首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some South Dakota soils contain high levels of available selenium (Se) for crop uptake. A field study was conducted to determine if any popular wheat (Triticum aestivum) varieties demonstrate differential Se uptake. A total of 280 samples including eight winter wheat and ten spring wheat varieties were analyzed for grain Se concentration and uptake for two growing years. Soil samples were sequentially fractionated into (1) plant available (0.1?M KH2PO4 extractable) and (2) conditionally available (4?M HCl extractable) pools and analyzed separately for total Se. Selenium concentration in wheat grain had a wide variability and the mean value over two years was 0.63?µg?Se?g?1. Grain Se concentration and Se uptake were not significantly different by wheat varieties tested in this study. Grain Se concentration was significantly correlated with soil Se levels, soil pH, and orthophosphate-P content within a location, but grain Se concentration was strongly influenced by geographical location in which different amounts of soil Se bioavailability occurred.  相似文献   

2.
Abstract

Phosphorus (P) fertilizer recommendations for no‐till small grain production are poorly defined. These studies were conducted to determine small grain‐P response relative to the Olsen‐P soil test and compare P‐fertilizer placements with the seed and banded below and to the side of the seed under no‐till field conditions. Phosphorus rates of 0 to 26 kg P/ha were evaluated on seven spring barley (Hordeum vulgare L.), 11 spring wheat, and six winter wheat (Triticum aestivum L.) locations in central and northcentral Montana between 1986 and 1990. Grain yield, grain protein, test weight, above‐ground crop yield, plant P concentration at maturity, and P uptake were measured. One winter wheat location had a significant yield response to P; all other locations had non‐significant yield responses. Grain protein, test weight, P concentration, and P uptake were all unaffected by P rate or P placement. Both the ANOVA and paired t‐test were used to analyze the P‐placement data and were all nonsignificant. Slopes of grain yield response (grain yield for each P rate minus the grain yield without P), P concentration, and P uptake versus P rate were analyzed with the t‐test; none of the P‐response slopes were greater than zero. The P responses by individual crop were regressed against P rate, Olsen‐P soil test, available soil water at planting, and pH. Phosphorus rate was not a significant factor in any of the equations. Significant and useful predictive equations for grain yield response could not be generated; however, equations predicting P concentration and P uptake were developed. The Cate‐Nelson graphical analysis was unsuccessful in estimating an Olsen‐P soil test critical level. All attempts failed to relate grain yield or grain yield response to the Olsen‐P soil test and/or P rate. When P soil tests are higher than 12 mg/kg, no‐till grain growers should consider applying a maintenance level of P fertilizer, about 5 to 10 kg P/ha either banded below or with the seed, to maintain soil P levels.  相似文献   

3.
The effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Tillage and fertilizer rates were evaluated for their effects on soil bulk density (BD), penetration resistance, soil organic carbon (SOC) concentration and availability of macronutrients on a sandy clay loam (fine-loamy, mixed, hyperthermic Typic Haplargids, USDA; Luvic Yermosol, FAO) in a semi-arid region of Pakistan. Wheat (Triticum aestivum L.) and cotton (Gossypium hirsutum L.) were double-cropped from 1996 to 1998. Tillage treatments were minimum till (MT), conventional till (CT), and deep till (DT). Low, medium and high fertilizer rates were applied to wheat and cotton. BD was affected neither by tillage nor fertilizer rates. Soil penetration resistance was lower for DT than CT and MT. Tillage methods affected soil P concentration but did not affect N and K concentrations. However, fertilizer application significantly increased soil P and K concentrations. Concentrations of N, P, K and SOC were greater in the plough layer than sub-soil. Grain yield of wheat was significantly negatively correlated with penetration resistance and was positively correlated with soil P and K concentrations. Yield of cotton was significantly negatively correlated with soil BD. These data provide an experimental basis to re-evaluate recommendations for fertilizer rates and tillage methods for production of wheat and cotton in Punjab. Further, there is a strong need to establish long-term experiments to study agronomic and environmental effects of tillage methods, fertilizer rates, and cropping systems on productivity and environment quality.  相似文献   

4.
  【目的】  分析我国北方麦区不同土壤有效磷水平下,监控施肥后小麦籽粒产量与养分吸收利用变化,为保证减施磷肥后小麦的丰产、优质、绿色生产提供理论依据。  【方法】  于2018—2020年在我国北方麦区49个地点进行了田间试验。所有试验均设农户施肥(FF)、监控施肥(RF)和监控无磷(RF-P) 3个处理,监控施肥的磷(P2O5)肥用量较农户施肥平均减少60 kg/hm2,相当于减少了46%。在小麦成熟期调查了土壤不同磷素水平下,小麦产量、产量构成、籽粒氮磷钾含量,并计算了磷素养分吸收利用率;在小麦收获期,采样测定土壤有效氮磷钾含量。  【结果】  当土壤有效磷<15 mg/kg时,小麦产量最低,为5155 kg/hm2;当土壤有效磷在25~30 mg/kg时,产量达到最高,为7217 kg/hm2;有效磷过高并不能持续提高小麦产量,反而因穗数、千粒重低导致产量降低。土壤有效磷<15、15~20、20~25、25~30和>30 mg/kg时,监控施肥处理小麦产量与农户施肥处理相比差异虽然未达显著水平,但小麦的磷肥吸收效率与磷肥偏生产力平均分别为1.03和104.7 kg/kg,分别较农户处理显著提高了119.6%和112.2%,籽粒氮磷钾含量与农户施肥处理相比无显著差异。当土壤有效磷<15 mg/kg,或速效钾达171和200 mg/kg、有效磷为15~20和>30 mg/kg时,不施磷肥小麦显著减产;但土壤速效钾为147和158 mg/kg、有效磷在20~25和25~30 mg/kg时,不施磷肥不减产。土壤有效磷含量越高,小麦籽粒平均氮含量越低、磷含量越高,籽粒平均钾含量在有效磷为20~25 mg/kg时达到最高。  【结论】  在北方麦区,过高的土壤有效磷含量有降低小麦氮素营养的风险,适当降低磷肥用量在保证产量的同时,还可大幅提高磷肥的利用率。土壤有效磷维持在20~30 mg/kg时,减施或不施磷肥依然可以实现小麦高产,但若速效钾>170 mg/kg时不施磷肥小麦有减产风险。因此,应基于对小麦目标产量、籽粒养分含量和土壤有效磷钾的监控,确定合理的磷肥用量,实现北方麦区化肥减施,小麦稳产提质增效和绿色生产。  相似文献   

5.
Straw incorporation is a useful management practice in sustainable agricultural systems to improve soil fertility and to reduce air pollution from straw burning. A three-year field experiment was conducted under two rice straw managements and four nitrogen (N) application rates in Rugao, China during 2010–2013, to examine whether straw management practices integrated with fertilizer N applications affect crop yield, N balance and N use efficiency in the wheat season of rice-wheat cropping systems. The results showed that straw incorporation had positive effects on plant N uptake and grain yield. This may be attributed to the greater soil water content and lower amount of seasonal rainfall. However, straw incorporation resulted in lower soil inorganic N and more N surplus at the early growth stage. Grain yield had a significant relation with wheat N uptake from sowing to jointing and from jointing to anthesis with straw incorporation. Therefore, our results suggest that in adjusting the ratio of basal and topdressing N fertilizer, it is important for the supply of optimum N to the crop and to maintain grain production with straw incorporation.  相似文献   

6.
A deficiency or excess of selenium (Se) can cause disease in the human body, and the dietary intake of organic forms of Se is considered the preferable way to satisfy the Se demand in humans. P application decreases Se uptake and thus also Se concentrations in grains of crops, but little is known about how the P application level may affect the organic forms of Se in the grain of winter wheat. A pot trial with three P levels (0, 80, and 160 mg P kg?1 soil) and three Se levels (0, 0.5, and 1 mg Se kg?1 soil) was conducted to investigate the effect of P application on inorganic and organic Se forms, Se bound to protein, polysaccharide, and nucleic acid as well as Se in different protein fractions in the grain of winter wheat. Overall, the concentrations of total Se, and of Se in all analyzed forms, increased with increasing Se application regardless of the rate of P application. In the absence of Se, P application did not have a significant effect on the concentrations of any of the measured Se forms. However, in the presence of Se, increasing P application significantly decreased the concentration of Se of each form. The different rates of P and Se application influenced the proportion of each form of Se in different ways. Increasing levels of P application decreased the concentration of each form of Se in the grain of winter wheat, most likely by a combination of a dilution effect due to enhanced grain yield, and an inhibited Se uptake. Despite an overall decrease in grain Se‐protein, P application might improve the quality of wheat flour by enhancing the accumulation of Se in organic forms such as Se‐nucleic acids and Se‐polysaccharides, as well as the Se in the gliadin and glutenin fractions in the grain.  相似文献   

7.
秸秆还田对冬小麦产量和氮、磷、钾吸收利用的影响   总被引:8,自引:4,他引:4  
【目的】陕西关中平原是我国典型的冬小麦—夏玉米轮作区,冬小麦播种前将上季收获后的玉米秸秆还田是当地普遍采用的作物秸秆管理方式。本研究以优化秸秆还田条件的小麦养分资源管理,实现作物增产和肥料增效为目标,通过2年的田间定位试验,探索关中地区玉米秸秆还田条件下,冬小麦高产高效的最佳养分管理措施。【方法】试验于2011年10月至2013年5月在陕西省周至县终南镇进行,供试冬小麦品种为周麦23,夏玉米品种为郑单958。采用裂区设计,主处理为玉米秸秆全量还田(S1)和秸秆不还田(S0),副处理为5个不同氮肥施用水平(N 0、84、168、252和336 kg/hm2),种植作物为冬小麦。通过不同氮水平的回归分析,研究了玉米秸秆还田对后茬冬小麦的籽粒产量、生物量和收获期地上部氮、磷、钾养分吸收利用的影响。【结果】与玉米秸秆不还田相比,秸秆还田对冬小麦籽粒产量和收获期地上部氮、磷、钾养分吸收量的影响均表现出低氮降低、高氮增加的趋势。第一年和第二年在施氮量分别低于N 153和187 kg/hm2时,秸秆还田处理小麦减产,相反则增产,并且增产量随着氮肥用量的增加而增大;生物量与产量趋势一致,前后两年玉米秸秆还田与不还田条件下,冬小麦生物量相等时的氮肥用量分别为N 190和202 kg/hm2。在产量构成要素中,同一氮水平时,秸秆还田对小麦穗粒数和千粒重没有明显影响,而每公顷穗数却表现为低氮降低、高氮增加的趋势,所以秸秆还田后穗数增加是小麦增产的主要原因。同时,在玉米秸秆还田条件下,小麦地上部氮、磷、钾吸收量增加时,第一年的氮肥用量分别高于N 275、123和213kg/hm2,第二年分别高于N 200、165和241 kg/hm2,但氮、磷、钾的收获指数不随施氮量的增加而递增。而且过量施氮也会造成小麦籽粒磷含量的降低。【结论】在综合同一施氮水平时,秸秆还田后的冬小麦籽粒产量和地上部氮、磷、钾养分吸收利用的变化,建议在陕西关中平原的冬小麦—夏玉米轮作区域,氮肥用量应控制在N 150~200kg/hm2,以保证在玉米秸秆还田条件下小麦的增产和氮、磷、钾养分资源的高效合理利用。  相似文献   

8.
【目的】 明确旱地条件下高产小麦品种籽粒锌含量差异与产量构成及锌吸收利用的关系,对通过品种选育和施肥调控提高旱地小麦籽粒产量和锌营养,实现小麦高产优质生产有重要意义。 【方法】 于2013—2016年连续三年在黄土高原典型旱地进行了小麦裂区田间试验。 以我国主要麦区的123个小麦品种为试材,每个品种设置不施肥和施N 150 kg/hm2、P2O5 100 kg/hm2两个处理。分析了高产小麦籽粒锌含量差异及其与干物质累积、产量构成、锌吸收和分配之间的关系。 【结果】 施肥条件下,高产小麦品种籽粒锌含量存在显著差异,小麦籽粒锌含量与籽粒产量间无显著相关性,但与千粒重、锌吸收量、锌收获指数和籽粒锌形成效率呈显著正相关,与穗粒数呈显著负相关。在高产品种中,无论施肥与否高锌品种的籽粒锌含量均显著高于低锌品种;高锌品种的籽粒锌含量因施肥而显著提高,低锌品种却降低。施肥条件下,高锌品种的籽粒产量、生物量和收获指数与低锌品种相比无显著差异,穗数却显著降低;高锌品种的籽粒锌吸收量、地上部锌吸收量、锌收获指数和籽粒锌形成效率均显著高于低锌品种。且高锌品种的产量、生物量、穗数、穗粒数和锌吸收量因施肥引起的提高幅度均亦显著高于低锌品种。 【结论】 在黄土高原旱地低锌土壤上,无论是品种选育还是施肥调控,促进小麦锌的吸收和向籽粒的转移是提高小麦籽粒锌含量的关键。   相似文献   

9.
Abstract

Phosphorus deficiency in soil and erratic rainfall limit rice production in Northeast Thailand. The objective of this study was to investigate rice's response to different rates and times of phosphorus fertilizer. A field trial was conducted in a farmer's field with a split plot design. Main plots were established using three rates: 15, 30, and 60 kg P ha?1. Five types of sub-plot were established as follows: (1) P fertilizer was applied by banding below the seeds' depth before seeding (BBS), (2) broadcasting and incorporation into the soil before seeding, and (3) topdressing at three different DAS (days after seeding). Fertilizer was spread onto the soil surface at 10, 20, and 30 DAS. Significant grain-yield increases were affected by time or rate of fertilizer application. Grain yields were maximized by a rate of 60 kg P ha?1. Fertilizer application by BBS produced higher grain yield than did other treatments, giving higher root-length density and shoot growth, phosphorus uptake, and greater phosphorus-use efficiency than did fertilizer applied by broadcasting or delayed topdressing. BBS resulted in the highest phosphorus enrichment in soil volume with a rate of 60 kg P ha?1. The high solubility of fertilizer in a localized placement may satisfy the seedlings' high initial demand of phosphorus and provide sufficient phosphorus availability to allow high productivity. Based on these data, in regions with low soil phosphorus availability where rainfall is also erratic, the management of sub-seed banding placement at the start of a crop at the rate of 60 kg P ha?1 is recommended as the optimum phosphorus fertilizer practice.  相似文献   

10.
低锌旱地土壤水分对小麦产量和锌利用的影响   总被引:2,自引:1,他引:1  
【目的】西北旱地土壤有机质含量低,pH和碳酸钙含量高,导致土壤有效锌含量低,加之水分缺乏,不仅制约冬小麦生长和产量,还严重影响小麦锌的吸收利用。本研究选取西北旱地典型缺锌区,在土施锌肥的基础上,设置了2年的补充灌水田间试验,进一步研究水分对土壤锌有效性、 小麦生长、 产量以及锌和相关元素吸收利用的影响。【方法】田间试验于2010~2012年在陕西永寿县进行,采用裂区设计,锌肥为主处理,在不施锌与施锌(ZnSO4·7H2O)50 kg/hm2的基础上,设置在冬小麦关键生长期补充和不补充灌水2个副处理。在成熟期采集植株样品,测定了小麦产量、 生物量,各器官部位的锌及氮、 磷、 钾、 铁的含量; 采集0—40 cm土层土壤,测定了土壤有效性锌含量。【结果】在返青期、 孕穗期补灌20~30 mm水分对小麦产量、 土壤有效锌含量无显著影响,却有提高小麦各部位锌含量、 锌肥利用率的趋势,不施锌和施锌条件下,灌水比不灌水处理小麦籽粒锌含量分别提高3.8%~16.3%、 3.8%~13.1%,灌水使锌肥利用率提高21.2%~177.8%。灌水量和灌水时期的不同也影响锌在小麦各器官部位的分配与累积,第一季施锌和不施锌条件下,灌水比不灌水处理锌收获指数分别降低5.1%和2.0%,而第二季锌收获指数分别提高2.1%和2.7%。两季灌水对小麦籽粒中铁及大量元素氮磷钾含量的影响亦各不相同。【结论】在旱地缺锌土壤上,小麦生长关键期灌水对小麦产量、 土壤有效锌含量无显著影响,却有提高小麦各部分锌含量、 锌肥利用率的趋势,说明水肥结合对旱地石灰性土壤锌和锌肥有效性的影响应引起进一步重视,这对提高旱地缺锌地区作物和人体锌营养水平具有潜在意义。  相似文献   

11.
为研究磷硒配施对冬小麦根土界面硒有效性及形态分级的影响,并探究磷硒配施提高土壤硒有效性的可能机制,以冬小麦为试验材料进行根箱培养试验,设置0(P0)、80(P80)、160 mg·kg-1(P160)3个磷水平和0(Se0)、1 mg·kg-1(Se1)2个硒水平,分析冬小麦植株磷硒含量、累积量、迁移系数及根际和非根际土5种硒形态含量。结果表明,无论施硒与否,随着磷含量的增加,冬小麦生物量、地上部和根系磷含量均增大。施硒1 mg·kg-1显著降低了P80和P160水平下冬小麦生物量、P160水平下根系磷含量及各部位磷累积量。在Se1条件下,施磷增加了各部位硒累积量,但显著降低了地上部硒含量和硒从根系向地上部的迁移系数。在Se0条件下,P160处理增加了根际土壤和非根际土壤中的可交换态硒含量。在Se1条件下,P160处理根际土壤中可交换态硒含量显著高于非根际土壤,但铁锰氧化物结合态硒和残渣态硒含量低于非根际土壤。综上所述,适宜的磷硒配施可影响土壤中各种硒形态的转化过程,可能是由于磷的施入和根系活动共同作用促进了土壤中铁锰氧...  相似文献   

12.
Rice (Oryza sativa) is the staple food for half of the world's population, but the selenium (Se) concentrations in rice grain are low in many rice-growing regions. This study investigated the effects of water management on the Se speciation dynamics in the soil solution and Se uptake and speciation in rice in a pot experiment. A control containing no Se or 0.5 mg kg(-1) of soil of selenite or selenate was added to the soil, and plants were grown under aerobic or flooded conditions. Flooding soil increased soluble Se concentration when no Se or selenite was added to the soil, but decreased it markedly when selenate was added. Selenate was the main species in the +selenate treatment, whereas selenite and selenomethionine selenium oxide were detected in the flooded soil solutions of the control and +selenite treatments. Grain Se concentration was 49% higher in the flooded than in the aerobic treatments without Se addition. In contrast, when selenate or selenite was added, the aerobically grown rice contained 25- and 2-fold, respectively, more Se in grain than the anaerobically grown rice. Analysis of Se in rice grain using enzymatic hydrolysis followed by HPLC-ICP-MS and in situ X-ray absorption near-edge structure (XANES) showed selenomethionine to be the predominant Se species. The study showed that selenate addition to aerobic soil was the most effective way to increase Se concentration in rice grain.  相似文献   

13.
【目的】 薯麦轮作是我国甘薯种植的主要模式,施钾对甘薯、小麦都有较好的增产效果。本文研究了薯麦轮作中钾肥最佳运筹方案,以便更好地发挥钾肥效益。 【方法】 在江苏省农业科学院位于南京的六合基地连续进行了三年田间定位试验,在周年钾肥投入总量K2O 270 kg/hm2的前提下,设置5个甘薯 (S) /小麦 (W) 钾肥分配量处理,分别为 S0W270、S90W180、S135W135、S180W90、S270W0,重复三次。调查了产量、产量组成和生物量分配,测定了吸钾量、钾生理效率和钾表观平衡。 【结果】 钾肥分配量显著影响甘薯的块根产量、单株薯数、单个薯重、冠根比、吸钾量和钾生理效率,而对小麦产量、有效穗数、穗粒数、千粒重、草谷比、吸钾量、钾收获指数和钾生理效率均无显著影响。甘薯产量和周年产量均以钾肥全部施于薯季的S270W0处理最高,全部分配于麦季的S0W270处理次之,S270W0的甘薯产量和周年产量比薯麦两季分配的S90W180、S135W135、S180W90处理提高20.7%~24.5% (P < 0.05) 和17.8%~20.9% ( P < 0.01),S0W270的分别提高了9.9%~13.4% ( P > 0.05) 和8.2%~11.0% ( P > 0.05)。S270W0处理的单株薯数和单个薯重分别比钾肥施两季的处理高5.2%~10.4%和8.5%~30.6% ( P < 0.01),是其产量增加的主要原因;S0W270处理的单株薯数比 这三个处理高18.9%~24.8% ( P < 0.001),但单薯重低于其他处理,较高的单株薯数是该处理甘薯增产的主要原因。S180W90和S270W0处理甘薯整株吸钾量比S90W180和S0W270高出9.7%~16.1% ( P < 0.05)。随薯季施钾量增加,甘薯冠根比先增后减 ( P < 0.001)、钾生理效率先减后增 ( P < 0.01)、钾收获指数和商品率变化较小 ( P > 0.05)。甘薯吸钾量平均为K 2O 228.0 kg/hm2,是小麦的2.3倍;钾收获指数平均为0.55,是小麦的5.5倍。薯蔓中储存的钾占甘薯吸钾量的46.6%,薯蔓还田可满足小麦对钾的需求;麦秸中贮存的钾占小麦吸钾量的91.0%,麦秸还田只能满足甘薯吸钾量的39.5%。本研究施钾量下,秸秆不还田,甘薯和小麦年均携出土壤的钾达K2O 327.9 kg/hm2,年末土壤速效钾呈快速下降,三个轮作周期后土壤速效钾降低49.2%;秸秆和薯蔓完全还田条件下,薯麦轮作施钾量为K2O 134.3 kg/hm2时即可保持土壤钾素平衡。 【结论】 薯麦轮作中,以钾肥单施于甘薯上,可显著增加单株薯数和单个薯重,增加甘薯产量和周年产量。全部钾肥施于甘薯上,薯蔓还田可以满足小麦的钾素营养。麦秸和薯蔓完全还田条件下,可适当减少钾肥的投入,年施K2O 134.3 kg/hm2时即可保持钾素平衡。供试地区土壤和管理条件下,钾肥的管理模式建议为“秸秆还田 + 适宜施钾量 + 钾肥全部施于薯季”。   相似文献   

14.
An experiment was performed to evaluate the regulatory effects of varied amounts of sulfur (S) on selenium (Se) uptake and distribution within wheat (Triticum aestivum L.) in response to selenite (SeO32-). The results showed that an appropriate amount of SeO32- (≤5 mg kg?1) improved the agronomic traits of wheat, and the addition of S significantly alleviated wheat growth inhibition caused by excessive SeO32- (≥15 mg kg?1). The Se concentration of different fractions in wheat grain showed a tendency of alkali-soluble Se > alcohol-soluble Se > water-soluble Se > salt-soluble Se. The use of S significantly reduced Se accumulation in each wheat part when the addition of SeO32- was ≤15 mg kg?1, but the Se distribution ratio of various wheat parts was not influenced by S supply. Overall, the application of S fertilizer is an effective technical measure to promote wheat production safety in high-Se areas.  相似文献   

15.
Spring wheat (Triticum aestivum L.) is the major crop in southwestern Australia where 75% of the 18 million hectares comprise sandy duplex and deep sandy soils, including uniform yellow sandplain soils. Some of the sandplain soils in the lower rainfall (< 350 mm annual average) eastern region are naturally very acidic (soil pH, as measured in 1:5 soil:0.01 M calcium chloride, 3.7–4.5) in soil horizons explored by wheat roots so molybdenum (Mo) deficiency and aluminium (Al) toxicity adversely affects grain production of wheat. Liming is not an economic option to ameliorate Mo deficiency and Al toxicity in these soils because uneconomical large amounts are required. However, despite Al toxicity, applying Mo fertilizer produces profitable grain yield. The fertilizer also increases Mo concentration in grain, and if this grain was used to sow the next crop, it may reduce the amount of Mo fertilizer required by the subsequent crop. To test this hypothesis we grew wheat in an experiment on naturally acidic sandplain soil (pH 4.5) when either 0 or 160 g/ha fertilizer Mo was applied. The grain harvested at the end of the growing season had Mo concentrations of 0.07 mg/kg when no Mo was applied (low Mo seed) and 0.27 mg/kg when Mo was applied (high Mo seed). In two further field experiments on naturally acidic sandplain soil (pH 4.3 and 4.4) we sowed low and high Mo seed of the same size (36.4 ± 0.2 mg per seed) when 4 rates of Mo fertilizer (0, 35, 70, and 140 g/ha Mo) was applied to soil. Grain yield responses to the Mo fertilizer were 59% for low Mo seed and 55 g/ha fertilizer Mo was required to produce 90% of the maximum grain yield. Corresponding values for high Mo seed were 15% response and 15 g/ha fertilizer Mo. Rather than sowing wheat seed harvested from acidic soils to sow wheat crops on the acidic sandplain soils, we instead recommend seed harvested from alkaline soils with larger concentrations of Mo in the seed be used reducing the rate of fertilizer Mo required for that crop.

The concentration of Mo in the youngest emerged leaf blades (YEB) that was related to 90% of the maximum grain yield (critical prognostic tissue test value for grain production) was about 0.08–0.09 mg/kg at tillering (Gs24) and at emergence of wheat heads (Gs59).  相似文献   

16.
Abstract. The residual value of mineral N fertilizer applied in the spring was investigated in a field experiment where four cereals (winter wheat, winter barley, spring barley and spring oats) had been grown at reduced (0.7N), normal (1N) or high (1.3N) N fertilizer rates for 20 to 28 years. The effect of previous N fertilizer dressing was tested in two succeeding years by replacing the original N rate with five test N rates ranging from 0 to 240 kg N ha?1 for winter cereals and 0 to 200 kg N ha?1 for spring cereals. In the first test year, winter wheat grown on plots previously supplied with the high rate of mineral fertilizer (202 kg N ha?1 yr?1) yielded more grain and straw and had a higher total N uptake than wheat on plots previously supplied with the normal (174 kg N ha?1 yr?1) or reduced (124 kg N ha?1 yr?1) rate. The grain yield response and N uptake was not significantly affected by the N supply in the test year. The winter wheat grown in the second test year was unaffected by the previous N supply. Grain and straw yield response and total N uptake for spring barley, winter barley and oats, were almost identical irrespective of the previous N rate. After 20 to 28 years there were no significant differences in soil C and N (0 to 20 cm) between soil receiving three rates of N fertilizer. Soil from differently fertilized oat plots showed no significant differences in N mineralizing capacity. Nitrate leaching losses from the soils at the three N rates were estimated and the N balances for the 20 to 28 years experimental period calculated. The data indicated a reduction in overall loss of 189 to 466 kg N ha?1 at the normal and high N rates compared with the reduced N rate. We conclude that the N supplying capacity and soil organic matter content of this fertile sandy loam soil under continuous cereal cropping with straw removal was not significantly affected by differences in N fertilizer residues.  相似文献   

17.
  【目的】  研究石灰性土壤上施用磷肥引起的小麦铁、锰、铜、锌含量的变化及其与作物养分吸收和土壤养分有效性的关系,为旱地小麦磷肥合理施用和丰产优质生产提供科学依据。  【方法】  于2004年在陕西杨凌设置不同磷肥用量的长期定位田间试验,土壤为石灰性土壤,pH 8.3。试验在每个小区施氮(N) 160 kg/hm2的基础上,设置施用P2O5 0、50、100、150、200 kg/hm2 5个水平。于2013—2016年3个收获期取样,测定了小麦地上部各器官生物量和铁、锰、铜、锌含量,及0—20和20—40 cm土层土壤有效铁锰铜锌含量。  【结果】  与不施磷相比,施用磷肥提高了小麦产量和籽粒铁、锰含量,但降低了籽粒铜、锌含量,同时提高了土壤有效铁、锰、锌含量,对有效铜含量影响不显著。进一步回归分析得出,施P2O5 165 kg/hm2时产量最高,为6492 kg/hm2;施P2O5 100 kg/hm2时籽粒铁含量最高,为41.7 mg/kg;施P2O5 94 kg/hm2时籽粒锰含量最高,为37.5 mg/kg;施P2O5 136 kg/hm2时籽粒锌含量最低,为25.4 mg/kg;籽粒铜含量在每增施P2O5 100 kg/hm2时会降低0.4 mg/kg。土壤有效锰、锌在施P2O5 100 kg/hm2时达到最大值,比对照分别提高24%和35%;土壤有效铁在施P2O5 200 kg/hm2时增幅最大,为8%;土壤有效铜在各施磷量下无显著变化。产量为最高产量的95% 时施磷量为 108 kg/hm2,当超过这一施磷量时,产量增幅减小,籽粒铁锰含量不再增加,铜锌含量持续降低。  【结论】  黄土高原石灰性旱地土壤上,长期施磷提高了小麦籽粒铁、锰含量,降低了籽粒铜、锌含量。籽粒铁、锰含量增加与土壤有效铁、锰增加促进了小麦的吸收及向籽粒的转移有关,而籽粒铜、锌含量降低与施磷后土壤有效铜没有显著提高,且高磷抑制铜转运和锌吸收有关。为了兼顾小麦高产与营养平衡,这一地区的施磷量应不超过P2O5 108 kg/hm2,以防止小麦籽粒铜、锌含量进一步降低,并维持合适的籽粒铁、锰含量。  相似文献   

18.
长期不同氮、 磷用量对冬小麦籽粒锌含量的影响   总被引:13,自引:5,他引:8  
【目的】小麦是我国西北地区主要的粮食作物,主要种植在低锌的石灰性土壤上,其籽粒锌含量普遍较低,难以满足人们的锌营养需求,因此提高冬小麦籽粒中的锌含量对保证人体健康具有非常重要的意义。氮素、 磷素供应不足或过量会影响冬小麦对锌的吸收与利用,本文基于黄土高原南部9年的长期定位试验,研究了长期不同氮、 磷肥用量对旱地冬小麦籽粒锌含量的影响及籽粒锌含量与氮、 磷吸收与分配的关系,以期为有效调控冬小麦籽粒锌营养品质和优化旱地冬小麦氮、 磷肥管理提供理论依据和切实可行的措施。【方法】田间定位试验开始于2004年10月,位于陕西杨凌西北农林科技大学农作一站。采用单因素完全随机区组设计,重复4次。供试小麦品种为小偃22,整个生育期不灌水。试验一为小麦施氮量试验,在施磷量为P2O5100 kg/hm2的基础上,设置0、 80、 160、 240、 320 kg/hm2 5个氮肥(N)水平;试验二为小麦施磷量试验,在施氮量为N 160 kg/hm2的基础上,设置P2O5 0、 50、 100、 150、 200 kg/hm2 5个磷肥水平。分别于2011~2013年连续两年进行田间取样,测定小麦籽粒产量及其构成因素,籽粒、 茎叶和颖壳中的氮、 磷、 锌含量,计算小麦地上部的氮、 磷、 锌吸收量。【结果】小麦施氮量试验表明,氮肥用量不超过N 320 kg/hm2时,小麦籽粒锌含量和地上部锌吸收量与施氮量呈极显著的正相关关系,施氮量每增加N 100 kg/hm2,籽粒锌含量平均提高4.0 mg/kg,地上部锌吸收量平均提高36.4 g/hm2;籽粒中的锌含量与氮含量之间、 地上部的锌吸收量与氮吸收量之间也均呈极显著的正相关关系,籽粒氮含量每增加1 g/kg,籽粒锌含量平均提高2.0 mg/kg,地上部氮吸收量每增加100 kg/hm2,其锌吸收量平均提高142.9 g/hm2。小麦施磷量的试验结果表明,施磷量不超过200 kg/hm2时,籽粒锌含量与施磷量呈极显著的负相关关系,施磷量每增加P2O5 100 kg/hm2,籽粒锌含量平均下降9.2 mg/kg;籽粒锌含量与磷含量也呈极显著的负相关关系,籽粒磷含量每增加1 g/kg,籽粒锌含量平均降低24.0 mg/kg;地上部锌吸收量与施磷量、 地上部磷吸收量之间均没有显著相关关系。【结论】综合考虑冬小麦籽粒产量和籽粒锌含量,建议这一地区冬小麦的施氮量和施磷量分别控制在N 160~240 kg/hm2和P2O5 50~100 kg/hm2。  相似文献   

19.
Abstract

Winter wheat (Triticum aestivum L.) occupies large hectarage and is important in crop rotations on the highly weathered, low organic matter silt loam soils common in southern Illinois and the southern midwest United States region. Sulfur (S) is an essential element with some potential for deficiency, but it is not commonly applied to winter wheat grown on these soils. This study was conducted to determine if S nutrition is limiting winter wheat growth and grain yield. Interactive effects of topdressed fertilizer S (0 and 28 kg S/ha), tillage (disk‐till, DT and no‐till, NT), and wheat variety on plant growth, nutrient concentration, and grain yield were investigated for three crop years on two soils in southern Illinois; Cisne silt loam (fine, montmorillonitic, mesic Mollic Albaqualf), Brownstown site, and Grantsburg silt loam (fine‐silty, mixed, mesic Typic Fragiudalf), Dixon Springs site. Grain yield was unaffected by S application although flag leaf and whole plant S concentrations increased. Lack of yield response to S application was consistent each year on both soils and across all varieties and tillage systems. Equivalent yields were produced with both tillage systems at Brownstown, but slightly lower yield occurred with no‐till at Dixon Springs. Plant S concentrations and soil sulfate levels indicated sufficient S was available from sources other than fertilizer S, including extractable soil S and atmospheric deposition. Wheat variety consistently influenced plant nutrient composition and grain yield more than tillage or application of S fertilizer. If, in the future, wheat grain production, atmospheric S deposition, and extractable soil S remain at levels measured in this study, then S fertilizer applications would not be expected to increase winter wheat grain yield.  相似文献   

20.
夏季降水是造成我国西北黄土高原区旱地土壤硝态氮淋溶的主要原因。通过田间长期定位试验研究了冬小麦收获后,不施肥种植夏玉米而利用土壤残留养分阻止硝态氮淋溶的效应。结果表明,小麦播前施氮量增加,夏玉米收获期生物量和子粒产量增加,但磷肥用量增加对其影响不明显。小麦播前施氮量增加,夏玉米氮磷钾累积增加,施磷量增加,氮钾素累积降低,磷素累积无显著变化。土壤剖面含水量随小麦播前施氮量增加而降低,不同施磷量土壤剖面水分累积量的差异显著减少。不施肥种植夏玉米可以有效阻止和减少土壤剖面硝态氮淋溶,但在小麦播前施氮240和320kg·hm^-2时仍有较明显淋溶,其累积峰逐渐向深层土壤转移,造成氮素损失。施磷时,土壤剖面0-220cm硝态氮累积量下降,220cm以下土层变化不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号