首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Potassium chlorate is widely used as an active substance for flower induction in longan plantation fields for off-season production of longan fruits in northern Thailand. Contamination of groundwater with residual chlorate in soil is a cause for concern because of its toxicity to human health. Based on our previous finding that the addition of glucose or sucrose to soil was effective for accelerating the disappearance of residual chlorate in soil, the effect of the addition of molasses, which contains a high concentration of sucrose, as a substitute for glucose or sucrose was examined in laboratory and pot experiments. Under laboratory conditions, the addition of molasses to soil at the concentrations of 100 to 200 g kg−1 soil strikingly enhanced the rate of disappearance of chlorate applied at 341 mg kg−1 soil. Addition of diluted molasses was also effective for the accelerated disappearance of chlorate in soil when 33 g kg−1 soil of molasses was added repeatedly. The effect of repeated addition of diluted molasses to soil on the decontamination of residual chlorate in soil was also confirmed in an outdoor pot experiment. These results may lead to the development of a practical method of cleaning-up chlorate-polluted soil in longan plantation fields.  相似文献   

2.
医疗和养殖过程中抗生素的广泛使用导致了土壤环境中抗生素的污染。为了解进入农田土壤中抗生素的降解规律,该文以养殖业广泛使用的磺胺二甲嘧啶和2种不同养分水平的土壤为试验材料,采用盆栽方法研究了肥料种类(有机肥、NPK肥、N肥、PK肥等)、耕作强度(翻耕、免耕)、水分条件(长期干燥、长期湿润、干湿交替、长期潮湿)及种植作物(种植蔬菜、不种蔬菜)对土壤中磺胺二甲嘧啶降解的影响。结果表明,与不施肥处理比较,施用有机肥、NPK肥、N肥可促进土壤中磺胺二甲嘧啶在土壤中的降解,并以施用有机肥的效果最为明显;但施用PK肥对土壤中磺胺二甲嘧啶的降解影响不明显。翻耕可促进土壤中磺胺二甲嘧啶的降解,干湿交替、长期湿润比长期干燥和长期潮湿土壤环境下更有利于磺胺二甲嘧啶的降解。种植蔬菜比不种蔬菜土壤的磺胺二甲嘧啶的降解率高,根际土壤中磺胺二甲嘧啶的降解高于总体土壤。高养分土壤中磺胺二甲嘧啶的降解一般高于低养分土壤。分析认为,施肥、土壤养分水平、种植蔬菜对土壤中磺胺二甲嘧啶的降解的影响可能主要与这些因素改变了土壤微生物活性有关;翻耕可促进土壤中抗生素的光降解强度。研究认为,施肥、耕作和水分管理可以在一定程度上加速土壤中磺胺二甲嘧啶的降解。  相似文献   

3.
Soil microbiological properties during decomposition of leaf litter of poplar (Populus deltoides) and eucalyptus (Eucalyptus tereticornis) were studied under laboratory conditions. Microbial biomass C and ninhydrin-N were measured at different intervals up to 90 days following incorporation of poplar and eucalyptus leaves separately @ 20 and 100t ha-1. In general, the net increase in total biomass C or ninhydrin N following amendment was larger in the soils which received poplar leaves than in the soils that received eucalyptus leaves. The amounts of biomass C, at day 90, in the soils which received eucalyptus leaves @ 20 and 100 t ha-1 was about half and one-third, respectively, that of the soils that received poplar leaves at the same rates. Similarly, the field soils naturally receiving eucalyptus leaf litter contained about half the amounts of biomass C or ninhydrin N of the soils that received poplar leaf litter. In contrast, the amounts of organic C and total N were more in soils which received eucalyptus leaves both in the laboratory experiment and under field conditions than in the soils that received poplar leaves, indicating that the decomposition of eucalyptus leaves in soils was slower than that of poplar leaves. The ratio of biomass C/soil organic C in soils receiving eucalyptus leaves was about 2–4 times lower than those in soils with no admendment or soils receiving poplar leaves. These results, therefore, suggest that the allelochemicals released into soil during decomposition of eucalyptus leaves had a toxic effect on soil microorganisms and may thus affect the nutrient cycling and hence soil fertility.  相似文献   

4.
Summary Nitrification inhibitors were applied to a field experiment on loamy sand soil each autumn for 4 years, immediately prior to sowing winter cereals. Laboratory experiments demonstrated that repeated application of the inhibitor dicyandiamide (DCD) to a soil had little effect either on the rate of DCD decomposition or the ability of DCD to inhibit nitrification. Repeated field application of the inhibitors DCD, nitrapyrin or etridiazole resulted in increased sensitivity of ammonium-oxidizing bacteria to nitrapyrin or etridiazole, but not to DCD. The rate of decomposition of etridiazole was unaffected by four annual applications of this inhibitor, but decomposition of nitrapyrin was somewhat slower in soil that had received nitrapyrin annually for 4 years than in soil that had never been treated with an inhibitor.  相似文献   

5.
An acid forest soil from beech forest gaps, which were either limed or unlimed, and the undisturbed forest was investigated for the type of nitrifying populations and the process of N2O evolution. To see whether nitrifiers were of heterotrophic or autotrophic origin, the nitrification inhibitors nitrapyrin and sodium chlorate were applied to disturbed soil samples which underwent laboratory incubations. Nitrapyrin inhibits autotrophic nitrification. In different studies, sodium chlorate has been identified as an inhibitor either of autotrophic or of heterotrophic nitrification. In the samples investigated only nitrapyrin inhibited the autotrophic nitrification occurring in the limed soil. Sodium chlorate effectively inhibited heterotrophic nitrification. In the limed forest floor samples, where most autotrophic nitrification occured, sodium chlorate showed no inhibitory effect. In another laboratory incubation experiment, N2O evolution from undisturbed soil columns, to which the above inhibitors were applied, was investigated. In those samples, in which nitrification had been reduced, neither inhibitor significantly reduced N2O evolution. Thus it was concluded that the contribution of nitrification to N2O losses is negligible, and that N2O evolution arises from the activity of denitrifying organisms. Microbial biomass and respiration measurements showed that the inhibitors did not affect microflora negatively.  相似文献   

6.
SUN BO  LIN XIN-XIONG 《土壤圈》1993,3(2):133-144
Decomposition experiments of ^14C-labelled sickle alfalfa in chao soils of different texture and these soils after removal of CaCO3 were carried out under field and laboratory conditions respectively.The amount of residual ^14C in,or ^14CO2 evolved from,the soils at intervals after the beginning of devomposition were measured and the distribution of native and labelled C between particle size fractions isolated from these soils was edtermined.Results showed that contents of both labelled (^14C) and non-labelled (^12C) carbon decreased with increasing particle size.The enrichment factor for ^14C was higher than that for ^12C in the clay fraction,the reverse being true for the silt enrichment factors.The effect of soil texture on the decomposition of plant material could not be observed in chao soils when the clay content was lower than 270g kg^-1,while it became obvious once CaCO3 was removed was correlated from these soils.The decomposition rate of plant material in the soil from which the native CaCO3 Was removed was correlated significantly to both the clay content of the soil and the application rate of CaCO3.A preliminary correction equation describing the effect of clay and CaCO3 on the decomposition of organic material in chao soil was derived from the results obtained.  相似文献   

7.
研究丘陵地区不同土地利用方式下土壤有机碳密度的分布及其影响因素,为丘陵地区土壤肥力培育和生产力提升提供技术参考。通过密集采样,分析东南丘陵水田、旱地、果园和茶园4种典型利用方式下耕层土壤有机碳密度变化及其影响因素。结果表明,东南丘陵地区土壤有机碳密度平均为4.14kg/m2,其变化受地形、土地利用方式及土壤化学性状等因素影响。海拔为200~800m时有机碳密度最高,平均为4.38kg/m2;坡度对土壤有机碳密度影响表现为2°~6°>6°~15°>15°~25°>0~2°>25°以上;从坡向看,南北坡有机碳密度较高,东西坡较低;不同土地利用方式土壤有机碳密度果园>茶园>水田>旱地;水田土壤有机碳密度与土壤中碱解氮、速效磷和速效钾呈显著正相关,与缓效钾呈极显著负相关,旱地与速效磷和速效钾呈显著正相关,果园与碱解氮和速效钾呈正相关,茶园仅与碱解氮呈显著正相关。  相似文献   

8.
We investigated the impact of land-use changes on the soil biomass at several soil sites in Indonesia under different types of land-use (primary forest, secondary forest, coffee plantation, traditional orchard, and deforested area), located within a small geographical area with similar parent material and climatic conditions. Various parameters of soil microbial biomass (biomass C, biomass N, content of anthrone-reactive carbohydrate carbon, and soil ergosterol content) were examined. Our results suggested that the removal of the natural plant cover did not cause any appreciable decrease in the amount of microbial biomass; on the contrary it led to a short-time increase in the amount of microbial biomass which may be due to the availability of readily decomposable dead roots and higher sensitivity to the decomposition of residual litter in recently deforested soils. However, the amount of microbial biomass tended to decrease in proportion to the duration of the land history in coffee plantation soils. This may be ascribed to the effect of the loss of available substrates associated with soil erosion in the long term. Lower ergosterol contents in recently deforested areas reflected a reduction in the amount of fungal biomass which may be due to the destruction of the hyphal network by the slash and burn practice. On the other hand, the higher soil ergosterol content at the sites under bush regrowth indicated that microbial biomass was able to recover rapidly with the occurrence of a new plant cover.  相似文献   

9.
Decomposition of benomyl and carbendazim was studied in field experiments following repeated applications during autumn to winter cereals. Effects of the fungicides on straw decomposition, balance of straw fungal flora and mineralization of nitrogen in the soils were investigated in field and in laboratory experiments. Persistence in the field of the fungicides at doses of 0.1–0.2 kg ha?1 was 9–12 months in clay soils and 12 months or longer in sand soil. Decomposition of straw in the field was not affected in clay soils by doses up to 2 kg ha?1. In sand soil, doses up to 0.5 kg ha?1 gave no effect but in one case at 2 kg ha?1 the initial stages of straw decomposition were slightly inhibited. All doses tested in both clay and sand soils caused changes in composition of the straw fungal flora. In a laboratory experiment with benomyl in sand soil an increase in rate of nitrate accumulation was observed at a dose corresponding to 2 kg ha?1.  相似文献   

10.
Effects of diatomite on soil physical properties   总被引:1,自引:0,他引:1  
Organic and inorganic soil amendments are commonly added to soil for improving its physical and chemical characteristics which promote plant growth. Although many inorganic amendments are extensively used for this purpose, diatomite (DE) is not commonly used. This study was conducted to determine effects of diatomite applications (10, 20, and 30% v/v) on physical characteristics of soils with different textures (Sandy Loam, Loam, and Clay), under laboratory conditions. The results indicated that diatomite application protects large aggregate (> 6.4 mm) formation in clay-textured soils, however it reduced the mean weight diameter in sand-textured soil. 30% diatomite reduced mean weight diameter in sand-textured soils from 1.74 to 1.49 mm. Diatomite applications significantly increased aggregate stability of all the experimental soils in all aggregate size fractions. In overall, aggregate stability increased from 28.04% to 45.70% with the application rate of 30%. Diatomite application also significantly increased soil moisture content at field capacity in SL textured soil. 30% diatomite increased field capacity in sand-textured soil in the percent of 43.78 as compared with control. Therefore it is suggested that diatomite may be considered as a soil amendment agent for improving soil physical characteristics. However, its effectiveness in enhancing soil properties depends on initial soil factors and texture. Moreover, since its protective effect against large aggregate (> 6.4 mm) formation and reducing effect on soil penetration resistance in clay textured soils, diatomite might be an alternative soil amendment agent in soil tillage practices and seedling.  相似文献   

11.
盆栽选取四川、重庆典型的砂岩黄壤、灰岩黄壤、酸性紫色土为供试土壤,田间选取在砂岩黄壤上生长了25年的茶园,连续5年研究了施用钾肥(硫酸钾)对茶园土壤钾库及钾素平衡的影响。结果表明:施用钾肥能显著提高土壤钾库的各类钾素,但其绝对含量都呈逐年下降的趋势。土壤中各类钾素的变化因土壤类型而异,土壤各类钾素的增量均为灰岩黄壤砂岩黄壤酸性紫色土。不施钾肥(CK)的盆栽茶树、田间茶树分别每年从土壤取走钾素0.10.g/kg。盆栽三种土壤的钾素年平均流失量分则别为0.18.g/kg(灰岩黄壤)、0.09.g/kg(砂岩黄壤)、0.07g/kg(酸性紫色土),可见种植茶树施用K肥很有必要。  相似文献   

12.
Samples of a sandy soil, which had been incubated for 8 years in the field with [14C]labelled barley straw, were amended with 1, 2, 3 or 4 successive additions of [14C]labelled straw, respectively, applied at intervals of 3 months. The decomposition of the straw was studied over a 4-yr period of laboratory incubation, following the first repeated application, by determination of the total amount of labelled C in the soils and labelled C in the soil amino acids. The overall pattern of decomposition was similar whether the soil was amended with one or with several successive applications.Four years after the first repeated addition of labelled straw the soils were subjected to a number of “stress” treatments: addition of unlabelled glucose, air-drying, oven-drying, grinding and fumigation with vapour of chloroform, respectively. The CO2 that developed during the first 10 days after the treatments, less the evolution from untreated samples, was taken as a measure of the effect of the treatments. The amount of biomass in the soils was calculated from the increase caused by the fumigation with chloroform. In soil incubated undisturbed in the field for 12 yr, biomass accounted for 2.6% of the labelled C in the soil, whereas it was only half this amount in the soil incubated for 8 yr in the field followed by 4 yr in the laboratory. In the soils amended with successive additions of labelled straw, the size of the biomass showed declining values with an increasing number of additions. Biomass thus accounted for 2.6% of the labelled C in the soil amended with one repeated addition, and 1.0% in the soil amended with 4 repeated additions.The increase in the evolution of labelled CO2-C caused by the stress treatments ranged from 0.3 to 1.7% of the labelled C in the soil: air-drying had the least effect, grinding the most. The effect of each treatment declined with an increasing number of successive additions of straw. The ratio between CO2 evolved after grinding and fumigation, respectively, revealed that grinding also exposed non-biomass material to accelerated decomposition.The effects of the stress treatments on the evolution of native CO2-C was on the whole parallel to the effects on the evolution of labelled CO2-C.  相似文献   

13.
Using soil samples from 15 field trials of long term-differences in potassium fertilization from sites in Germany, the Czech Republic and Hungary, we conducted a laboratory analysis to measure the effects of potassium fetilization on soil potassium content, water-retention functions and crop growth parameters such as field capacity, permanent wilting point and available water content. The different soil water parameters showed a specific response to potassium fertilization and strong interactions with a number of soil characteristics. Higher water content, caused by an increase in potassium, was measured in low water retention below pF 3.0 and only in a few cases with pF 4.2. The strongest response to long-term differences in potassium fertilization on field capacity and available water content were detected for sandy soils. This effect decreased with increased clay content. In sandy soils, the response to potassium fertilization was mediated by an increase in soil organic carbon (TOC). In soils with a high silt content from Bad Lauchstädt and Bonn only minute effects of TOC on the water-holding capacity were measured. The effect of potassium on the various water-retention parameters in soils was strongly affected by TOC of the particular soil. Thus, the potassium-mediated increase in the field capacity of soils with a low TOC from the experimental site in Bonn (1.05 M% TOC) with almost 1.2 Vol% was almost twice as high as for the site in Bad Lauchstädt, which is characterized by a TOC of 1.97 M%. We hypothesize that these interactions are responsible for the substantial increase in available water content following increased potassium in clay soil with a low TOC in Putnok (Hungary).  相似文献   

14.
Mississippi Delta cotton (Gossypium hirsutum L.) production in rotation with corn (Zea mays L.) was evaluated in field experiments from 2000 to 2005 at Stoneville, Mississippi. Plots maintained under minimum tillage were established in 2000 on a Dundee silt loam with treatments including continuous cotton or corn and alternate cotton-corn rotations. Mineralization and dissipation of 14C [ring]-labeled atrazine were evaluated in the laboratory on soils collected prior to herbicide application in the first, second, third, and sixth years of the study. In soils collected in 2000, a maximum of 10% of the atrazine was mineralized after 30 days. After 1 year of herbicide application, atrazine-treated soils mineralized 52-57% of the radiolabeled atrazine in 30 days. By the sixth year of the study, greater than 59% of the atrazine was mineralized after 7 days in soils treated with atrazine, while soils from plots with no atrazine treatment mineralized less than 36%. The data also indicated rapid development of enhanced atrazine degradation in soils following 1 year of corn production with atrazine use. Atrazine mineralization was as rapid in soils under a rotation receiving biannual atrazine applications as in soils under continuous corn receiving annual applications of atrazine. Cumulative mineralization kinetics parameters derived from the Gompertz model (k and ti) were highly correlated with a history of atrazine application and total soil carbon content. Changes in the soil microbial community assessed by total fatty acid methyl ester (FAME) analysis indicated significant interactions of cropping system and sampling date, with FAME indicators for soil bacteria responsible for differences in community structure. Autoclaved soil lost all ability to mineralize atrazine, and atrazine-mineralizing bacteria were isolated from these plots, confirming the biological basis for atrazine mineralization. These results indicate that changes in degradative potential of a soil can occur rapidly and some changes in soil properties may be associated with cropping systems, which can contribute to enhanced atrazine degradation potential.  相似文献   

15.
桉树连作对土壤多酚氧化酶活性及酚类物质含量的影响   总被引:3,自引:0,他引:3  
研究不同连栽代次巨尾桉人工林(第一代为2年生和5年生,第二代为2年生)土壤多酚氧化酶活性和酚类物质含量的变化规律,并分析两者空间分布以及相关性。结果表明:(1)林间土壤多酚氧化酶活性高于根区,并随着连栽年限增加呈上升趋势。(2)总酚、复合性酚含量根区土壤高于林间土,并随着连栽年限增加而降低,证明桉树连栽短期内没有造成酚类物质的积累;水溶性酚含量林间土高于根区土,随连栽年限增加而增加,但其含量较低,未达到毒害程度;在无土壤酚类物质来源情况下,水溶性酚和复合态酚均发生消解,含量下降。(3)土壤多酚氧化酶活性与总酚、复合性酚呈显著负相关,跟水溶性酚呈极显著正相关,肯定了多酚氧化酶对酚类物质的降解作用。多酚酶活性和酚类物质皆与土壤pH值有较显著的相关性,两者受土壤pH值影响较大。  相似文献   

16.
为了解本研究室于常温下筛选研制的秸秆腐熟剂在土壤中的施用效果,通过盆钵模拟培养试验,设置腐熟剂的不同施用方式(单独施用腐熟剂、配施葡萄糖、配施尿素、配施尿素与葡萄糖),研究小麦秸秆还田施用秸秆腐熟剂后土壤微生物群落特征及养分含量变化,为该秸秆腐熟剂的产品化及合理施用提供理论依据。结果表明,秸秆腐熟剂以不同施用方式进入土壤后,土壤的微生物群落组成与活性相应发生显著变化,AWCD、Shannon多样性指数(H)、物种丰富度(S)均增大,早期土壤中细菌和真菌数量增加,腐熟剂与尿素的配合施用使土壤的基础呼吸和微生物代谢熵显著下降(P〈0.05);腐熟剂施用加快了小麦秸秆的腐解速度,腐熟剂施用90d后,土壤中全磷、速效磷及速效钾的含量均有不同程度的增加,腐熟剂与尿素的配合施用增幅显著(P〈0.05)。在秸秆还田时,施用腐熟剂有助于土壤微生物群落活性与多样性的提高,同时也有利于改善土壤养分状况,腐熟剂与尿素配合施用的效果最佳。  相似文献   

17.
 Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization, especially when the soils were not limited. Received: 10 March 1998  相似文献   

18.
The aim of this study was to assess the potential harmful effects of novaluron on soil microbiological parameters in clay loam alluvial soil (Typic udifluvent) and coastal saline soil (Typic endoaquept) under controlled laboratory tests. The applications of novaluron were made at or above the recommended rates, which includes field rate (FR), two times (2FR), and ten times (10FR) the FR. The laboratory incubation study was carried out at 60% of maximum water holding capacity of soils and at 30°C. Novaluron application rate even up to 10FR resulted in a short-lived and transitory toxic effect on soil microbial biomass C and fluorescein diacetate-hydrolyzing activity. Microbial metabolic quotient changed but for a short period. It can be concluded that novaluron had a transient and negligible harmful effect on the soil microbiological parameters studied at higher rates than those usually used in the field.  相似文献   

19.
The application of mineral N fertilizers may influence biologically mediated processes that are important in nutrient transformations and availability. This study was conducted to assess the effect of N application on microbial activities in irrigated and non-irrigated winter wheat systems. Carbon decomposition and microbial biomass C in soils with three N application rates (0, 150, and 300 kg N ha–1 as urea) were measured over 40 days in a laboratory incubation experiment. Carbon, N, and P contents in the soil under the irrigated wheat were higher than those in the soil under the non-irrigated wheat. The reverse trend was observed for soil pH and Ca and Mg contents. However, soils from the two systems had similar C/N ratios. Carbon decomposition and microbial biomass C in the soil under the irrigated wheat increased significantly (p <0.05). Increasing rates of N fertilizer resulted in higher C decomposition and microbial biomass C levels in both soil systems. Results indicate that different wheat cropping systems affect soil properties that will then have an impact on C turnover in the soil. Moreover, the irrigated wheat system favors soil conditions required for a faster C turnover. In conclusion, it is likely that due to positive effects on microbial activity, N fertilization will increase nutrient cycling and, subsequently, crop productivity will improve in N-poor soils.  相似文献   

20.
Abstract

Because imazethapyr residues in soils may cause plant injury to certain rotational crops, sensitive, and reliable methods for imazethapyr monitoring in soils are needed. In this study, imazethapyr analysis was investigated using two newly developed procedures: an anion exchange membrane extraction followed by an HPLC‐UV detection and a canola bioassay. Nine soils in which no previous application of imazethapyr had been made were collected from farm fields in Saskatchewan, Canada. Soils were spiked to yield imazethapyr concentrations in the range of 0–80 μg kg‐1 dry soil and were subjected to analysis by the above procedures. In the anion exchange membrane extraction, spiked soils were shaken with the membrane strips; imazethapyr was then eluted from the membranes with a potassium chloride (KC1) solution, partitioned into dichloromethane and injected into the HPLC. This method allowed for the extraction of the ionized portion of imazethapyr from soils. In a laboratory bioassay, pre‐germinated canola seeds were planted in spiked soils and after five days of growth root and shoot growth inhibition was determined. The results of both methods were dependent on soil type. Generally, soils from depressions in the landscape yielded low imazethapyr recovery by anion exchange membrane extraction; these soils also showed low degree of imazethapyr phytotoxicity to canola growth. After imazethapyr field spraying, soils were sampled from the field at different time intervals for up to one year and analyzed in the laboratory by the above methods; also, after one year, a field bioassay was performed. Using the membrane extraction method, imazethapyr was detected only in field samples collected one week after spraying. The membrane extraction method, although very simple and cost‐efficient lacks sensitivity needed for the imazethapyr monitoring at low concentrations in agricultural soils. The 5‐day canola bioassay (root growth inhibition method) was more sensitive than the membrane extraction and showed imazethapyr presence in all field samples. However, because crop growth inhibition was more severe in the field than in the laboratory, a field bioassay may be the most reliable means to assess injury potential for certain sensitive rotational crops under field conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号