首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Bell pepper (Capsicum annuum cv. Urfa Isoto) and cucumber (Cucumis sativus cv. Beith Alpha F1) were grown in pots containing field soil to investigate the effects of supplementary potassium phosphate applied to the root zone of salt‐stressed plants. Treatments were (1) control: soil alone (C); (2) salt treatment: C plus 3.5 g NaCl kg?1 soil (C + S); and (3) supplementary potassium phosphate: C + S plus supplementary 136 or 272 mg KH2PO4 kg?1 soil (C + S + KP). Plants grown in saline treatment produced less dry matter, fruit yield, and chlorophyll than those in the control. Supplementary 136 or 272 mg KH2PO4 kg?1 soil resulted in increases in dry matter, fruit yield, and chlorophyll concentrations compared to salt‐stressed (C + S) treatment. Membrane permeability in leaf cells (as assessed by electrolyte leakage from leaves) was impaired by NaCl application. Supplementary KH2PO4 reduced electrolyte leakage especially at the higher rate. Sodium (Na) concentration in plant tissues increased in leaves and roots in the NaCl treatment. Concentrations of potassium (K) and Phosphorus (P) in leaves were lowered in salt treatment and almost fully restored by supplementary KH2PO4 at 272 mg kg?1 soil. These results clearly show that supplementary KH2PO4 can partly mitigate the adverse effects of high salinity on both fruit yield and whole plant biomass in pepper and cucumber plants.  相似文献   

2.
The purpose of this laboratory incubation study was to assess the solubility of phosphorus (P) in alum‐treated poultry litter (ATPL) when applied to three Virginia soils at equivalent P‐based rates. Three poultry litter sources (one that had received no alum additions and two that had received alum additions) were utilized in the study. These litter sources and monopotassium phosphate (KH2PO4) were applied at rates of 66, 132, and 197 mg P kg?1 with a 0‐P check treatment included for each soil. Soils were incubated for 1 year, and samples were collected at 1, 3, 6, and 12 months after treatment application. Data collected were used to calculate the relative extractability of P applied in the three litter sources. Results indicated that ATPL applications reduced P solubility compared to untreated poultry litter (NPL); this effect was most significant at 1 month after application. However, at 12 months, significant differences in extractable P between NPL and ATPL treatments were limited at the 66 mg P kg?1 rate. This resulted from continuous decline in the extractability of P applied in the NPL, whereas the extractability of P applied in the ATPL source changed little with time and in some cases increased slightly between the 1‐ and 3‐month sampling periods. Calculated values of relative extractability were influenced not only by litter source but also P application rate, soil type, and incubation time. Therefore, use of relative extractability values as P source coefficients should be done with caution, because experimental protocol can have profound effects on their magnitude.  相似文献   

3.
Abstract

Soil chemical and physical reactions involving phosphorus (P) must be understood to predict the risk of P being transported from agricultural land to streams and lakes. The kinetics of P sorption by an Ultisols from West Virginia, USA, receiving P from fertilizers were compared to soils amended with turkey litter. Addition of 6.6 and 13.2 Mg turkey litter ha?1 increased Bray 1P levels to about the same level as adding 53 and 115 kg P ha?1, respectively. Phosphorus binding capacity decreased to a greater extent when P was added as fertilizer as compared to turkey litter. For example, P binding maximum was 360 mg P kg?1 dry soil when soil was amended with 6.6 Mg turkey litter ha?1 as compared to 260 mg P kg?1 dry soil when amended with 53 kg P ha?1. This study demonstrates that the decrease in P‐binding capacity with increasing soil P is less when P is added as turkey litter.  相似文献   

4.
Removal of soil phosphorus (P) in crop harvest is a remediation option for soils high in P. This 4-year field-plot study determined P uptake by annual ryegrass (ARG, Lolium multiflorum Lam.) and common bermudagrass (CB, Cynodon dactylon (L.) Pers.) from Ruston soil (fine-loamy, siliceous, thermic Typic Paleudult) enriched in P by five previous annual applications of poultry litter, and related P removed to Bray 2 P in surface (0–15 cm) soil. Decreases in surface soil Bray 2 P were largely attributable to uptake. Phosphorus uptake was positively related to Bray 2 P but approached a limit. Mass of P removed in harvest closely approximated the decrease in mass of surface soil Bray 2 P. Maximum Bray 2 P drawdown per harvest (ARG and CB, average) was ?3 mg kg?1 at Bray 2 P ? 300 mg kg?1, generally consistent with measured decreases in Bray 2 P.  相似文献   

5.
In this research, a sequential fractionation procedure coupled with enzyme hydrolysis was used to categorize the phosphorus (P) forms of 18 manure samples collected from in-barn composted bedded pack (beef manure), anaerobic digestion with liquid–solid separation (dairy manure), and liquid–solid separation systems (dairy manure). This research also determined the effects of those P forms on the increase in soil test P (STP) of five soil series. The soils used had initial Bray-1 P ranging from 16 to 43 mg P kg?1. Total dry-ash P (Pt) of the manures ranged from 1.4 to 15.0 g P kg?1; total inorganic P (Pit) accounted for 20 to 81 % of Pt; and enzymatically hydrolysable P (Pet) accounted for 5 to 26 % of Pt. Liquid–solid separation tended to concentrate the manure P in the liquid fractions. In contrast, anaerobic digestion did not affect the manure P distribution compared with the undigested raw manure from the same system. No differences in P distribution were found for the compost bedded pack manure. In the soil incubation study, manure and fertilizer were applied at 40 mg total P kg?1. Separated liquid manure from two systems tended to increase STP more than the separated solid manures from the same systems. Although anaerobic digestion modified some of the physical and chemical properties of the treated manures, it did not clearly impact how digested manure increased STP compared with the raw manures. Overall, the increase in STP after treated manure application was found to be a function of soil clay content and manure Pit?+?Pet applied.  相似文献   

6.
Eight fly ash samples collected from South African power stations were evaluated for various chemical properties, liming potential and metal species release under incubation. All fly ashes had alkaline pH ranging from 10.97 to 12.75 with much wider variations of electrical conductivity (range 0.46–8.27 dS m?1). Their total P content ranged from 553.3 to 1514 mg P kg?1 and Olsen extractable P from 130 to 345.5 mg P kg?1. Application of two of the fly ashes to three different soils showed a high ability to neutralize acidity, resulting in an average of 41% change in pH after 8 weeks of incubation. Across all three soils, the fly ash incorporation increased extractable P content from a P-deficient level to levels above 25 mg P kg?1 in two of the three soils. Except for Cu, all metal species (Cr, Pb, Ni and Fe) showed significantly (P ≤ 0.05) low extractability under fly ash treated soils compared to the soil alone control. These results suggest that the South African fly ashes studied are effective liming materials and can provide essential elements such as P with minimum risk of soil contamination from metal species release.  相似文献   

7.
We investigated the potential of soil moisture and nutrient amendments to enhance the biodegradation of oil in the soils from an ecologically unique semi-arid island. This was achieved using a series of controlled laboratory incubations where moisture or nutrient levels were experimentally manipulated. Respired CO2 increased sharply with moisture amendment reflecting the severe moisture limitation of these porous and semi-arid soils. The greatest levels of CO2 respiration were generally obtained with a soil pore water saturation of 50?C70%. Biodegradation in these nutrient poor soils was also promoted by the moderate addition of a nitrogen fertiliser. Increased biodegradation was greater at the lowest amendment rate (100 mg N kg?1 soil) than the higher levels (500 or 1,000 mg N kg?1 soil), suggesting the higher application rates may introduce N toxicity. Addition of phosphorous alone had little effect, but a combined 500 mg N and 200 mg P kg?1 soil amendment led to a synergistic increase in CO2 respiration (3.0×), suggesting P can limit the biodegradation of hydrocarbons following exogenous N amendment.  相似文献   

8.
Abstract

Greenhouse experiment was conducted to evaluate the effect of arbuscular mycorrhizal fungi (AMF) on plant growth, and nutrient uptake in saline soils with different salt and phosphorus (P) levels. The following treatments were included in this experiment: (i) Soil A, with salt level of 16.6 dS m?1 and P level of 8.4 mg kg?1; (ii) Soil B, with salt level of 6.2 dS m?1 and P level of 17.5 mg kg?1; and (iii) Soil C, with salt level of 2.4 dS m?1 and P level of 6.5 mg kg?1. Soils received no (control) or 25 mg P kg?1 soil as triple super phosphate and were either not inoculated (control) or inoculated with a mixture of AM (AM1) and/or with Glomus intraradices (AM2). All pots were amended with 125 mg N kg?1 soil as ammonium sulfate. Barley (Hordeum vulgar L., cv. “ACSAD 6”) was grown for five weeks. Plants grown on highly saline soils were severely affected where the dry weight was significantly lower than plants growing on moderately and low saline soils. The tiller number and the plant height were also lower under highly saline condition. The reduced plant growth under highly saline soils is mainly attributed to the negative effect of the high osmotic potential of the soil solution of the highly saline soils which tend to reduce the nutrient and water uptake as well as reduce the plant root growth. Both the application of P fertilizers and the soil inoculation with either inoculum mixture or G. intraradices increased the dry weight and the height of the plants but not the tiller number. The positive effect of P application on plant growth was similar to the effect of AM inoculation. Phosphorus concentration in the plants was higher in the mycorrhizal plant compared to the non mycorrhizal ones when P was not added. On the other hand, the addition of P increased the P concentration in the plants of the non mycorrhizal plants to as high as that of the mycorrhizal plants. Iron (Fe) and zinc (Zn) uptake increased with AM inoculation. The addition of P had a positive effect on micronutrient uptake in soil with low level of soil P, but had a negative effect in soil with high level of soil P. Micronutrient uptake decreases with increasing soil salinity level. Inoculation with AMF decreases sodium (Na) concentration in plants grown in soil of the highest salinity level but had no effect when plants were grown in soil with moderate or low salinity level. The potassium (K) concentration was not affected by any treatment while the K/Na ratio was increased by AM inoculation only when plant were grown in soil of the highest salinity level.  相似文献   

9.
Soil cultivation changes and usage of agricultural wastes can have profound impacts on greenhouse gas (GHG) emission from soil. In this study, the effects of soil cultivation and organic amendment on GHG emission were investigated using aerobic incubation. Surface soil (0–20 cm) from (1) rice–legume consecutive rotation (Rice) and (2) recently (<3 years) converted from rice field to plastic-covered intensive vegetable and flower production (VegC) were collected in Kunming, P.R. China. Rose (Rosa rugosa Thunb.) residues and cattle manure were applied at 5% by weight. Results indicated that N2O and CO2 fluxes were significantly influenced by soil cultivation, organic amendment, incubation time and their interaction (p <0.05). Applying cattle manure increased, while rose residue decreased, cumulative N2O emissions from soil (84 days). Rose residue application significantly increased cumulative CO2 emissions with peak values of 6371 (Rice) and 7481 mg kg?1 (VegC), followed by cattle manure addition figure of 2265 (VegC) and 3581 mg kg?1 (Rice). Both were significantly higher (p <0.05) than the un-amended Control at 709 (VegC) and 904 mg kg?1 (Rice). Our study demonstrates that a low C/N ratio in cattle manure is better than a high C/N ratio in rose residue in regard to reducing the global warming potential of agricultural soil.  相似文献   

10.
ABSTRACT

Due to a decrease in phosphorus (P) and potassium (K) mining, manure is incinerated to concentrate P and K in ash. To understand the alternative use of manure-derived ash as P and K sources, laboratory and greenhouse experiments were conducted to determine the relationship between extractability and P and K uptake in cattle manure ash (CMA) and that between CMA application and a grass tetany hazard. The results showed that more P was extracted with 2% citric acid (90% of the total P) than with 2% formic acid (72–84% of the total P). Ninety-one percent of the total K was soluble in water. A greenhouse pot experiment was conducted to test P and K availability to Guinea grass (Megathyrsus maximus). Cattle manure ash or calcium dihydrogen phosphate (CF) was incorporated into sandy soil at 10, 20, and 50 g P2O5 m?2. Two combinations of CMA and CF were tested at 20 g P2O5 m?2. Potassium rates followed K content in CMA applied at different rates of P equivalent to 19, 38, or 96 g K2O m?2. In four harvests, there was no significant difference in the total yields between CMA and CF treatments. The total P uptake was significantly lower in the CMA treatment than in the CF treatment, while it was not in the combined CMA and CF treatments. The P uptake in response to different extraction methods indicated that the extraction of P by 2% formic acid without sonication is recommended to predict P availability in CMA. The potassium uptake from CMA application was comparable to that from the KCl application, and excessive K occurred at 38 and 96 g K2O m?2. The grass tetany hazard ratio higher than 2.2 was observed at the beginning period at the lowest application rates of CMA and CF. In conclusion, the combination use of CMA and CF was better than the single use of CMA. Moreover, CMA would be an available K source, but the grass tetany hazard still needs to be considered in application rates and pretreatments.  相似文献   

11.
Abstract

Two separate field experiments were conducted to evaluate the effects of swine lagoon effluent relative to inorganic fertilizer at equivalent rates on phosphorus (P) status of an acidic Vaiden (very fine, montmorillonitic, thermic, Aquic Dystrudert) and an alkaline Okolona (fine, montmorillonitic, therimic, Typic Chromudert) silty clay soil. In each site, a randomized complete block design with a factorial arrangement of treatments was used. Treatments were replicated four times. Cumulative swine lagoon effluent P application rates for the year 1994 through 1996 were 0, 59, 121, and 175 kg P ha?1 on the Vaiden soil and 0, 72, 148, and 223 kg P ha?1 on the Okolona soil. In each replication, commercial fertilizer P at rates equivalent to swine effluent P application were also included. For both sites, soil P concentration increased with increasing swine effluent and commercial fertilizer P applications. No significant difference in soil P level was observed between two P sources. At high application rate, desorbed P was 1.20 and 0.59 mg P kg?1 in the Okolona and Vaiden soil respectively. In the Vaiden soil, P adsorption approached the maximum for equilibrium P concentration greater than 600 mg L?1. However, Okolona soil displayed a linear adsorption potential with application of swine effluent P. Among P fractions, NH4Cl‐P and HCl‐P concentrations increased the most compared to the check in both Okolona and Vaiden soils. Results indicated that P status differs between the soils, but no significant differences in P concentration were obtained between swine lagoon effluent and commercial fertilizer, suggesting that both P sources had similar effect on soil P after 3 years of application.  相似文献   

12.
Abstract

Phosphorus (P) availability to plants in reclaimed alkali soils was the main objective of this study, which was also focused on P transformations, decrease in Olsen‐P content, and magnitude of P lost in leachate in course of amendment application and leaching. Liquid sodium bicarbonate (NaHCO3) was added to nonalkali soils to set up four ESP (exchangeable sodium percentage) levels (viz., 2.9, 25.0, 50.0, and 75.0), but actual ESP levels obtained were 2.9, 24.6, 51.2, and 75.3. Amendments (viz., gypsum and pyrites) and P treatments (viz., 0 and 50 mg P Kg?1) were mixed with dry, sieved soil before filling into PVC (polyvinyl chloride) drainage columns, which were then compacted to uniform bulk density and leached with deionized water for 30 days. Results indicated that the pH and electrical conductivity (EC) of the soils increased with increase in ESP level of the soil but decreased with amendment application. Phosphorus addition to alkali soils decreased the pH on day 30, but it could not affect the EC of the soils. Successive increase in the ESP level of the soil increased the pH and EC off the leachate. Gypsum‐amended soils exhibited lower pH and EC values than pyrite‐amended soils. The EC of the leachate decreased sharply with time in amended soils, but the pH decreased slowly. Phosphorus addition affected the leachate pH earlier than the soil pH. Cumulative volume of leachate decreased with increasing ESP levels, but it increased with amendment and phosphorus application. Leaching of P increased with increase in ESP levels, and the maximum cumulative loss of P was 11.2 mg Kg?1 in the 75.3 ESP soil. Cumulative P lost in the pyrite‐amended soils was higher than the gypsum‐amended soils. Phosphorus leaching in the gypsum‐amended soils stopped at day 10 and beyond, but it continued until day 30 in the pyrite‐amended soils. Part of the applied P in alkali soils was also lost along with the native P, whereas it was protected in the nonalkali soils. OlsenP increased with increasing ESP levels, and alkali soils invariably contained higher Olsen P than nonalkali soils. At day 30, alkali soils contained much higher Olsen P (12.6 mg Kg?1) than nonalkali soils (5.9 mg Kg?1). In general, there was a decrease in the Olsen P with both of the amendments, but it decreased more with pyrites than with gypsum. Phosphorus added through monopotassium phosphate (KH2PO4) remained extractable by Olsen's extractant up to day 30. Results also indicated that percent distribution of ammonium chloride (NH4Cl)‐P, calcium (Ca)‐P, and unknown P increased with rising ESP levels but iron (Fe)‐aluminum (Al)‐bound P and residual P decreased. Percent distribution of Ca‐P and unknown P exhibited an increase with time also. Unamended alkali soils contained more NH4Cl‐P than amended ones. Iron and Al‐ bound P and residual P increased more with pyrites, whereas formation of Ca‐P and unknown P was enhanced with gypsum. Applied P tended to convert more into NH4Cl‐P, Ca‐P, and residual P than to Fe‐Al‐bound P or unknown P fractions. Models developed to estimate Olsen P and P concentration in leachate, through pH or EC, have application value for P management in alkali soils that are leached after application of amendments.  相似文献   

13.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

14.
The purpose of this study was to assess the effects of charcoal and earthworm presence in contrasting soil types of northern Japan using the biologically based phosphorus (BBP) extraction method, which employs a variety of plant P acquisition strategies. Using soils developed in serpentine and sedimentary parent materials, we tested the interactive effects of Eisenia japonica (Michaelsen) earthworms and 500 kg ha?1 of dwarf bamboo charcoal (Sasa kurilensis (Rupr.) Makino et Shibata) in a microcosm incubation that lasted four weeks. Soils were extracted in parallel after the incubation with the BBP method using 0.01 M CaCl2 (soluble P), 0.01 M citric acid (chelate-extractable P), 0.02 phosphatase enzyme units ml?1 (enzyme-extractable organic P), and 1.0 M HCl (mineral occluded P). Dwarf bamboo charcoal alone contained up to 444 mg total BBP kg?1 prior to application to soil microcosms. Treatment effects in soil microcosms were highest in sedimentary soil types and where charcoal was combined with earthworms (15.97 mg P kg?1 ± SE 1.23 total inorganic BBP). Recalcitrant inorganic P (HCl extracted) in combination treatments yielded the highest single inorganic BBP measure (12.41 mg kg?1 ± SE 1.11). Our findings suggest that charcoal, as a legacy of wildfire, and native earthworm activity may help stimulate cycling of recalcitrant inorganic BBP pools.  相似文献   

15.
Hydroponic and pot experiments were conducted to assess the uptake of heavy metals (Cd and Zn) by a common crop plant, African basil, Ocimum gratissimum. In addition, the effects of soil amendments, hydroxyapatite (HA) and cow manure on plant growth and metal accumulations were compared. In the hydroponic study, plants were exposed to various concentrations of Cd (2.5 and 5 mg L?1) and Zn (10 and 20 mg L?1) for 15 days. O. gratissimum was shown to be a Cd accumulator more than a Zn accumulator. Cadmium concentration in its shoots exceeded 100 mg kg?1. In the pot experiments, soils from a heavily Cd-contaminated site (Cd 67.9 mg kg?1 and Zn 2,886.8 mg kg?1) were treated with cow manure and HA at the rates of 10% and 20% (w/w), and 0.75 and 1.5% (w/w), respectively. Plants were grown in the greenhouse for 3 months. The addition of cow manure resulted in the highest biomass production and the lowest accumulations of Cd in plant parts, while HA was more efficient than cow manure in reducing Zn uptake. Leaves of African basil showed a decreased Cd concentration from 1.5 to 0.3 mg kg?1 (cow manure) and decreased Zn concentration from 69.3 to 34 mg kg?1 (HA). This clearly demonstrates the efficiency of HA and cow manure in reducing metal content in leaves of plants grown on high metal-contaminated soil to acceptable or close to acceptable values (0.2 mg kg?1 for Cd, 99.4 mg kg?1 for Zn).  相似文献   

16.
This study was designed to evaluate changes in the dynamics of soil phosphorus and cationic balances of a savannah soil subjected to 45 years of continuous cultivation under different fertilizer management and later left fallow for 15 years. It was conducted on the experimental plots at the Institute for Agricultural Research, Ahmadu Bello University, Nigeria. Treatments consisted of nitrogen (N), phosphorus (P), potassium (K), cow dung manure (D) and their combination (DNPK). Results of P fractionation and cationic distribution were compared with previous studies on the same plot 15 years ago. Organic carbon increased from a range of 3–5 g kg?1 in 1997 to 10.9 g kg?1 in 2012. Similarly, the cation exchange capacity (CEC) of the soil increased from 6.40 cmolc kg?1 in 1997 to 16.4 cmolc kg1 in the present study. The degree of saturation of the CEC by Ca2+ was 68–79% and 10–20% for Mg2+, while that of K+ was 1.5–2%. Although there was an uneven trend in depletion and enrichment of the various P pools, however, the fallow period substantially improved the CEC and the plant available P pools of the soil by more than 200% and 6–259%, respectively.  相似文献   

17.
In most phosphorus (P) sorption studies, P is added as an inorganic salt to a predefined background solution such as calcium chloride (CaCl2) or potassium chloride (KCl); however, in many regions, the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption behavior of dissolved reactive P (DRP) in monopotassium phosphate (KH2PO4)–amended CaCl2 and KCl solutions with sorption behavior of DRP in three different animal manure extracts. Phosphorus single‐point isotherms (PSI) were conducted on eight soils with the following solutions: KH2PO4‐amended 0.01 M CaCl2 solution, KH2PO4‐amended 0.03 M KCl solution, water‐extracted dairy manure, water‐extracted poultry litter, and swine lagoon effluent. The PSI values for the dairy manure extract were significantly lower than the CaCl2 solution for all eight soils and lower than the KCl solution for six soils. The PSI values were significantly higher, on the other hand, for poultry litter extract and swine effluent than the inorganic solutions in four and five of the soils, respectively. Our observations that the sorption of DRP in manure solutions differs significantly from that of KH2PO4‐amended CaCl2 and KCl solutions indicates that manure application rates based on sorption data collected from inorganic P salt experiments may be inaccurate.  相似文献   

18.
Abstract

Ammonium polyphosphate fertilizers provide an analytical challenge because they contain mixed phosphorus (P) species in solution as orthophosphate, pyrophosphate, and tripolyphosphate species. The conventional technique for the determination of polyphosphate concentration in solution is measuring the difference between total digested P and initial orthophosphate with colorimetry. Online colorimetry was compared with ion chromatography as a method for the speciation and quantification of the chemical species of P supplied in polyphosphate fertilizers.

Ion chromatography was able to speciate all of the P species supplied in polyphosphate fertilizer, whereas colorimetry detected only P in solution as orthophosphate and, by the difference between the measurement of digested and undigested samples, total condensed P species. Ion chromatography had a detection limit of 0.02 mg P L?1 for orthophosphate, 0.03 mg P L?1 for pyrophosphate, and 0.05 mg P L?1 for tripolyphosphate. The detection limit for orthophosphate measured by colorimetry was the same as that measured by chromatography, but the working range of concentrations was considerably greater for chromatography—from 0.02 to 200 mg P L?1 compared with 0.02 to 2 mg P L?1.  相似文献   

19.
Abstract

The purpose of this article was to compare soil phosphorus (P) extraction by sodium bicarbonate solution (Olsen P) and by ammonium lactate (AL P) and to create a model for prediction of Olsen P using ordinary soil‐fertility control data. The soils data used in this study included Olsen P, pHKCl, pHH2O, organic matter, AL P, and AL K. Soil pHKCl ranged from 3.5 to 8, organic matter up to 5%, AL K up to 400 mg kg?1, and AL P up to 200 mg kg?1. Olsen P and AL P were significantly correlated, and the difference between them was influenced by soil pH. Regression models included all soil data grouped by soil pH range, which significantly decreased the difference between predicted and measured Olsen P. The validation of the model was conducted on new data sets from field fertilization trials. The results show that Olsen P can be related to AL P and used for fertilizer recommendations instead of AL P.  相似文献   

20.
A flow injection analysis (FIA) method capable of automation for molybdate reactive phosphorus (P) determination in soil extracts is described. Results obtained using this method in three soil extracts [calcium chloride (CaCl2), Olsen, and Mehlich I] were the same as those provided by the manual molybdate blue colorimetric method. Linear range extending to 2 mg P L?1, detection limits ranging from 6 to 26 µg L?1 depending on the soil extract, and accurate recoveries from P‐spiked samples were achieved. The sensitivity of the system was around 0.3 absorbance units per mg P L?1, and the sampling frequency was 72 samples h?1, higher than those described for most of the flow injection methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号