首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A better understanding of the nitrogen (N) cycle in agricultural soils is crucial for developing sustainable and environmentally friendly N fertilizer management and to propose effective nitrous oxide (N2O) mitigation strategies. This laboratory study quantified gross nitrogen transformation rates in uncultivated and cultivated black soils in Northeast China. It also elucidated the contribution made by nitrification and denitrification to the emissions of N2O. In the laboratory, soil samples adjusted to 60 % water holding capacity (WHC) were spiked with 15NH4NO3 and NH4 15NO3 and incubated at 25 °C for 7 days. The size and 15N enrichment of the mineral N pools and the N2O emission rates were determined between 0 and 7 days. The results showed that the average N2O emission rate was 21.6 ng N2O-N kg?1 h?1 in cultivated soil, significantly higher than in the uncultivated soil (11.6 ng N2O-N kg?1 h?1). Denitrification was found to be responsible for 32.1 % of the N2O emission in uncultivated soil, and the ratio increased significantly to 43.2 % in cultivated soil, due to the decrease in soil pH. Most of the increase in net N2O-N emissions observed in the cultivated soil was resulting from the increased production of N2O through denitrification. Gross nitrification rate was significantly higher in the cultivated soil than in the uncultivated soil, and the ratio of gross nitrification rate/ammonium immobilization rate was 6.87 in cultivated soil, much larger than the uncultivated soil, indicating that nitrification was the dominant NH4 + consuming process in cultivated soil, and this will lead to the increased production of nitrate, whereas the increased contribution of denitrification to N2O emission promoted the larger emission of N2O. This double impact explains why the risk of N loss to the environment is increased by long-term cultivation and fertilization of native prairie sites, and controlling nitrification maybe effective to abate the negative environmental effects.  相似文献   

2.
Abstract

We studied the effect of crop residues with various C:N ratios on N2O emissions from soil. We set up five experimental plots with four types of crop residues, onion leaf (OL), soybean stem and leaf (SSL), rice straw (RS) and wheat straw (WS), and no residue (NR) on Gray Lowland soil in Mikasa, Hokkaido, Japan. The C:N ratios of these crop residues were 11.6, 14.5, 62.3, and 110, respectively. Based on the results of a questionnaire survey of farmer practices, we determined appropriate application rates: 108, 168, 110, 141 and 0 g C m?2 and 9.3, 11.6, 1.76, 1.28 and 0 g N m?2, respectively. We measured N2O, CO2 and NO fluxes using a closed chamber method. At the same time, we measured soil temperature at a depth of 5 cm, water-filled pore space (WFPS), and the concentrations of soil NH+ 4-N, NO? 3-N and water-soluble organic carbon (WSOC). Significant peaks of N2O and CO2 emissions came from OL and SSL just after application, but there were no emissions from RS, WS or NR. There was a significant relationship between N2O and CO2 emissions in each treatment except WS, and correlations between CO2 flux and temperature in RS, soil NH+ 4-N and N2O flux in SSL and NR, soil NH+ 4-N and CO2 flux in SSL, and WSOC and CO2 flux in WS. The ratio of N2O-N/NO-N increased to approximately 100 in OL and SSL as N2O emissions increased. Cumulative N2O and CO2 emissions increased as the C:N ratio decreased, but not significantly. The ratio of N2O emission to applied N ranged from ?0.43% to 0.86%, and was significantly correlated with C:N ratio (y = ?0.59 ln [x] + 2.30, r 2 = 0.99, P < 0.01). The ratio of CO2 emissions to applied C ranged from ?5.8% to 45% and was also correlated with C:N ratio, but not significantly (r 2 = 0.78, P = 0.11).  相似文献   

3.
Nitrous oxide (N2O) was emitted during a frost period from an old grassland as well as during thawing. Soil incubations at various times throughout the freezing period showed that highest emission rates were emitted around 0 °C, and the magnitude of the emission peak increased with the length of the freezing period. Highest N2O emissions during freezing and thawing were measured from soil previously treated with nitrate (NO3). The emitted N2O was produced via reduction of NO3. The steady drop in N2O emission at soil temperatures higher than 2 °C coincided with large dinitrogen (N2) emissions which most likely reflected the increasing enzymatic activity of N2O reductase with increasing temperatures. Measurements of mineral N concentrations showed that NO3 and NH4+, which were shortly after fertilizer application immobilized into the microbial biomass, became partly available again through the freezing effect and caused large N2O emissions in winter. This study provided evidence that N2O emissions during freezing and thawing in the winter are due to biological rather than chemical activity in soil.  相似文献   

4.
We assessed the effect of liming on (1) N2O production by denitrification under aerobic conditions using the 15N tracer method (experiment 1); and (2) the reduction of N2O to N2 under anaerobic conditions using the acetylene inhibition method (experiment 2). A Mollic Andosol with three lime treatments (unlimed soil, 4 and 20 mg CaCO3 kg?1) was incubated at 15 and 25 °C for 22 days at 50% and then 80% WFPS with or without 200 mg N kg?1 added as 15N enriched KNO3 in experiment 1. In experiment 2, the limed and unlimed soils were incubated under completely anaerobic conditions for 44 h (with or without 100 mg N kg?1 as KNO3). In experiment 1, limed treatments increased N2O fluxes at 50% WFPS but decreased these fluxes at 80% WFPS. At 25 °C, cumulative N2O and 15N2O emissions in the high lime treatment were the lowest (with at least 30% less 15N2O and total N2O than the unlimed soil). Under anaerobic conditions, the high lime treatment showed at least 50% less N2O than the unlimed treatment at both temperatures with or without KNO3 addition but showed enhanced N2 production. Our results suggest that the positive effect of liming on the mitigation of N2O evolution from soil was influenced by soil temperature and moisture conditions.  相似文献   

5.
Abstract

To understand the influence of basal application of N fertilizer on nitrification potential and N2O and NO emissions, four soil samples were collected from an upland Andisol field just before (sample 1) and 4 (sample 2), 36 (sample 3) and 72 (sample 4) days after the basal application of N fertilizer during the Chinese cabbage growing season from 12 September to 30 November 2005. The potentials of N2O production and nitrification of the soils were determined using a 15N tracer technique and the soils were incubated for 25 days at 25°C and 60% water-filled pore space (WFPS). The results revealed that as much as 84–97% N2O and almost all NO were produced by nitrification. The 15N2O emission peak occurred approximately 350 h after the beginning of incubation for samples 1 and 2, but just 48 h later in samples 3 and 4. Total 15N2O emission during the 25-day incubation of samples 3 and 4 ranged from 190 to 198 µg N kg?1 soil, which was significantly higher than the 99–108 µg N kg?1 soil recorded in samples 1 and 2. Basal application of N fertilizer did not immediately increase the nitrification potential and the ratio of N2O to N added, but did dramatically increase the nitrification potential and the ratio of N2O to N added as (15NH4)2SO4 36–72 days after the basal N fertilizer was added. In contrast, NO emission was negatively correlated with nitrification potential and total N2O emission. As a result, a trade-off relationship between total NO and N2O emissions was identified. The results indicated that there was a time-lagged induction of the change of N turnover in the soil, which was possibly caused by slow population growth of the nitrifiers and/or a slow shift in the microbial community in the soil.  相似文献   

6.
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N2O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N2O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg-1,and N 5.6 g kg-1)sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N2O emissions,N2O derived from fertilizer,soil ammonium(NH4+)and nitrate(NO3-),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH4+content between the UR and UR+NI treatments,probably because of soil mineralization and NO3-produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N2O emissions in UR(0.51±0.12 mg N2O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH4+and NO3-production.Additionally,it was found that N2O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N2O emissions only if a substantial N surplus exists in soils with high organic matter content.  相似文献   

7.
Amending vegetable soils with organic materials is increasingly recommended as an agroecosystems management option to improve soil quality. However, the amounts of NO, N2O, and N2 emissions from vegetable soils treated with organic materials and frequent irrigation are not known. In laboratory-based experiments, soil from a NO 3 ? -rich (340 mg N?kg?1) vegetable field was incubated at 30°C for 30 days, with and without 10 % C2H2, at 50, 70, or 90 % water-holding capacity (WHC) and was amended at 1.19 g?C kg?1 (equivalent to 2.5 t?C ha?1) as Chinese milk vetch (CMV), ryegrass (RG), or wheat straw (WS); a soil not amended with organic material was used as a control (CK). At 50 % WHC, cumulative N2 production (398–524 μg N?kg?1) was significantly higher than N2O (84.6–190 μg N?kg?1) and NO (196–224 μg N?kg?1) production, suggesting the occurrence of denitrification under unsaturated conditions. Organic materials and soil water content significantly influenced NO emissions, but the effect was relatively weak since the cumulative NO production ranged from 124 to 261 μg N?kg?1. At 50–90 % WHC, the added organic materials did not affect the accumulated NO 3 ? in vegetable soil but enhanced N2O emissions, and the effect was greater by increasing soil water content. At 90 % WHC, N2O production reached 13,645–45,224 μg N?kg?1 from soil and could be ranked as RG?>?CMV?>?WS?>?CK. These results suggest the importance of preventing excess water in soil while simultaneously taking into account the quality of organic materials applied to vegetable soils.  相似文献   

8.
Relative control of soil moisture [30, 60, and 80 percent water-holding capacity (WHC)] on nitrous oxide (N2O) emissions from Fargo-Ryan soil, treated with urea at 0, 150, and 250 kg N ha?1 with and without nitrapyrin [2-chloro-(6-trichloromethyl) pyridine] (NP), was measured under laboratory condition for 140 days. Soil N2O emissions significantly increased with increasing nitrogen (N) rates and WHC levels. Urea applied at 250 kg N ha?1 produced the greatest cumulative N2O emissions and averaged 560, 3919, and 15894 µg kg?1 at 30, 60, and 80 percent WHC, respectively. At WHC ≤ 60 percent, addition of NP to urea significantly reduced N2O losses by 2.6- to 4.8-fold. Additions of NP to urea reduced N2O emission at rates similar to the control (0 N) until 48 days for 30 percent WHC and 35 days for 60 and 80 percent WHC. These results can help devise urea-N fertilizer management strategies in reducing N2O emissions from silty-clay soils.  相似文献   

9.
Abstract

The aim of this study was to assess the mitigating effects of lime nitrogen (calcium cyanamide) and dicyandiamide (DCD) application on nitrous oxide (N2O) emissions from fields of green tea [Camellia sinensis (L.) Kuntze]. The study was conducted in experimental tea fields in which the fertilizer application rate was 544 kg nitrogen (N) ha?1 yr?1 for 2 years. The mean cumulative N2O flux from the soil between the canopies of tea plants for 2 years was 7.1 ± 0.9 kg N ha?1 yr?1 in control plots. The cumulative N2O flux in the plots supplemented with lime nitrogen was 3.5 ± 0.1 kgN ha?1, approximately 51% lower than that in control plots. This reduction was due to the inhibition of nitrification by DCD, which was produced from the lime nitrogen. In addition, the increase in soil pH by lime in the lime nitrogen may also be another reason for the decreased N2O emissions from soil in LN plots. Meanwhile, the cumulative N2O flux in DCD plots was not significantly different from that in control plots. The seasonal variability in N2O emissions in DCD plots differed from that in control plots and application of DCD sometimes increased N2O emissions from tea field soil. The nitrification inhibition effect of lime nitrogen and DCD helped to delay nitrification of ammonium-nitrogen (NH4+-N), leading to high NH4+-N concentrations and a high ratio of NH4+-N /nitrate-nitrogen (NO3-N) in the soil. The inhibitors delayed the formation of NO3-N in soil. N uptake by tea plants was almost the same among all three treatments.  相似文献   

10.
Applications of dairy farm effluents to land may lead to ammonia (NH3) volatilization and nitrous oxide (N2O) emissions. Nitrogen (N) transformation process inhibitors, such as urease inhibitors (UIs) and nitrification inhibitors (NIs), have been used to reduce NH3 and N2O losses derived from agricultural N sources. The objective of this study was to examine the effects of amending dairy effluents with UI (N-(n-butyl) thiophosphoric triamide (NBTPT)) and NI (dicyandiamide (DCD)) on NH3 and N2O emissions. Treatments included either fresh or stored manure and either fresh or stored farm dairy effluent (FDE), with and without NBTPT (0.25 g kg?1 N) or DCD (10 kg ha?1), applied to a pasture on a free-draining volcanic parent material soil. The nutrient loading rate of FDE and manure, which had different dry matter contents (about 2 and 11 %, respectively) was 100 kg N ha?1. Application of manure and FDE led to NH3 volatilization (15, 1, 17 and 0.4 % of applied N in fresh manure, fresh FDE, stored manure and stored FDE, respectively). With UI (NBTPT), NH3 volatilization from fresh manure was significantly (P?<?0.05) decreased to 8 % from 15 % of applied N, but the UI did not significantly reduce NH3 volatilization from fresh FDE. The N2O emission factors (amount of N2O–N emitted as a percentage of applied N) for fresh manure, fresh FDE and stored FDE were 0.13?±?0.02, 0.14?±?0.03 and 0.03?±?0.01 %, respectively. The NI (DCD) was effective in decreasing N2O emissions from stored FDE, fresh FDE and fresh manure by 90, 51 and 46 % (P?<?0.05), respectively. All types of effluent increased pasture production over the first 21 days after application (P?<?0.05). The addition of DCD resulted in an increase in pasture production at first harvest on day 21 (P?<?0.05). This study illustrates that UIs and NIs can be effective in mitigating NH3 and N2O emissions from land-applied dairy effluents.  相似文献   

11.
Soil moisture changes, arising from seasonal variation or from global climate changes, could influence soil nitrogen (N) transformation rates and N availability in unfertilized subtropical forests. A 15?N dilution study was carried out to investigate the effects of soil moisture change (30–90 % water-holding capacity (WHC)) on potential gross N transformation rates and N2O and NO emissions in two contrasting (broad-leaved vs. coniferous) subtropical forest soils. Gross N mineralization rates were more sensitive to soil moisture change than gross NH4 + immobilization rates for both forest soils. Gross nitrification rates gradually increased with increasing soil moisture in both forest soils. Thus, enhanced N availability at higher soil moisture values was attributed to increasing gross N mineralization and nitrification rates over the immobilization rate. The natural N enrichment in humid subtropical forest soils may partially be due to fast N mineralization and nitrification under relatively higher soil moisture. In broad-leaved forest soil, the high N2O and NO emissions occurred at 30 % WHC, while the reverse was true in coniferous forest soil. Therefore, we propose that there are different mechanisms regulating N2O and NO emissions between broad-leaved and coniferous forest soils. In coniferous forest soil, nitrification may be the primary process responsible for N2O and NO emissions, while in broad-leaved forest soil, N2O and NO emissions may originate from the denitrification process.  相似文献   

12.
Agricultural soils are a primary source of anthropogenic trace gas emissions, and the subtropics contribute greatly, particularly since 51% of world soils are in these climate zones. A field experiment was carried out in an ephemeral wetland in central Zimbabwe in order to determine the effect of cattle manure (1.36% N) and mineral N fertilizer (ammonium nitrate, 34.5% N) application on N2O fluxes from soil. Combined applications of 0 kg N fertilizer + 0 Mg cattle manure ha?1 (control), 100 kg N fertilizer + 15 Mg manure ha?1 and 200 kg N fertilizer + 30 Mg manure ha?1 constituted the three treatments arranged in a randomized complete block design with four replications. Tomato and rape crops were grown in rotation over a period of two seasons. Emissions of N2O were sampled using the static chamber technique. Increasing N fertilizer and manure application rates from low to high rates increased the N2O fluxes by 37–106%. When low and high rates were applied to the tomato and rape crops, 0.51%, 0.40%, and 0.93%, 0.64% of applied N was lost as N2O, respectively. This implies that rape production has a greater N2O emitting potential than the production of tomatoes in wetlands.  相似文献   

13.
Molecular nitrogen (N2) and nitrous oxide (N2O) generated by denitrification increase N losses in the soil–plant system. This study aimed to quantify N2 and N2O from potassium nitrate (K15NO3) applied to soils with different textures and moisture contents in the absence and presence of a source of carbon (C) using the 15N tracer method. In the three soils used (sandy texture (ST), sandy clay loam texture (SCLT), and clayey texture (CT)), three moisture contents were evaluated (40%, 60%, and 80% of the water holding capacity (WHC)) with (D+) and without (D?) dextrose added. The treatments received 100 mg N kg?1 (KNO3 with 23.24 atom% 15N). N2 emissions occurred in all of the treatments, but N2O emissions only occurred in the D+ treatment, showing increases with increasing moisture content. SCLT with 80% WHC in the D+ treatment exhibited the highest accumulated N emission (48.26 mg kg?1). The 15N balance suggested trapping of the gases in the soil.  相似文献   

14.
Laboratory studies were conducted to evaluate the effect of soil pH, temperature and water content on the rate of nitrification and on the amount of N2O evolved from samples of Plano silt loam soil. The rate of nitrification of added NH4+-N increased with increasing soil pH (4.7, 5.1 and 6.7), temperature (10, 20 and 30°C) and water content (0.1, 0.2 and 0.3 m3 m?3). At soil water contents of 0.1 and 0.2 m3 m?3, corresponding to 18 and 36% water-filled pore space, respectively, N2O evolution was proportional to NO3? production. Approximately 0.1–0.2% of the nitrified N was evolved as N2O-N. At 0.3 m3 m?3 water content (54% water-filled pore space) and 20 and 30°C, the ratio of N2O-N evolved to N nitrified was significantly higher (range of 0.3–1.1%).An additional experiment was conducted using diurnally fluctuating temperatures (10–30°C). The pattern of N2O evolution was markedly different when the system was sampled at 10 and 30°C than at 20°C. The apparent N2O emission rates were approximately equal for 12-h periods during which the temperature increased from 10 to 30°C or decreased from 30 to 10°C. In contrast, the apparent N2O emission rates were significantly lower for the 12-h period when the incubation flasks were sampled at 20°C following the daily minimum temperature compared to the 12-h period when the samplings were at 20°C following the daily maximum temperature. This provides additional evidence that temperature fluctuation in the surface soil is a factor in-observed diurnal variations in N2O emissions under field conditions.Our findings indicate that an interaction of three factors (soil pH, temperature and water content) affects the amount of N2O evolved during nitrification in soils. In relatively dry soils, estimated N2O production of ca. 0.1–0.3% of the N nitrified may be sufficiently accurate. Much higher N2O output can be expected following rainfall or irrigation. Diurnal variability in N2O fluxes from soils due to fluctuating temperature is an additional uncertainty in quantifying N2O production in field soils.  相似文献   

15.
Limited data are available on ammonia (NH3), nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) emissions from poultry housing in Mediterranean countries. The aim of the present study was to assess the NH3, N2O, CO2 and CH4 emission rates from commercial breeding hen and broiler houses under Mediterranean climate conditions. Research was conducted at one commercial breeding hen house and in two commercial broiler houses located in central Portugal. The environmental conditions, gas concentrations and ventilation rates were measured in the cold (8.0?±?2.1 °C) and hot (20.7?±?1.9 °C) season for the breeding hen house, whereas for the two broiler houses, measurements were made during one fattening cycle in the fall (17.3?±?1.7 °C) season. Results showed that the annual average emission rates for breeding hen and broiler houses were 0.52?±?0.27 and 0.06?±?0.01 for NH3, 0.030?±?0.042 and 0.006?±?0.001 for N2O, 169.6?±?56.2 and 58.0?±?15.1 for CO2 and 0.092?±?0.131 and 0.0113?±?0.0002 g day?1 bird?1 for CH4, respectively. The N2O emission rates observed in breeding hen houses may have been overestimated, being higher than previously reported for Mediterranean countries.  相似文献   

16.

Purpose

Better understanding of N transformations and the regulation of N2O-related N transformation processes in pasture soil contributes significantly to N fertilizer management and development of targeted mitigation strategies.

Materials and methods

15N tracer technique combined with acetylene (C2H2) method was used to measure gross N transformation rates and to distinguish pathways of N2O production in two Australian pasture soils. The soils were collected from Glenormiston (GN) and Terang (TR), Victoria, Australia, and incubated at a soil moisture content of 60% water-filled pore space (WFPS) and at temperature of 20 °C.

Results and discussion

Two tested pasture soils were characterized by high mineralization and immobilization turnover. The average gross N nitrification rate (ntot) was 7.28 mg N kg?1 day?1 in TR soil () and 5.79 mg N kg?1 day?1 in GN soil. Heterotrophic nitrification rates (nh), which accounting for 50.8 and 41.9% of ntot, and 23.4 and 30.1% of N2O emissions in GN and TR soils, respectively, played a role similar with autotrophic nitrification in total nitrification and N2O emission. Denitrification rates in two pasture soils were as low as 0.003–0.004 mg N kg?1 day?1 under selected conditions but contributed more than 30% of N2O emissions.

Conclusions

Results demonstrated that two tested pasture soils were characterized by fast N transformation rates of mineralization, immobilization, and nitrification. Heterotrophic nitrification could be an important NO3?–N production transformation process in studied pasture soils. Except for autotrophic nitrification, roles of heterotrophic nitrification and denitrification in N2O emission in two pasture soils should be considered when developing mitigation strategies.
  相似文献   

17.
Nitrous oxide emission was measured in laboratory incubations of an alluvial soil (58% clay, pH 7.4). The soil was amended with 40 mg N kg−1 as NaNO3 or NH4Cl, or with NaCl as a control. Each fertilization treatment was adjusted to three different water contents: constant 60% WHC (water-holding capacity), constant 120% WHC, and water content alternating between 60 and 120% WHC. During an 8-day incubation period N2O emission rates and inorganic nitrogen concentrations in soil (NH4+, NO2, NO3) were determined at regular intervals. In the control and after nitrate application small N2O emission rates occurred with only minor variations over time, and no differences between the water treatments. In contrast, with ammonium application N2O emission rates were much higher during the first two days of incubation, with peaks in the constant 60% WHC and 120% WHC at day 1 and in the changing-water treatment at day 2, when the first wet period (120% WHC) was completed. This N2O peak in the changing-water treatment was 4 to 9 times higher than with constant WHC and occurred when both, NH4+ and NO2 concentrations declined sharply. Thus, this N2O emission flush can be attributed to nitrifier denitrification. After the second rewetting of the NH4+-amended soil no further N2O emission peak was observed, being in accordance with small NH4+ and NO2 concentrations in soil at that time. The unexpectedly small N2O fluxes in the constant 120% WHC treatment after nitrate application were probably caused by the reduction of N2O to N2 under the prevailing conditions. It can be concluded that continuous wetting or flooding of a soil is an effective measure to reduce N2O emissions immediately after the application of NH4+ fertilizers.  相似文献   

18.

Purpose

Ecosystem restorations can impact carbon dioxide (CO2) and nitrous oxide (N2O) emissions which are important greenhouse gasses. Alpine meadows are degraded worldwide, but restorations are increasing. Because their soils represent large carbon (C) and nitrogen (N) pools, they may produce significant amounts of CO2 and N2O depending on the plant species used in restorations. In addition, warming and N deposition may impact soil CO2 and N2O emissions from restored meadows.

Materials and methods

We collected soils from degraded meadows and plots restored using three different plant species at Wugong Mountain (Jiangxi, China). We measured CO2 and N2O emissions when soils were incubated at different temperatures (15, 25 or 35 °C) and levels of N addition (control vs. 4 g m?2) to understand their responses to warming and N deposition.

Results and discussion

Dissolved organic C was higher in restored plots (especially with Fimbristylis dichotoma) compared to non-restored bare soils, and their soil inorganic N was lower. CO2 emission rates were increased by vegetation restorations, decreased by N deposition, and increased by warming. CO2 emission rates were similar for the three grass species at 15 and 25 °C, but they were lower with Miscanthus floridulus at 35 °C. Soils from F. dichotoma and Carex chinensis plots had higher N2O emissions than degraded or M. floridulus plots, especially at 25 °C.

Conclusions

These results show that the effects of restorations on soil greenhouse gas emissions depended on plant species. In addition, these differences varied with temperature suggesting that future climate should be considered when choosing plant species in restorations to predict soil CO2 and N2O emissions and global warming potential.
  相似文献   

19.
A 56-day aerobic incubation experiment was performed with 15-nitrogen (N) tracer techniques after application of wheat straw to investigate nitrate-N (NO3-N) immobilization in a typical intensively managed calcareous Fluvaquent soil. The dynamics of concentration and isotopic abundance of soil N pools and nitrous oxide (N2O) emission were determined. As the amount of straw increased, the concentration and isotopic abundance of total soil organic N and newly formed labeled particulate organic matter (POM-N) increased while NO3-N decreased. When 15NO3-N was applied combined with a large amount of straw at 5000 mg carbon (C) kg?1 only 1.1 ± 0.4 mg kg?1 NO3-N remained on day 56. The soil microbial biomass N (SMBN) concentration and newly formed labeled SMBN increased significantly (P < 0.05) with increasing amount of straw. Total N2O-N emissions were at levels of only micrograms kg?1 soil. The results indicate that application of straw can promote the immobilization of excessive nitrate with little emission of N2O.  相似文献   

20.
Agricultural soils are the main anthropogenic source of nitrous oxide (N2O), largely because of nitrogen (N) fertilizer use. Commonly, N2O emissions are expressed as a function of N application rate. This suggests that smaller fertilizer applications always lead to smaller N2O emissions. Here we argue that, because of global demand for agricultural products, agronomic conditions should be included when assessing N2O emissions. Expressing N2O emissions in relation to crop productivity (expressed as above‐ground N uptake: ‘yield‐scaled N2O emissions') can express the N2O efficiency of a cropping system. We show how conventional relationships between N application rate, N uptake and N2O emissions can result in minimal yield‐scaled N2O emissions at intermediate fertilizer‐N rates. Key findings of a meta‐analysis on yield‐scaled N2O emissions by non‐leguminous annual crops (19 independent studies and 147 data points) revealed that yield‐scaled N2O emissions were smallest (8.4 g N2O‐N kg−1N uptake) at application rates of approximately 180–190 kg N ha−1 and increased sharply after that (26.8 g N2O‐N kg−1 N uptake at 301 kg N ha−1). If the above‐ground N surplus was equal to or smaller than zero, yield‐scaled N2O emissions remained stable and relatively small. At an N surplus of 90 kg N ha−1 yield‐scaled emissions increased threefold. Furthermore, a negative relation between N use efficiency and yield‐scaled N2O emissions was found. Therefore, we argue that agricultural management practices to reduce N2O emissions should focus on optimizing fertilizer‐N use efficiency under median rates of N input, rather than on minimizing N application rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号