以Cd胁迫营养液为对照,在对照基础上设置添加硝普钠(Cd+SNP)、添加NO清除...  相似文献   

4.
ABSTRACT

To better understand the mechanisms responsible for differences in uptake and distribution of cadmium (Cd), nutrient-solution experiments were conducted with different varieties of rice (Oryza sativa), ‘Khitish’ and ‘CNRH3’. The plants were grown in a complete nutrient solution with different levels of pCd (-log free Cd+2 activity) and pFe [-log free iron (Fe+2) activity]. The required concentrations of chelating agent and metals were determined using a computerized chemical equilibrium model such as Geochem-PC. Experimental treatments included a combination of four pCd activity levels (0, 7.9, 8.2, and 8.5) applied as Cd (NO3)2 4H2O, and two pFe activity levels (17.0 and 17.8) applied as FeCl3. The application of both Cd and Fe in solution culture significantly affected plant growth, yield, and Cd accumulation in plant tissue. In general, yield of rice was decreased by an increase in amount of solution Cd; however, yield response varied among the cultivars. At the 7.9 pCd level, yields of rice cultivars ‘Khitish’ and ‘CNRH3’ were reduced to 69% and 65%, respectively, compared with control plants. Root Cd concentrations ranged from 2.6 mg kg?1 (control plants) to 505.7 mg kg?1 and were directly related to solution Cd concentrations. In rice plants, Cd toxicity symptoms resembled Fe chlorosis. Differential tolerance of varieties to phytotoxicity was not readily visible, but a significant interaction of substrate Cd and variety was obtained from dry-matter yields. Significant interactions indicated that response of tissue Cd concentration, plant Cd uptake, and translocation of Cd to the aerial parts were dependent on variety as well as substrate Cd. Uptake of Cd by roots was significantly higher than by shoots. Higher Cd uptake by rice plants decreased the uptake of other beneficial metals.

The effect of Cd and Fe on the rate of phytometallophore release was also studied in the nutrient solution. Among the rice genotypes, ‘Khitish’ was the most sensitive to Cd toxicity. In both genotypes, with the onset of visual Cd-toxicity symptoms, the release of phytometallophore (PM) was enhanced. Among the rice varieties, ‘Khitish’ had the highest rate of PM release. Treatments with the metal ions studied produced a decrease in chlorophyll and enzyme activity. A decrease in concentrations of chlorophyll pigments in the third leaf was observed due to the highest activity level of Cd (pCd 7.9). Activities of enzymes such as peroxidase (POD) and superoxide dismutase (SOD) are altered by toxic amounts of Cd. Changes in enzyme activities occurred at the lowest activity of Cd (pCd 8.5) in solution. Peroxidase activity increased in the third leaf. Results showed that in contrast with growth parameters, the measurements of enzyme activities may be included as early biomarkers in a plant bioassay to assess the phytotoxicity of Cd-contaminated solution on rice plants. Evidence that Cd uptake and translocation are genetically controlled warrants the selection of varieties that assimilate the least Cd and that translocate the least metal to the plant part to be used for human and animal consumption.  相似文献   

5.
以较耐镉(武育粳3号,WYJ)和镉敏感(汕优63,SY63)的2个不同耐性水稻品种为材料,采用溶液培养试验,研究了镉处理(Cd.1.0和5.0mol/L)对水稻幼苗光合作用、可溶性糖和生长的影响。结果表明,镉胁迫下,水稻幼苗的光合作用显著地受到抑制。与不加镉的对照相比,随镉水平的提高水稻幼苗净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、气孔限制值(Ls)逐步下降,尤其是在Cd.5.0mol/L处理下的植株,下降幅度武育粳3号显著小于汕优63。蒸腾效率(Te)也随镉浓度的增加而降低,但变化与净光合速率等不同,武育粳3号的下降速率要大于汕优63的。加镉处理使2个水稻品种幼苗叶片可溶性糖含量均显著升高,而叶绿素含量仅汕优63在Cd.5.0mol/L处理下与对照差异显著。加镉处理使汕优63根系生长(根长)显著受到抑制,而株高仅在Cd.5.0mol/L时显著降低。武育粳3号生长与对照差异不显著。本研究结果表明,随着镉处理水平的提高,镉对水稻幼苗的毒害作用增加,但是水稻对镉毒害的响应存在明显的基因型差异。  相似文献   

6.
采用土培盆栽试验方法,以东北地区大面积种植的32个水稻品种为试验材料,在土壤中未添加和添加Cd(5mg.kg-1Cd)的条件下,研究水稻生长、籽粒产量和Cd在水稻植株不同部位的分配规律。结果表明,土壤中添加Cd后,多数水稻籽粒产量和植株总生物量下降,只有少数品种籽粒产量和生物量有所上升。Cd在水稻植株中的含量遵循根系〉茎叶〉颖壳〉籽粒的规律,但从分配比例来看,土壤中未添加Cd时根系中Cd的分配比例较高,添加Cd后茎叶中Cd的分配比例明显增加。从稻米产量和质量安全角度综合考虑,认为越路早生(3号)品种为农业生产中较理想的种植品种,沈农265(1号)、农林315(30号)、屉锦(31号)、沈稻12(32号)品种可以在中轻度污染的农田土壤条件下种植,而千重浪-1(8号)、辽盐2(14号)、辽盐283(17号)、辽恢190(19号)以及吉03-2843(27号)品种尽量避免在污染土壤上种植。研究结果对东北地区镉污染稻田选择水稻品种,保障稻米安全具有重要意义。  相似文献   

7.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

8.
《Journal of plant nutrition》2013,36(7):1259-1270
Abstract

The effect of cadmium (Cd) toxicity on growth, lipid peroxidation, and antioxidant enzymes was studied using two rice cultivars, Bing 97252 with low and Xiushui 63 with high grain Cd accumulation. Plants were exposed to 0–5 μ M Cd in hydroponic culture. Cadmium stress inhibited plant height and chlorophyll content and altered melondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Roots and shoots responded differently to Cd in terms of antioxidant enzyme activity. Generally, the activities of SOD, POD, and CAT decreased with increase in Cd level, while the activity of MDA increased with increase in Cd level. With the increase in Cd concentration in nutrient solution, MDA content in shoots and roots of Xiushui 63 increased at a much higher rate than did that of Bing 97252 at both growth stages. At booting stage, a decrease of 46%–52% in SOD activity was noted in plant roots grown under 5 μ M Cd, while at tillering stage the decrease was 13%–19% compared with the control. A significant decrease in chlorophyll content and plant height was noted under higher Cd treatment (1.0 and 5.0 μ mol) at two stages. The higher MDA and lower chlorophyll content in the cultivar Xiushui 63 showed that it is more sensitive to Cd than the cultivar Bing 97252.  相似文献   

9.
Heavy metal uptake, translocation and partitioning differ greatly among plant cultivars and plant parts. A pot experiment was conducted to determine the effect of cadmium (Cd) levels (0, 45 and 90 mg kg?1 soil) on dry matter yield, and concentration, uptake and translocation of Cd, Fe, Zn, Mn and Cu in seven rice cultivars. Application of 45 mg Cd kg?1 soil decreased root and shoot dry weight. On average, shoot and root Cd concentrations and uptake increased in all cultivars, but micronutrients uptake decreased following the application of 45 mg Cd kg?1. No significant differences were observed between 45 and 90 mg kg?1 Cd levels. On average, Cd treatments resulted in a decrease in Zn, Fe and Mn concentrations in shoots and Zn, Cu and Mn concentrations in roots. Differences were observed in Cd and micronutrient concentrations and uptake among rice cultivars. Translocation factor, defined as the shoot/root concentration ratio indicated that Cu and Fe contents in roots were higher than in shoots. The Mn concentration was much higher in shoots. Zinc concentrations were almost similar in the two organs of rice at 0 and 45 mg Cd kg?1. A higher Cd level, however, led to a decrease in the Zn concentration in shoots.  相似文献   

10.
A pot experiment was conducted to investigate whether the shoot cadmium (Cd) concentration in 11 rice and 10 soybean cultivars varied among 4 soils with different levels of Cd contamination. Significant differences in shoot Cd concentration were found among rice or soybean cultivars grown in the 4 soils. The ranking of the rice cultivars for the shoot Cd concentration varied considerably among the soils. On the other hand, the soybean cultivars were ranked similarly in terms of shoot Cd concentration in the 4 soils. Significant and positive correlations were found between the Cd and Zn concentrations and between the Cd and Mn concentrations in the shoot of rice cultivars, when they were grown in 2 soils with relatively moderate levels of Cd contamination. The shoot Cd concentration in the soybean cultivars, however, was not correlated with the concentrations determined for any of the metals (Zn, Mn, Cu, and Fe) across the 4 soils. Significant and positive correlations between the concentrations of Cd in younger shoots and mature seeds were detected among the soybean cultivars in 2 soils used, unlike among the rice cultivars, indicating that it may be difficult to evaluate the genotypic variation in seed Cd concentration using relatively younger shoots in the case of rice. These results revealed that genotypic differences in shoot Cd concentration in rice or soybean are variable or invariable among soils, respectively.  相似文献   

11.
Some indica rice varieties are potential phytoextractors for paddy fields polluted with Cd because of their high biomass and because they can accumulate Cd to moderate levels in their shoots. To establish a practical phytoextraction system, phytoextraction using two indica rice cultivars (MORETSU and IR-8) was carried out in a paddy field polluted with moderate Cd levels (2.91 and 2.52 mg kg−1, respectively). The Cd concentration and Cd uptake of MORETSU increased when irrigation water was drained at the maximum tillering stage, and the paddy soil was under oxidative conditions until harvesting. The Cd uptake of MORETSU and IR-8 increased and reached 516 and 657 g ha−1, respectively, at the beginning of October. After phytoextraction using these high Cd accumulating rice varieties for 2 years, the Cd concentration in the paddy field decreased by 18% compared with the initial Cd concentration. The Cd concentration in the rice grains of a japonica ordinary rice variety (HINOHIKARI) subsequently grown on the field after the phytoextraction was lower than the concentration in rice grown on a non-phytoextracted field. These results suggest that phytoextraction using high Cd accumulating rice varieties with early drainage of irrigation water is a practical remediation system for moderate Cd polluted paddy fields in southwest Japan.  相似文献   

12.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

13.
以矿区周边Cd—Pb复合污染的农田土壤为供试材料,设置0,2.5%和5%(w/w)3个生物炭添加处理,通过盆栽试验探讨生物炭对再生稻吸收土壤中Cd和Pb的影响。结果表明,生物炭施加提高土壤pH和有机质含量,使Cd和Pb从移动性较强的弱酸提取态转化为较稳定的可还原态,且土壤CaCl2提取的有效态Cd和Pb含量分别降低33.23%~53.23%和66.52%~91.45%。同时,生物炭抑制Cd在头季和再生季水稻叶到糙米中的迁移,降低Pb从茎到叶和糙米的迁移,从而减少Cd和Pb在糙米中的累积;在5%生物炭处理下,再生季糙米Cd含量为0.15mg/kg,低于食品安全国家标准限量值(0.2mg/kg);Pb含量比对照处理降低68.18%。此外,再生季糙米中Cd和Pb含量低于头季稻糙米中相应的含量。因此,生物炭可以抑制Cd和Pb在再生稻体内的累积,降低糙米的重金属污染风险。  相似文献   

14.
采用土培盆栽试验方法,以东北地区大面积种植的32个水稻品种为试验材料,在土壤中未添加(0mg·kg。Cd)和添加Cd(5mg·kg-Cd)的条件下,研究不同品种水稻籽粒、颖壳、茎叶和根系中Cd、Fe、Mn、Cu、Zn、Si几种微量元素的累积分布特征以及它们之间的相关关系。结果表明,几种微量元素在根系和茎叶中的含量大于籽粒和颖壳,其中Cd、Fe在根系和茎叶中的累积远远高于其他元素。水稻不同部位各微量元素之间大多数表现为正相关关系,加cd处理后元素之间的相关性变得更明显,尤其是籽粒中cd与其他元素之间从未加cd时不相关到加Cd后达到极显著相关水平。从微量元素含量来看,3号品种(越路早生)籽粒中Cd和其他有益微量元素含量相对较低,而8(千重浪-1)和27(吉03-2843)号品种含量较高。从营养价值和食品安全角度综合考虑,在无污染的农田土壤上,宜选择3、8、27号作为理想的水稻品种。  相似文献   

15.
Yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (L. angustifolius L.) are grown as grain legumes in rotation with spring wheat (Triticum aestivum L.) on acidic sandy soils of south-western Australia. Yellow lupin can accumulate significantly larger cadmium (Cd) concentrations in grain than narrow-leafed lupin. A glasshouse experiment was undertaken to test whether adding increasing zinc (Zn) levels to soil increased Zn uptake by yellow lupin reducing accumulation of Cd in yellow lupin grain. Two cultivars of yellow lupin (cv. ‘Motiv’ and ‘Teo’) and 1 cultivar of narrow-leafed lupin (cv. ‘Gungurru’) were used. The soil was Zn deficient for grain production of both yellow and narrow-leafed lupin, but had low levels of native soil Cd (total Cd <0.05 mg kg?1) so 1.6 mg Cd pot?1, as a solution of cadmium chloride (CdCl2·H2O), was added and mixed through the soil. Eight Zn levels (0–3.2 mg Zn pot?1), as solutions of zinc sulfate (ZnSO4·7H2O), were added and evenly mixed through the soil. Yellow lupin accumulated 0.16 mg Cd kg?1 in grain when no Zn was applied, which decreased as increasing Zn levels were applied to soil, with ~0.06 mg Cd kg?1 in grain when the largest level of Zn (3.2 mg Zn pot?1) was applied. Low Cd concentrations (<0.016 mg Cd kg?1) were measured in narrow-leafed lupin grain regardless of the Zn treatment. When no Zn was applied, yellow lupin produced ~2.3 times more grain than narrow-leafed lupin, indicating yellow lupin was better at acquiring and using indigenous Zn from soil for grain production. Yellow lupin required about half as much applied Zn as narrow-leafed lupin to produce 90% of the maximum grain yield, ~0.8 mg pot?1 Zn compared with ~1.5 mg Zn pot?1. Zn concentration in whole shoots of young plants (eight leaf growth stage) related to 90% of the maximum grain yield (critical prognostic concentration) was (mg Zn kg?1) 25 for both yellow lupin cultivars and 19 for the narrow-leafed lupin cultivar. Critical Zn concentration in grain related to 90% of maximum grain yield was (mg Zn kg?1) 24 for both yellow lupin cultivars compared with 20 for the narrow-leafed lupin cultivar.  相似文献   

16.
ABSTRACT

Salinity is one of the main problems in agricultural soils. In order to study zinc (Zn) application effects (0, 10, 20 mg Zn kg?1 soil and foliar application) on growth and nutrient uptake under salinity stress (3, 7, 10 dSm?1) in two rice cultivars (Tarom and Daylamani), the present work was conducted as a factorial arrangement based on a randomized complete design with three replications in greenhouse conditions. The results showed that Zn application under salinity stress promoted shoot and grain yield. The lowest and highest protein percent in every salinity and Zn levels belonged to Daylamani and Tarom cultivars, respectively. The results showed that the more Zn applied, the more Zn accumulated in the shoots and grain. Generally, based on the results Zn application in low and moderate salinity levels promotes the growth and yield of the rice and Daylamani cultivar showed more endurance to salinity than Tarom cultivar.  相似文献   

17.
Effects of silicon (Si) on subcellular distribution and chemical forms of Cd in two contrasting peanut cultivars, Qishan 208 (low seed Cd cultivar) and Haihua 1 (high seed Cd cultivar), were investigated by a hydroponics experiment at low Cd level (0.2 μM CdCl2). Two cultivars differ in Cd translocation, subcellular distribution and chemical forms. In comparison to Qishan 208, Haihua 1 shows higher translocation factors (TFs); this may be resulted from higher Cd in the soluble fraction, and a larger proportion of inorganic Cd (extracted by 80% ethanol) and water-soluble Cd (extracted by d-H2O) in roots. Pretreatment with Si decreased Cd in the cell wall, and enhanced Cd in the soluble fraction for both cultivars. However, effects of Si on chemical forms and TFs are cultivar dependent. Si enhances Cd translocation and the d-H2O extractable Cd in Haihua 1. Positive correlations were observed between TF and Cd in the soluble fraction (r = 0.71, P < 0.05), and between TF and d-H2O extractable Cd in root (r = 0.89, P < 0.001). Therefore, larger proportion of d-H2O extractable Cd may be responsible for high TF in Si pretreated plants of Haihua 1.  相似文献   

18.
The experiment was conducted to study the effects of aging on the physicochemical properties of two Thai cultivars of milled glutinous rice (RD6 and RD8). The amylose and protein content of rice samples did not change when stored from 0 to 4 months. Amylograph curves from samples of milled rice stored from 0 to 8 months were analyzed. Both cultivars gave constant gelatinization temperature during aging. The values for peak viscosity, final viscosity on cooking at 94°C, viscosity on cooling to 50°C and breakdown decreased significantly for RD6 cultivar, whereas the setback value and consistency were not changed significantly. For RD8 cultivar, no significant difference was observed for viscosity on cooling to 50°C and consistency during aging up to 8 months. Peak viscosity and breakdown value were reduced during storage, whereas the final viscosity on cooking at 94°C and setback value increased with time. Raw milled rice of both RD6 and RD8 cultivars have similar water uptake rates. Stored rice tended to have a lower water uptake rate which increased proportionately with soaking time. Samples from both rice cultivars were used to make rice crackers to study the effects of aging on quality. Volume expansion of rice crackers made from RD6 and RD8 cultivars tended to decrease during storage which resulted in an increase in the hardness of the crackers.  相似文献   

19.
对重金属具有高耐性、低富集的水稻品种可用于轻度重金属污染的水稻土。采用温室盆栽试验研究2种水稻土(红泥田和黄泥田)中Cd、As污染对9种水稻生长的影响,分析不同水稻品种对Cd、As富集能力的差异。结果表明,As污染处理下所有水稻品种的生物量均显著降低,在红泥田上,水稻生物量降低幅度为29.4%~54.3%;在黄泥田上,降低幅度为29.5~53.3%。不同水稻品种对As耐性有显著差异(P〈0.05),晚粳9707(粳稻)生物量降幅较小,耐性较高;浙1500(籼稻)降幅较大,耐性较低。对于Cd污染处理,在2种类型土壤上9种水稻对Cd耐性差异不显著。不同水稻品种对土壤Cd、As的富集能力有显著差异(P〈0.05)。在2种类型土壤上,德农2000(杂交稻)和浙1500(籼稻)分别对As、Cd的富集系数最高,对As、Cd污染敏感;南粳32(粳稻)对Cd、As的富集系数均较低,对Cd、As污染不敏感。在9个水稻品种中,南粳32对Cd、As的富集能力最低,并且对As耐性较高,适合在Cd、As轻度污染的水稻土上种植。  相似文献   

20.
This study aimed to investigate the impact of water deficit on cadmium (Cd) accumulation in peanut plants during different developmental stages. Two contrasting peanut cultivars, Fenghua 1 (high-biomass cultivar) and Silihong (low-biomass cultivar), were grown in a Cd-contaminated arable soil under different water regimes. The two cultivars differed from each other in seed Cd concentrations. Fenghua 1 exhibited lower Cd concentrations in the seeds than Silihong, which is associated with root-to-shoot Cd translocation. Drought plays different roles in the translocation and redistribution of Cd in peanut plants during different developmental stages. At the seedling stage, drought decreased shoot Cd concentrations for both cultivars, whereas at the pod-filling and pod-ripened stages, drought increased shoot Cd concentrations. Similarly, drought stress reduced pod Cd concentrations at the pod-filling stages and increased at the pod-ripened stages. Seed Cd concentrations in mature plants were increased by drought for both cultivars. Seed Cd concentrations were negatively correlated with biomasses of shoots and pods, but positively correlated with Cd concentration in the shoots and pods. Increased seed Cd concentrations under drought stress might result from the concentration effects due to drought induced decrease of plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号