首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chickpea (Cicer arietinum L.) nodulation variants of two cultivars ICC 4948 and ICC 5003 were used as trap plants to isolate 385 native rhizobia from CCS Haryana Agricultural University, Hisar farm soil. After authentication and considering growth characteristics, selected 110 rhizobia revealed immense molecular diversity using the profiles of DNA fragments generated by Polymerase chain reaction (PCR) with enterobacterial repetitive intergeneric consensus (ERIC) sequences. Low nodulating variants of cvs ICC 4948 and ICC 5003 were able to trap more numbers of rhizobial genotypes, namely seven as compared four to five by high nodulating variants of these cultivars. Overall eight rhizobial genotypes were trapped by the chickpea cultivars. Rhizobial isolates from same nodule or same plants were present in the same or different clusters and few isolates showed 100% similarity also. Based on nodules from a plant, nodulation variant or cultivar, rhizobia could not be differentiated and no exclusive cluster was formed by either rhizobial isolates from low or high nodulating variants of both the cultivars. Two most efficient rhizobial isolates LN 707b and LN 7007 were characterized by amplification and sequencing of 16S rRNA gene. Rhizobial isolate LN 707b showed more than 98% similarity with Mesorhizobium sp SH 2851 and Mesorhizobium mediterraneum. Another isolate LN 7007 showed more than 99% similarity with the sequence of 16S r RNA gene of Mesorhizobium sp STM 398, and M. mediterraneum. So the chickpea rhizobia from Northern Indian subcontinent are proposed to be kept under M. mediterraneum strain LN707b and LN 7007.  相似文献   

2.
Promiscuous soybean lines have been bred on the basis that they would nodulate freely without artificial inoculation. However, our recent studies have demonstrated that the indigenous rhizobia are not able to meet their full nitrogen (N) requirement. Rhizobia inoculation might be necessary. We examined the competition for nodule formation among native Rhizobia spp. and two inoculated Bradyrhizobia strains (R25B indigenous strain and a mixture of R25B+IRj 2180A indigenous strain from soybean lines in the savanna of northern Nigeria), their effect on N fixation, and their contribution to the yield of four soybean cultivars, grown in the field in three different agroecological zones in the moist savanna of Nigeria. About 34% of nodules were formed by the mixture of introduced R25B+IRj 2180A, while R25B formed only about 24% of the nodules but did not influence biomass and grain yield production. The indigenous rhizobia strains that nodulated the soybean varieties fixed up to 70% of their accumulated total N, confirming the promiscuous nature of these soybean varieties. Even though these varieties fixed about 75 kg N ha -1; this was not enough to sustain their optimum grain yield, as earlier reported. However, the grain yield from inoculated soybean was not significantly higher than that from the uninoculated soybean, showing a degree of competitiveness among the introduced rhizobial strains and the native rhizobia population.  相似文献   

3.
Summary A field experiment was condutced in a clay loam soil to study the performance of three Bradyrhizobium japonicum strains; USDA 110, USDA 138 and TAL 379, in relation to their N2-fixing potential and competitiveness on two soybean cultivars (Clark and Calland). Inoculation of soybean cultivars with these strains, either singly or in combination, induced significant increases in plant dry weight, N2 fixation and seed yields. However, no significant differences were found between the rhizobial strains and/or their mixtures in N2 fixation and increased seed yield for both cultivars. The two soybean cultivars gave similar responses to inoculation. No significant differences in seed yield were observed between Clark and Calland cultivars. The interaction between inoculant strain and soybean cultivar was not significant. The competition between strains for nodulation was assessed. Strain USDA 110 was the most competitive, followed by USDA 138. Strain TAL 379 was always less competitive on both cultivars. The incidence of double-strain occupancy of nodules varied from 8% to 40%.  相似文献   

4.
The symbiotic efficiency of coastal sand dune rhizobial isolates on four cultivated legumes, cowpea (Vigna unguiculata), green gram (Vigna radiata), black gram (Vigna mungo) and horse gram (Macrotyloma uniflorum), was assessed. Among the isolates of Someshwara (S1–S5), inoculation of S5 resulted in the highest increase of shoot biomass in cowpea (control vs experimental, 1:6), while inoculation of P1 among the Padubidri isolates (P1–P5) induced the highest shoot biomass in cowpea (1:14.4). Inoculation of the isolate P2 induced higher shoot biomass against uninoculated controls of horse gram (12.6:1), green gram (11.2:1) and black gram (6.1:1). One-way ANOVA revealed significant difference in the shoot biomass between uninoculated and inoculated cowpea plants with ten rhizobial isolates (P <0.05). Cultivation of surface-sterilized green gram seeds on unsterilized dune sand resulted in profuse flowering as well as nodules within 6 weeks indicating possibilities for isolating efficient rhizobial strains through cultivating edible legumes on coastal sand dune soils.  相似文献   

5.
This study tested the competitive ability of three locally isolated Cyclopia rhizobia and strain PPRICI3, the strain currently recommended for the cultivation of Cyclopia, a tea-producing legume. Under sterile glasshouse conditions, the three locally isolated strains were equally competitive with strain PPRICI3. In field soils, the inoculant strains were largely outcompeted by native rhizobia present in the soil, although nodule occupancy was higher in nodules growing close to the root crown (the original inoculation area). In glasshouse experiments using field soil, the test strains again performed poorly, gaining less than 6% nodule occupancy in the one soil type. The presence of Cyclopia-compatible rhizobia in field soils, together with the poor competitive ability of inoculant strains, resulted in inoculation having no effect on Cyclopia yield, nodule number or nodule mass. The native rhizobial population did not only effectively nodulate uninoculated control plants, they also out-competed introduced strains for nodule occupancy in inoculated plants. Nonetheless, the Cyclopia produced high crop yields, possibly due to an adequate supply of soil N.  相似文献   

6.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

7.
TGX soybean lines were bred at IITA Ibadan for promiscuity with indigenous rhizobia in Nigerian soils. Two cultivars, TGX1456-2E and TGX1660-19F, were tested in a 2-year trial for their response to rhizobial inoculation in five farmers' fields within a 60-km radius of Minna town, in the Southern Guinea savanna zone of Nigeria. Using the ELISA method, the competitiveness and persistence of the two elite strains of rhizobia contained in the inoculant mixture were also studied. There was a close relationship between nodulation and the size of resident rhizobial populations, with wide variation in nodulation across the various sites irrespective of the treatments. Cultivar effect on height and nodule number was significant only in the first cropping season of the trial. The inoculant strains appeared to be less competitive, but more effective, than the indigenous populations. The proportions of the nodules occupied by the inoculant strains were 17% in the first cropping season, and 24% in the second. Inoculation with rhizobia increased the percent arbuscular mycorrhizal infection by an average of 50%. Although grain yield varied between sites, no significant cultivar effect was observed. However, inoculation increased grain yield by 40% in the first cropping season, while no such yield differences occurred in the second season. The proportion of nitrogen derived from N2 fixation ranged from 27% to 50% in both cropping seasons, and this was dependent on crop management on farmers' fields, rather than any cultivar or inoculation effect.  相似文献   

8.
Soybean was introduced in Paraguay in the 1920s and commercial crops have been grown since the 1970s. Root nodulation occurs at the majority of the producing sites, although inoculation has been practiced in only 15-20% of the cropping areas. The diversity and symbiotic effectiveness of soybean rhizobia was studied using 78 isolates obtained from root nodules of field-grown plants at 16 sites located in the two main producing states. The rhizobial isolates were characterized in relation to several parameters in vitro (colony morphology, tolerance to high temperature and salinity, intrinsic resistance to antibiotics, synthesis of indole acetic acid, profiles of proteins and lipopolysaccharides) and in vivo (nodulation, plant growth and total N accumulated in shoots). Fifty-eight isolates had slow growth rates and alkaline reaction in medium containing mannitol as the carbon source, whereas 20 had fast growth rates and an acid reaction. Most isolates did not tolerate acidity (pH 4.5) or high temperature (40°C). Very few isolates shared similar protein and lipopolysaccharide profiles; therefore a high level of diversity was detected, with most of the isolates representing unique strains. Some of the isolates with an outstanding symbiotic performance were identified, and will now be tested under field conditions in a search for efficient and competitive strains for use in commercial inoculants in Paraguay.  相似文献   

9.
《Journal of plant nutrition》2013,36(8):1311-1323
Tomato (Lycopersicon esculentum Mill.) yields are known to decrease for plants grown in saline soils. This study was conducted to determine the effects of arbuscular mycorrhizal fungi (AMF) inoculation on fruit yield and mineral content of salt-tolerant and salt-sensitive tomato cultivars grown with varied levels of salt. NaCl and CaCl2were added to soil in the irrigation water in equal molar ratios to give ECe values of 1.4 (nonstressed) and 4.9 dS m?1 (salt stressed). Plants were grown in a greenhouse using unsterilized, low phosphorus (P) (silty clay) soil-sand mix. Mycorrhizal root colonization occurred whether cultivars were salt stressed or nonstressed, but the extent of AMF root colonization was higher in AMF inoculated than uninoculated plants. The salt tolerant cultivar ‘Pello’ generally had higher AMF root colonization than the salt sensitive cultivar ‘Marriha’. Shoot dry matter (DM) yield, fruit fresh yield, and AMF colonization were higher for plants grown under nonstressed than for plants grown under salt stressed conditions. Shoot DM and fruit fresh yields were higher in AMF inoculated than uninoculated plants grown with or without salt stress. Pello generally had higher fruit fresh yield per plant and fruit weight than Marriha, but these differences were only significant for fruit weight in unioculated plants grown under salt stressed conditions. The enhancement in fruit fresh yield due to AMF inoculation was 26 and 23% under nonstressed and 28 and 46% under salt stressed treatments for Pello and Marriha, respectively. For both cultivars, fruit contents of P, potassium (K), zinc (Zn), copper (Cu), and iron (Fe) were higher in AMF inoculated compared with uninoculated plants grown under nonstressed and salt stressed conditions. Fruit Na concentrations were lower in AMF inoculated than uninoculated plants grown under salt stressed conditions. The enhancement in P, K, Zn, Cu, and Fe acquisition due to AMF inoculation was more pronounced in Marriha than in Pello cultivar under salt stressed conditions. The results of this study indicated that AMF inoculated plants had greater tolerance to salt stress than unioculated plants.  相似文献   

10.
Strains isolated from chickpea (Cicer arietinum L.) rhizospheric soil from selected sites in Algeria were screened for their plant-growth-promoting potential, for indole acetic acid production and P solubilization ability. Then, we selected native rhizobial strains with high nitrogen-fixing potential. On the basis of their efficiency under controlled conditions, two plant-growth-promoting rhizobacteria (PGPR) isolates and three nodulating bacteria were selected. Then, the effect of single PGPR isolates inoculation was compared to their combination with rhizobial inoculants on plant growth, on native cereal-growing soils under greenhouse conditions. No effects were observed on chickpea yield by using rhizobial inoculation alone, nor by PGPR-rhizobial co-inoculation on two soils presenting weak and no nodulation pattern in natural conditions. Only PGPR inoculation improved growth of plants on soil with no nodulation pattern. These findings emphasized inoculation on native soils at a little scale before large assays on field because no one could predict inocula behavior with native soil microflora.  相似文献   

11.
Three methods of strain identification were used to determine the composition of the Rhizobium trifolii population in nodules formed on four cultivars of Trifolium subterraneum L. grown in a soil unamended (pH 4.8) or amended with CaCO3 (pH 6.4). Whole cell somatic tube agglutination placed 68–90% of the nodule occupants from each of the cultivars Mt Barker, Nangeela and Howard into four identifiable serogroups. Only in the case of cultivar Woogeneliup were the majority of the isolates unidentifiable with the antisera at our disposal. In unamended soil different serogroups dominated each cultivar whereas in limed soil serogroup 27 was the dominant identifiable serogroup on all of the cultivars. The latter serogroup was also the most promiscuous nodule occupant being found in seven of eight treatments. Gel-immune-diffusion analysis revealed three serotypes within serogroup 27; serotype 27-A was dominant in the nodules on cultivar Nangeela alone whereas serotype 27-B was dominant on both cultivars Mt Barker and Woogenellup. Separation of cellular proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed four and five different strains within serotypes 27-A and 27-B respectively. Only one strain from serotype 27-B could be considered a common nodule occupant on cultivars Mt Barker and Woogenellup. Two of three strains, representing 82% of the total isolates of serotype 27-B found on cultivar Mt Barker, were nodule occupants of that cultivar in both soil treatments. In contrast, only one of four strains, representing 38.5% of the total isolates of serotype 27-A found on cultivar Nangeela, could be considered a common nodule occupant in both soil treatments.  相似文献   

12.
Our previous studies of the native rhizobial population associated with peanut nodules in the Córdoba soils of Argentina revealed that this population is highly diverse and includes slow- and fast-growing isolates. The native fast-growing isolates NCHA22 and NET30 were selected on the basis of their plant growth promoting properties and their chromosomal genotypes were determined by 16S rDNA sequencing. NCHA22 and NET30 16S rDNA alleles were found to cluster with those of Rhizobium tropici group IIB and Rhizobium giardinii bv. giardinii strain H152, respectively. We have now characterized these isolates by analyzing the glnA and nifH genes to clarify their taxonomic position. These studies confirmed that fast-growing isolates belonging to species earlier described as bean symbionts were obtained from nodules of a leguminous plant that has been described as efficiently nodulated exclusively by slow-growing rhizobial strains.  相似文献   

13.
 Field experiments were conducted to investigate the performance of three soybean cultivars with five foreign bradyrhizobia strains in different regions. The experiments at the two sites were designed with soybean (Glycine max L.) cultivars as the main factor and bradyrhizobia strains (USDA 136, TAL 122, USDA 6, TAL 377 and TAL 102) as the sub-factor. The experiments were arranged in randomised complete block design with four replications. Results show that nodule number, nodule dry weight and shoot dry weight, total N and seed yield were significantly increased when soybean cultivars were inoculated with foreign bradyrhizobia in two locations in the south east of Nigeria. At 63 days after planting the percentage increase in nodule number and dry weight after inoculation of soybean cultivars with bradyrhizobia strains ranged from 71 to 486% and from 0 to 200%, respectively. The percentage increase in shoot dry matter, %N and total N after bradyrhizobia inoculation ranged between 2–130%, 18–62% and 35–191%, respectively at Awka, and at the Igbariam site the percentage increase in shoot dry weight, %N and total N ranged between 3–76%, 0–43% and 19–125%, respectively. Seed yields after bradyrhizobia inoculation of soybean cultivar TGX 1485–1D at Igbariam ranged between 1.20 and 2.18 t ha–1 against the uninoculated plants, which had seed yields of 1.05 t ha–1. The poorest yield response after inoculation with bradyrhizobia strains was observed in soybean cultivar M-351, with a seed yield ranging from 0.60 to 0.98 t ha–1. The fact that foreign bradyrhizobia strains were more effective than the indigenous strains for all the parameters studied suggests that there is a need to use bradyrhizobia inoculants for increased soybean production in Nigeria. The variations in the strain performance with the different soybean cultivars at the two sites, emphasises the need for careful Bradyrhizobium spp. strain selection. The fact that inoculation response was cultivar- and site-specific suggests that strategies for improving inoculation response in soybean cultivars should also consider the soil environment where the soybean is to be produced. Received: 25 May 1999  相似文献   

14.
Summary The effect of soybean variety and Rhizobium strain, as well as the level of nitrogen fertilizer, were tested in a field experiment in Greece. Three nodulating varieties were used and one non-nodulating variety as control, with two Rhizobium strains, one commercially available and one isolated from the soil of the experimental site. Nitrogen fertilizer labeled with 15N enabled the nitrogen derived from the atmosphere (Ndfa), from the soil (Ndfs), and from the fertilizer (Ndff) to be estimated. Statistical analyses showed that the combined variety-strain effect was responsible for most of the variation observed in all parameters, either measured directly or calculated, while the nitrogen level had no effect. The locally isolated strain generally performed equally as well as the commercial one. With the highest yielding variety in particular, the nitrogen-fixing efficiency of soybean nodules, expressed as plant total nitrogen in excess of that in the non-nodulated control in relation to nodule dry weight, was even superior. Taking into account the low fertilizer recovery by plants, it is suggested that adapted cultivars properly inoculated can fix most of the nitrogen they need for high yields. This is of great economic importance for crops with high nitrogen-fixing efficiency, like the soybeans used in this work, which can fix more than 200 kg N/ha, as 15N dilution and nitrogen difference evaluations have confirmed. The local cultivars in this connection were superior to the United States cultivar, while the difference between cultivars in symbiotic performance were not due to the ability to nodulate, but rather to a much higher nodule-specific efficiency. The commercially available strain was found to produce generally more nodules and the locally isolated strain produced less but larger and more efficient nodules. Finally, the grains from the nodulated plants contained significantly smaller quantities of Fe, Ni, Cu, Zn, and especially Mo compared with non-nodulated plants, as determined by X-ray fluorescence techniques.  相似文献   

15.
Abstract

Symbiotic nitrogen fixation potential in common bean is considered to be low in comparison with other grain legumes. However, it may be possible to improve the nitrogen fixation potential of common bean using efficient rhizobia. In order to improve osmotic stress tolerance of a drought-sensitive common bean cultivar (COCOT) consumed in Tunisia, plants were inoculated either by the reference strain Rhizobium tropici CIAT 899 or by inoculation with rhizobia isolated from native soils Rhizobium gallicum 8a3. Fifteen days after sowing, osmotic stress was applied by means of 25 mM mannitol (low stress level) or by 75 mM mannitol (high stress level). Fifteen days after treatment plants were harvested and different physiological and biochemical parameters were analysed. Results showed no significant differences between the studied symbioses under control conditions. However after exposure to osmotic stress our results showed better tolerance of COCOT to osmotic stress when inoculated with the native R. gallicum 8a3. This can be partially explained by better water-use efficiency in both leaves and nodules, better relative water content in nodules and better efficiency in utilization of rhizobial symbiosis as compared with COCOT-CIAT 899 symbiosis. Hence, the present study suggested the better use of native soil isolated strains for the inoculation of common bean in order to improve its performance and nitrogen fixation potential under stressful conditions.  相似文献   

16.
Soybean plants autoregulate to suppress excessive nodulation. It has been revealed recently that the autoregulation of various legumes controls both nodulation and arbuscular mycorrhizal (AM) fungal colonization. We investigated the involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization. We used a wild-type soybean cv. Enrei and its hypernodulating mutant Kanto100, defective in the autoregulation. We included four different treatments: an uninoculated control, inoculation with rhizobium Bradyrhizobium japonicum alone, inoculation with AM fungus Gigaspora rosea alone, and dual inoculation with rhizobium and AM fungus. In both Enrei and Kanto100, AM fungal colonization enhanced the weight and N2 fixation of nodules, suggesting that autoregulation of host plant is not involved in the stimulatory effect of AM fungal colonization on rhizobial nodulation. In plants with the AM fungus alone, the AM fungal colonization of Enrei was comparable to that of Kanto100. In plants with dual inoculation, however, this was significantly (P?<?0.05) lower than in Kanto100. To confirm the control of AM fungal colonization by the autoregulation of host plant, a reciprocal grafting experiment was performed between Enrei and Kanto100. In plants with the AM fungus alone, AM fungal colonization was comparable among Enrei (shoot)/Enrei (root), Enrei/Kanto100, Kanto100/Enrei, and Kanto100/Kanto100 grafts. In plants with dual inoculation, however, AM fungal colonization of Enrei/Enrei and Enrei/Kanto100 grafts was significantly (P?<?0.05) lower than that of Kanto100/Enrei and Kanto100/Kanto100. These results indicate that rhizobial nodulation suppresses AM fungal colonization, and the autoregulation of host plant, initiated by nodulation, is involved in this phenomenon.  相似文献   

17.
Abstract

Symbiotic nitrogen fixation in nodules of legumes depends on the complex interaction between the legume plant and (Brady)Rhizobium bacteria. Nodule formation and nitrogen fixation are closely regulated by both the host plant and the microsymbiont. Plant mutants with altered symbiotic performance are considered to be useful to gain a better understanding of the plant—microbe interactions in the legume—(Brady)Rhizobium symbiosis (Jacobsen 1984; Carroll et al 1985a, b; Park and Buttery 1988; Duc and Messager 1989; Gremaud and Harper 1989). Recently, Carroll et al. (1985a, b) have isolated the supernodulating mutants of the soybean cv. “Bragg,” which display a very large number of nodules and “nitrate-tolerant-symbiotic” (nts) characteristics. More recently, Gremaud and Harper (1989) have also isolated similar mutants from the soybean cv. “Williams.” These mutants not only provide materials that are useful for investigatings on the interaction in the nodule formation processes but also for agricultural practice. In particular, the nitrate-tolerance of these supernodulating mutants (Carroll et al. 1985b; Gremaud and Harper 1989) is useful for their cultivation in Japan where the level of soil nitrogen in fields is generally high. However, the cultivars previously used for the isolation of these mutants cannot adapt easily in Japanese climate due to different Maturity Group. Therefore, we attempted to isolate mutants with altered symbiotic phenotypes from the soybean cultivar “Enrei,” one of the most common cultivars in Japan.  相似文献   

18.
The sustainable remediation of arsenic (As) contaminated sites requires an understanding of how As alters the biogeochemical processes in soil. Leguminous species are often used in the remediation of contaminated sites because of their capacity to fix nitrogen and enhance site fertility. While excess As is known to reduce the formation of root nodules in legumes, currently, little is known about how the legume-rhizobium symbiosis is affected by high As concentrations. Soybean (Glycine max) cv. Curringa and its rhizobial symbiont, Bradyrhizobium japonicum strain CB1809, were studied in dilute solution culture at As concentrations of 0, 1, 5 and 10 μM. As the As concentration of the nutrient solution increased, greater time was required for inoculated plants to produce root nodules (P=0.001) and the number of root nodules per plant at harvest decreased (P=0.007). Inspection of the soybean roots showed the number of root hairs decreased as the As concentration in the solution increased. The dry weight of soybean roots and shoots decreased significantly as the As concentration of the nutrient solution increased (P<0.05). Inoculated plants had significantly larger dry weights than noninoculated plants (P<0.05) including a 38% greater biomass for inoculated vs. noninoculated plants in the 10 μM As treatment. The increased biomass in inoculated plants could not be explained by improved N nutrition nor decreased As absorption and it is hypothesised that B. japonicum stimulated the growth of soybean via the production of growth-promoting hormones. This is the first reported evidence of rhizobial bacteria promoting the growth of plants at elevated concentrations of a heavy metal via a mechanism other than improved nitrogen nutrition. The potential use of rhizobia as growth-promoting bacteria for the remediation of heavy metal contaminated sites is an exciting new area of research.  相似文献   

19.
山西省快生型大豆根瘤菌资源调查和鉴定   总被引:3,自引:0,他引:3  
从山西省主要大豆产区的不同土壤和大豆品种中分离得到的38个快生型大豆根瘸菌株的鉴定表明,这些分离物的IAR除了氨苄青霉素外,均较慢生型为低。38个菌株被分为4个血清型,其中2个为新发现的,命名为2077和2120型。细胞成分N%含量为2.01-3.78,C%含量为50.52-55.53%,N/C值<10。所检测的7个菌株都有1-2个大质粒,且每个均有112 Md的大质粒。分离株的共生效应和结瘤竞争由于大豆品种不同而有显著差异。本研究表明,我国大豆起源地之一的山西省,快生型大豆根瘸菌的分布广泛,分离频率较高,菌株类型也多。  相似文献   

20.
Salt stress can affect alfalfa growth directly by adversely affecting metabolism, or indirectly by its effect on Rhizobium capacity for symbiotic N2 fixation. Growth and carbohydrate metabolism in leaves, roots and nodules of two alfalfa cultivars (Medicago sativa cv Apica and salt-tolerant cv Halo) in association with two rhizobial strains (A2 and salt-tolerant Rm1521) exposed to different levels of NaCl (0, 20, 40, 80 or 160 mM NaCl) were assessed under controlled conditions. For both cultivars, shoot and root biomasses and shoot to root ratio significantly declined with increasing NaCl concentrations. Under 80 mM NaCl, Halo plants yielded 20% more fresh shoot biomass than Apica while plants inoculated with Rm1521 allocated more biomass to the roots than to the shoots compared to A2. Halo plants maintained a steady shoot water content (about 80%) under the entire range of NaCl concentrations. Shoot water content was more variable in Apica. Apica in association with salt-tolerant strain Rm1521 maintained a better water status than with strain A2, as indicated by the higher shoot water content at 80 mM NaCl. Under salt stress, two major compatible sugars involved in plant osmoregulation, sucrose and pinitol, increased in leaves while a large accumulation of starch was observed in roots. In nodules, pinitol, sucrose and starch increased under salt stress and were much more abundant with strain Rm1521 than with A2. This suggests that there could be an active transport from the shoot to the nodules to help maintain nodule activity under NaCl stress and that strain Rm1521 increases the sink strength toward nodules. Our results show that combining cultivars and rhizobial strains with superior salt tolerance is an effective strategy to improve alfalfa productivity in salinity affected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号