首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Root-nodulating bacteria were isolated and characterized from seven native shrubby legumes growing in Taiwan. Phenotypic characteristics measured included growth rates in various media, colony morphology, and tolerances to extremes of temperature, salt and pH. The isolates were very diverse phenotypically. Among the 83 isolates that were screened, the majority were fast-growing rhizobia. Twenty eight strains tolerated high concentration of salt (4.5% NaCl) and grew well between temperatures of 37 and 45 °C. The majority of the strains also tolerated extreme pH in their medium from 3.5 to 12. All strains formed nitrogen fixing nodules, and the highest activity was detected in the legume Hedysarum crinita L. PCR restriction fragment length polymorphism (PCR-RFLP) and sequencing of the small subunit ribosomal RNAs revealed that the majority of the isolates belonged to the genera Rhizobium, Bradyrhizobium and Agrobacterium. Only a single strain represented the genus Sinorhizobium. In addition, a strain related to Burkholderia from the β-class of the Proteobacteria (CC-CC-5) was found within nodules of the legume Catenaria caudatum. The study contributes to the understanding of symbiotic nitrogen fixation in selected wild legumes that are native to Taiwan and provides insights into the distribution of nodulating and nitrogen-fixing bacteria from other distinct lineages.  相似文献   

2.
Although rhizobia for common bean (Phaseolus vulgaris L.) are established in most Brazilian soils, understanding of their genetic diversity is very poor. This study characterized bean strains from two contrasting ecosystems in Brazil, the Northeast Region, with a semi-arid climate and neutral soils and the South Region, with a humid subtropical climate and acid soils. Seedlings of the cultivars Negro Argel and Aporé were used to trap 243 rhizobial isolates from 12 out of 14 sites. An analysis of ERIC-PCR products revealed enormous variability, with 81% of the isolates representing unique strains considering a level of 70% of similarity. In general, there was no effect of either the bean cultivar, or the ecosystem on rhizobial diversity. One-hundred and one strains showing genetic relatedness (ERIC-PCR) less than 70% were further analyzed using restriction fragment length polymorphism (RFLP) of the 16 S rDNA cleaved with five restriction enzymes. Twenty-five different profile combinations were obtained. Rhizobium etli was the predominant species, with 73 strains showing similar RFLP profiles, while 12 other strains differed only by the profile with one restriction enzyme. Fifty strains were submitted to sequencing of a 16 S rDNA fragment, and 34 clustered with R. etli, including strains with RFLP-PCR profiles similar to those species or differing by one restriction enzyme. However, other strains differing by one or two enzymes were genetically distant from R. etli and two strains with identical profiles showed higher similarity to Sinorhizobium fredii. Other strains showed higher similarity of bases with R. tropici, R. leguminosarum and Mesorhizobium plurifarium, but some strains were quite dissimilar and may represent new species. Great variability was also verified among the sequenced strains in relation to the ability to grow in YMA at 40 °C, in LB, to synthesize melanin in vitro, as well as in symbiotic performance, including differences in relation to the described species, e.g. many R. etli strains were able to grow in LB and in YMA at 40 °C, and not all R. tropici were able to nodulate Leucaena.  相似文献   

3.
ABSTRACT

While pulses are staple food-legumes in Ethiopia, their productivity is low due to low soil fertility. Elite rhizobial strains that significantly increased shoot dry weight and nitrogen (N) contents of common beans and soybeans in greenhouse were selected for two-year field trials to evaluate their effect on yields of the pulses in the field. Each pulse had six treatments, namely four rhizobial inoculants, uninoculated control, and synthetic N fertilizer. In the drought-affected year 2015, inoculated pulses tolerated moisture stress better than non-inoculated controls. Inoculation was conducive to higher or equivalent yields compared to synthetic N fertilizer. At Halaba, bean inoculated with strain HAMBI3562 gave the highest grain yield (1500 ± 81 kg ha?1; mean±SE) while the control yielded only 653 ± 22 kg ha?1. At Boricha, HAMBI3570 gave a grain yield (640 ± 35 kg ha?1) comparable to synthetic N. When rainfall was optimal in 2016, inoculation with HAMBI3562 and HAMBI3570 gave grain yields (around 4300 kg ha?1) equivalent to synthetic N. With soybean, strain HAMBI3513 produced consistently higher or comparable biomass and grain yields compared to synthetic N. In conclusion, HAMBI3562 and HAMBI3570 for beans and HAMBI3513 for soybeans can serve as inoculants for areas having similar conditions as the test areas.  相似文献   

4.
Sowing nitrogen (N) fertilization can limit biological nitrogen fixation (BNF) reducing common bean yield. The aim of this study was to evaluate the effect of sowing N fertilization plus inoculation on the growth and yield of plants in the two seasons of cultivation in Brazil. In the dry season, N fertilization and inoculation promoted a greater shoot dry weight and higher pod number and yield than only inoculated. In contrast, in the rainy season, this treatment promoted no increase in shoot dry weight and yield compared with the inoculated alone. The number of nodules was greater for the inoculated alone treatment, but nodule weight was not affected by N fertilization in either season. Therefore, sowing N fertilization and inoculation can be an agronomic practice to achieve a higher common bean yield in the dry season, while in the rainy season, the inoculation without N fertilization can support a high yield at a lower cost.  相似文献   

5.
Abstract

The rapid expansion of mandarin (Citrus reticulata L.) production areas with high agrochemical input in the highland areas of northern Thailand has resulted in negative effects in terms of production, environment, soil quality, and public health. The use of microorganisms as plant growth promoters is an alternative method to reduce agrochemical input. Thus, we studied the diversity of endophytic actinomycetes in mandarin and their potential as plant growth promoters. A total of 252 endophytic actinomycete isolates were recovered from mandarin. Based on spore chain morphology, cell wall type, and 16S rRNA gene sequence, the isolates were classified into six genera: Streptomyces, Nocardia, Nocardiopsis, Spirillospora, Microbispora and Micromonospora. The most frequent isolates recovered were members of Streptomyces (85.3%). Selected isolates (64 isolates) from these genera were evaluated for their indole-3-acetic acid (IAA) production potential in a medium with 2 mg mL?1 tryptophan, and all the selected isolates showed the potential to produce IAA, with average values of IAA production of 13.34, 3.36, 140.38, 12.55, 1.40, and 6.19 µg IAA mL?1, respectively. Isolates of genus Nocardiopsis showed a very high ability to produce IAA that was the highest among all the genera, with values ranging from 62.23 to 222.75 µg mL?1. Twelve isolates selected from these genera were inoculated onto mandarin seedlings, and the results indicated that the shoot height, fresh shoot weight and fresh root weight of the seedlings were promoted by the inoculation of endophytic actinomycetes, with values ranging from 20.2 to 49.1%, 14.9 to 53.6%, and 1.6 to 102% over the control, respectively.  相似文献   

6.
通过构建快生型大豆根瘤菌B52的基因文库和三亲本杂交,将增效因子DNA片段导入优良的慢生型大豆根瘤菌22-10中,获得携带来自快生菌增效因子DNA片段的工程菌株HN32,经盆栽和小区试验,证明基因工程菌株HN32比出发菌株22-10平均增产6%,比对照平均增产13.2%~16.9%,相当于每公顷施75~150kg尿素.1992~1995年,在广西推广应用基因工程大豆根瘤菌HN322.16万hm2,每公顷平均增产19%,投入产出比1:30。增加经济效益1409.8万元。  相似文献   

7.
The Great Rann of Kachchh, a vast expanse of salt desert in Western India is a unique hostile ecosystem posing an extreme environment to life forms due to high salt content, hyper-axid climate, seasonal water logging and extremes of temperature. In the virtual absence of natural vegetation, soils and sediments of Rann of Kachchh axe microbially dominated ecosystems. In the present study microbial activity and the diversity of cultivated heterotrophic bacteria were investigated in the sediments collected along a 5-m exposed section at Khadir Island in the Great Rann of Kachchh. Microbial activity (as an index of sediment enzymes) was found to be high in the middle of the section (200-280 cm). Dehydrogenase (DHA), substrate-induced DHA and alkaline phosphatase activities revealed the oligotrophic nature of the basal portion (320-480 cm). Abundant bacterial isolates obtained from different depths were found to be clustered in 12 different phylogenetic groups by amplified ribosomal DNA restriction analysis. 16S rRNA gene sequencing revealed the dominant bacterial ribotypes to be affiliated to Firmicutes (Families Bacillaceae and Staphyloeoccaeeae) and Aetinobaeteria (Family Brevibaeteriaceae) with minor contribution of Proteobacteria (Families Phyllobacteriaeeae and Bartonellaceae), pointing their endurance and adaptability to environmental stresses. Statistical analysis indicated that sediment organic carbon, salinity, total available nitrogen and total available phosphorous are most likely critical determinants of microbial activity in the Khadir Island sediments.  相似文献   

8.
[目的]筛选适用于成都平原的高效广谱蚕豆根瘤菌,并对其相关促生功能进行初步评价,为成都平原高效蚕豆根瘤菌剂的研制与应用提供科学依据。[方法]供试6株根瘤菌由课题组前期分离自成都平原,其与四川主栽蚕豆‘大白蚕豆’匹配良好,采用常规方法测定了这6个菌株分泌生长素及溶磷能力。菌株与蚕豆品种匹配试验采用低氮砂培法,供试蚕豆品种为成都平原主栽品种‘成胡14’、‘成胡15’;两个品种的蚕豆种子播种后,分别接种6个菌株,以不接种为对照(CK),光照(控温22~25℃、光照强度2800 lx左右、日照时间14 h)下培养41天后收获,测定植株生物量和根瘤数。然后,对匹配性试验筛到的两株高效广谱根瘤菌进行田间验证,供试蚕豆品种为成胡15,将2个根瘤菌制备的菌剂(活菌数5.0×10^8 CFU/g以上,载体为泥炭)进行拌种,以不接菌处理的灭菌泥炭为对照。在盛花期(生育期105 d)采样测定株高、根瘤数、地上部分植株干重;收获期(生育期200 d)采样测产;测定两个时期植株样品氮、磷、钾含量。盛花期采用BOX-PCR分子标记法测定接种根瘤菌占瘤率,同时提取接种菌株SCAUf73、SCAUf76的总DNA,比较接种菌株及相应根瘤类菌体根瘤菌DNA的BOX-PCR分子指纹图谱。用多位点基因序列分析法对田间验证的优良菌株SCAU73进行分类地位研究。[结果]1)通过匹配性砂培试验,筛选到2株与2个成都平原主栽蚕豆品种均高效匹配的根瘤菌SCAUf73、SCAUf76。SCAUf76、SCAUf73能使‘成胡14’、‘成胡15’植株干重较CK显著增加40.5%~61.6%。2)通过两株菌田间接种试验发现,接种SCAUf76处理的蚕豆产量与CK差异不显著;接种SCAUf73处理蚕豆植株干重、全氮含量等指标均高于CK,籽粒鲜产比CK显著增加25.0%,并显著高于SCAUf76,其占瘤率达到33%。3)多位点基因序列分析表明,SCAUf73可能是Rhizobium的一个新类群。4)促生性试验表明,6株菌都能分泌生长素(IAA),最大分泌量为21.0 mg/L(SCAUf76);供试菌株的溶磷能力不明显。[结论]从成都平原上筛选的6个菌株中,SCAUf73具有分泌IAA能力,与蚕豆接种后,占瘤率达33%,可显著促进蚕豆氮素吸收积累,提高蚕豆籽粒产量。与成都平原的主栽蚕豆品种匹配的高效广谱根瘤菌SCAUf73,适用于成都平原的蚕豆生产。  相似文献   

9.
Abstract

Genetic diversity and distribution of indigenous soybean-nodulating bradyrhizobia in Japan were investigated based on restriction fragment length polymorphism analysis of PCR product (PCR-RFLP) analysis of the 16S?23S rDNA internal transcribed spacer (ITS) region using Bradyrhizobium USDA strains as reference strains. Soil samples were collected from five field sites in Hokkaido, Fukushima, Kyoto, Miyazaki and Okinawa in Japan. A total of 300 isolates were derived from three Rj-genotype soybean cultivars, Akishirome (non-Rj), CNS (Rj 2 Rj 3) and Fukuyutaka (Rj 4), and five field site combinations. The PCR products of the ITS region were digested with HaeIII, HhaI, MspI and XspI. Electrophoresed patterns were analyzed for phylogenetic relationship using Bradyrhizobium reference strains. Results revealed 22 RFLP patterns and 11 clusters. The RFLP patterns of the seven clusters were similar or identical to Bradyrhizobium japonicum USDA 6, 38, 110, 115, 123 and Bradyrhizobium elkanii USDA 76 and 94. Four minor clusters were independent from the clusters of the reference strains. The isolation ratio revealed the major clusters at each field site. These results suggested that major clusters of indigenous bradyrhizobia might be in the order Bj123, Bj38, Bj110, Bj6 and Be76 from the northern to southern regions in Japan.  相似文献   

10.
Symbiotic efficiency and compatibility of 81 isolates of native bradyrhizobia from irrigated areas in northern Thailand with four soybean cultivars and one cowpea cultivar were evaluated under laboratory conditions. Effectiveness and / or compatibility of the tested isolates were compared with those of a standard strain (Bradyrhizobium japonicum CB 1809) by using plants grown on plastic seed bags. Effectiveness of the isolates was also estimated using uninoculated control plants grown in a nitrogen-free solution. Nodulation of a wide range of host plants by the majority of the tested isolates was observed, which agreed well with the results of our previous field experiment (Shutsrirung et al. 2002: Soil Sci. Plant Nutr., 48, 491–499). Up to 75% of the tested isolates induced a higher growth efficiency than that of the uninoculated control in association with one of the tested cultivars, Black soybean. Comparision with uninoculated control plants, enable to estimate the proportion of the tested isolates leading to effective growth promotion (E + e) of each cultivar, namely, Black soybean (local Thai cultivar), 75%; Cowpea, 82%; SJ5 (commercial Thai cultivar), 33%; Bragg (US cultivar), 33%; and Improved Pelican (US cultivar), 9%. These results indicated that although isolates with a high infectiveness with both “Asian-type” and “US-type” soybeans could be found, a high frequency of isolates leading to inefficient nodules was observed in the US cultivar, suggesting the presence of genetic differences in the soybean cultivars that express high-preference (efficient nodules) or low-preference (inefficient nodules) for a certain group of tested isolates. Based on the results of this laboratory experiment together with our previous field experiment, native rhizobial populations in the irrigated area of northern Thailand could be separated into three groups; Group 1: rhizobium strains showing a high effectiveness with only Asian cultivars, Group 2: strains showing a high effectiveness with only US origin cultivars, and Group 3: strains showing a high effectiveness with both Asian and US origin cultivars. The majority of the native rhizobial populations belonged to Group 1. The isolates in Group 3 may display a high potential for manipulating useful rhizobial inoculant.  相似文献   

11.
A solution for environmentally wiser agriculture is the use of composted organic wastes as soil amendments. Just as this alleviates the problem of recycling organic residues, it provides necessary nutrient input for food production. The objective of this work was to study the effect that 13 years of applying three different composted organic wastes or organic amendments have had on soil quality, GHG emissions and the dynamics of its microbial communities 15 days after the annual application. For this purpose, in 1996 a field trial was set up in a Tempranillo vineyard. Since 1998, the applied organic amendments have been as follows: 1. a pelletized organic compost (PEL) made from plant, animal and sewage sludge residues; 2. a compost made from the organic fraction of municipal solid waste (OF-MSW); 3. a compost made of stabilized sheep manure (SMC); 4. a mineral fertilizer (NPK); and 5. an unaltered control. The mean annual doses applied since 1998 have been 3700 kg ha−1 fresh weight (FW) of PEL, 4075 kg ha−1 FW of OF-MSW, 4630 kg ha−1 FW of SMC, and 340 kg ha−1 of NPK treatment. Soil quality was consistently enhanced by amendment application over the 13 years. Total nitrogen was significantly increased in PEL (0.1%), OF-MSW (0.09%) and SMC (0.1%) compared to control (0.06%). Nutrient content was also improved in a similar way, e.g. the most significant increase in P Olsen (80.7 mg kg−1) and K2O (473.8 mg kg−1) was found on SMC. The overall enzyme activity was also increased 15 days after the annual application and OF-MSW had the highest rate (95.9) compared to control (51.3). This increase in metabolic activity was also recorded in GHG emissions. CO2 equivalents per hectare were 1745 kg for OF-MSW and it was the only significant difference found. PEL with 1598 kg and SMC with 1591 kg were not different from the Control (1104 kg). Even though GHG emissions in the soil increased because of the application, soil organic matter content increased significantly (at least 35% more in all organic treatments compared to control) and this rise in organic matter was consistent over the years. According to the results, 85% of the sequences corresponded to 5 main phyla: Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Gemmatimonadetes, with unclassified material making up for 10.9% (average) of the sequences. Bacterial diversity by Shannon and Chao1 indices was not affected 15 days after the application. However, slight changes in the bacterial community were recorded 15 days after application only in OF-MSW treatment. Assessing soil quality using these three factors allows the relevant agronomical capabilities of the soil to be integrated with the potential effect of this practise on global warming.  相似文献   

12.
模拟干湿交替对水稻土古菌群落结构的影响   总被引:2,自引:0,他引:2  
包丽君  贾仲君 《土壤学报》2017,54(1):191-203
干湿交替是自然界普遍存在的现象,但长期以来由于技术的限制,复杂土壤中微生物对水分变化的响应规律仍不清楚。针对我国江苏常熟湖泊底泥发育的典型水稻土,在室内开展湿润-风干以及风干-湿润各三次循环,每次循环中湿润、风干状态各维持7d,利用微生物核糖体rRNA的通用引物进行PCR扩增,通过高通量测序分析土壤古菌多样性变化,同时结合实时荧光定量PCR技术,在DNA和RNA水平研究古菌数量对干湿交替过程的响应规律。结果表明:水稻土湿润-风干过程中,在DNA水平土壤古菌数量降幅约为149倍~468倍,而在RNA水平降幅最高仅为2.06倍;水稻土风干-湿润过程中,在DNA水平古菌数量增幅在147倍~360倍之间,而在RNA水平增幅最高仅为2.95倍。表明在干湿交替过程中,DNA水平的古菌16S rRNA基因数量变化远高于RNA水平。基于高通量测序多样性的结果表明,在DNA和RNA水平,湿润土壤3次风干、以及风干土壤3次加水湿润7d恢复后,土壤古菌群落结构均发生统计显著性改变。在微生物门、纲、目、科和属的不同分类水平下,水稻土古菌主要包括3、10、13、14、10种不同的类群,在RNA和DNA水平的结果基本一致。干湿交替导致部分古菌类群发生显著变化,其中在微生物分类学目水平发生显著变化的古菌最高达到6种,主要包括产甲烷古菌和氨氧化古菌,如Methanobacteriales、Methanosarcinales、Methanomicrobiales和Nitrososphaerales等。这些研究结果表明,反复的干湿交替并未显著改变水稻土中古菌的主要类群组成,古菌类群的绝对数量和相对丰度发生了一定程度的变化,但这些变化与微生物生理作用的联系仍需进一步研究;风干土壤中古菌RNA序列极可能来自于完整的古菌细胞,暗示了这些古菌细胞能够较好地适应水稻土中水分的剧烈变化,风干状态的土壤在一定程度也可用于土壤古菌群落组成研究。  相似文献   

13.
14.
 Endosymbionts from the Ethiopian highland acacia species Acacia abyssinica, A. negrii and A. etbaica, and the lowland species A. nilotica, A. prasinata, A.senegal, A. seyal, A. tortilis and Faidherbia (Acacia) albida were isolated and characterized. Seven tree species were found to be nodulated by species of both Rhizobium and Bradyrhizobium. F. (Acacia) albida and A. senegal were nodulated by only Bradyrhizobium or Rhizobium, respectively. In A. abyssinica, both genera were isolated from the same nodule, whereas in A. nilotica and A. tortilis, both strains were isolated from different nodules of the same plant. The nitrogen fixation (acetylene reduction) activities varied considerably and showed no correlation with the nitrogen content of the plant. Highland species were as effective as lowland plants, thus demonstrating good potential for soil reclamation. The endosymbionts isolated proved rather promiscuous, efficiently nodulating other Acacia spp. and some tropical grain legumes, but did not nodulate temperate legumes. Received: 7 August 1997  相似文献   

15.
Malic enzymes have been considered to play a key role in energy metabolism for nitrogenase reaction in bacteroids. To elucidate the physiological role of the malic enzymes in Bradyrhizobium japonicum bacteroids, a putative malic enzyme gene Bjtme1 was cloned by polymerase chain reaction (PCR) using degenerated primers from conserved regions of the protein sequences of bacterial malic enzymes and draft sequence data of the Bradyrhizobium japonicum USDA110 genome sequence project. To confirm the characteristics of the Bjtme1 gene, the protein encoded by this gene was over-expressed using a pET32a(+) system and it exhibited a NADP+-malic enzyme (EC 1.1.1.40) activity, indicating that Bjtme1 was the gene of the NADP+-malic enzyme. This is the first report on the cloning and characterization of the NADP+-malic enzyme gene from B. japonicum, and the gene structure was compared with that of NADP+-malic enzyme genes of other rhizobia.  相似文献   

16.
16S rRNA RFLP, 16S rRNA sequencing, 16S-23S rRNA Intergenetic Spacer (IGS) RFLP and G-C rich random amplified polymorphic DNA (RAPD) assays were conducted to genetically characterise indigenous cowpea [Vigna unguiculata (L.) Walp.] rhizobia from different geographic regions of China. Isolated cowpea rhizobia comprised six 16S rRNA genospecies. Genotype I was composed of 14 isolated strains and the reference strains of B. japonicum and B. liaoningense. This group was divided into two sub-groups respectively related to B. japonicum and B. liaoningense by 16S rRNA sequencing, IGS restriction fragment length polymorphism and RAPD assays. Genotype II composed of 27 isolates from a variety of geographic regions. Four different assays confirmed this group was genetically distinct from B. japonicum and B. liaoningense and probably represent an uncharacterised species. Strains isolated from Hongan, Central China and B. elkanii were grouped to genotype III. Strain DdE4 was solely clustered into genotype IV and related to Rhizobium leguminosarum. Genotypes V and VI consisted of six fast-growing isolates and clustered with reference strain of Sinorhizobium fredii. Comparing with the miscellaneous slow-growing isolates, fast-growing isolates mainly isolated from cowpea cultivar Egang I exhibited strict microbe–host specificity except SjzZ4. Nucleotide sequences reported were deposited in the GenBank with the accession numbers DQ786795–DQ786804.  相似文献   

17.
18.
Previous research has shown that soil structure can influence the distribution of bacteria in aggregates and, thereby, influence microbiological processes and diversity at small spatial scales. Here, we studied the microbial community structure of inner and outer fractions of microaggregates of a desert agricultural soil from the Imperial Valley of Southern California. To study the distribution of soil bacteria, 1,536 clones were identified using phylogenetic taxon probes to classify arrays of 16S rRNA genes. Among the predominant taxonomic groups were the α-Proteobacteria, Planctomycetes, and Acidobacteria. When compared across all phyla, the taxonomic compositions and distributions of bacterial taxa associated with the inner and outer fractions were nearly identical. Our results suggest that the ephemeral nature of soil aggregates in desert agricultural soils may reduce differences in the spatial distribution of bacterial populations as compared to that which occur in soils with more stable aggregates.  相似文献   

19.
Summary The objective of this study was to assess the number and effectiveness of peanut rhizobia in soils of the major peanut-growing areas of Thailand. Three cropping areas, (1) continuously cropped with peanuts, (2) continuously cropped with non-legumes, and (3) non-cultivated fields, were chosen in each region. Peanut rhizobia were found in the soil at 38 to 55 sites sampled. Cultivated fields with a peanut cultivation history contained (as estimated by most probable numbers) an average of 1.6×103 cells g-1 of soil. The numbers of peanut rhizobia in most of the fallow fields and some of the noncultivated shrub or forest locations were much the same as at the sites where Arachis hypogaea was cultivated. In contrast, there were no or few (28–46 cells g-1 soil) peanut rhizobia in the majority of fields continuously cultivated with sugarcane, cassava, corn, and pineapple. It appears that in these areas the indigenous peanut rhizobial populations are not adequate in number for a maximal nodulation of peanuts. A total of 343 Bradyrhizobium isolates were tested for effectiveness and were found to vary widely in their ability to fix N2. In some areas the majority of rhizobia were quite effective while in others they were less effective than the inoculum strain THA 205 recommended in Thailand.  相似文献   

20.
利用DNA-DNA杂交方法,分离细枝木麻黄的Frankia菌株Co01的nif克隆pCc1GX,赤杨内生菌株At4的nif克隆pAt1GX及沙棘的FrankiaHr18的nif克隆pHr18GX、pHr11-③GX。用基因功能互补法,从Frankia菌株At4的基因文库中分离到二个可能可互补豌豆根瘤菌nod基因功能的克隆pAt2GX、pAt3GX,并制作了pAt2GX、pAt3GX的亚克隆,予进一步实验,获得充分的证据证明pAt2GX、pAt3GX是否带有Frankia菌株At4的nod基因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号