首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Long-term temporal changes in natural 15N abundance (δ15N value) in paddy soils from long-term field experiments with livestock manure and rice straw composts, and in the composts used for the experiments, were investigated. These field experiments using livestock manure and rice straw composts had been conducted since 1973 and 1968, respectively. In both experiments, control plots to which no compost had been applied were also maintained. The δ15N values of livestock manure compost reflected the composting method. Composting period had no significant effect on the δ15N value of rice straw compost. The δ15N values increased in soils to which livestock manure compost was successively applied, and tended to decrease in soils without compost. In soils to which rice straw compost was successively applied, the δ15N values of the soils remained constant. Conversely, δ15N values in soils without rice straw compost decreased. The downward trend in δ15N values observed in soils to which compost and chemical N fertilizer were not applied could be attributed to the natural input of N, which had a lower δ15N value than the soils. Thus, the transition of the δ15N values in soils observed in long-term paddy field experiments indicated that the δ15N values of paddy soils could be affected by natural N input in addition to extraneous N that was applied in the form of chemical N fertilizers and organic materials.  相似文献   

2.
Isotope fractionation during composting may produce organic materials with a more homogenous δ13C and δ15N signature allowing study of their fate in soil. To verify this, C, N, δ13C and δ15N content were monitored during nine months covered (thermophilic; >40 °C) composting of corn silage (CSC). The C concentration reduced from 10.34 to 1.73 g C (g ash)−1, or 83.3%, during composting. Nitrogen losses comprised 28.4% of initial N content. Compost δ13C values became slightly depleted and increasingly uniform (from −12.8±0.6‰ to −14.1±0.0‰) with composting. Compost δ15N values (0.3±1.3 to 8.2±0.4‰) increased with a similar reduced isotope variability.The fate of C and N of diverse composts in soil was subsequently examined. C, N, δ13C, δ15N content of whole soil (0-5 cm), light (<1.7 g cm−3) and heavy (>1.7 g cm−3) fraction, and (250-2000 μm; 53-250 μm and <53 μm) size separates, were characterized. Measurements took place one and two years following surface application of CSC, dairy manure compost (DMC), sewage sludge compost (SSLC), and liquid dairy manure (DM) to a temperate (C3) grassland soil. The δ13C values and total C applied (Mg C ha−1) were DM (−27.3‰; 2.9); DMC (−26.6‰; 10.0); SSLC (−25.9‰; 10.9) and CSC (−14.0‰; 4.6 and 9.2). The δ13C of un-amended soil exhibited low spatial (−28.0‰±0.2; n=96) and temporal (±0.1‰) variability. All C4 (CSC) and C3 (DMC; SSLC) composts, except C3 manure (DM), significantly modified bulk soil δ13C and δ15N. Estimates of retention of compost C in soil by carbon balance were less sensitive than those calculated by C isotope techniques. One and two years after application, 95 and 89% (CSC), 75 and 63% (SSLC) and 88 and 42% (DMC) of applied compost C remained in the soil, with the majority (80-90%) found in particulate (>53 μm) and light fractions. However, C4 compost (CSC) was readily detectable (12% of compost C remaining) in mineral (<53 μm) fractions. The δ15N-enriched N of compost supported interpretation of δ13C data. We can conclude that composts are highly recalcitrant with prolonged C storage in non-mineral soil fractions. The sensitivity of the natural abundance tracer technique to characterize their fate in soil improves during composting, as a more homogeneous C isotope signature develops, in addition to the relatively large amounts of stable C applied in composts.  相似文献   

3.
华北平原玉米种植中施入氮肥的去向研究   总被引:1,自引:0,他引:1  
为了定量研究玉米氮肥利用特性以及肥料氮的去向,设计了~(15) N标记微区控制试验,设置3个施氮水平:不施氮肥(对照)、低氮处理(120kg N/hm~2)和高氮处理(240kg N/hm~2)。结果表明:土壤中残留~(15) N量随施氮量增加而显著增加(P0.05)。在空间分布上,总体呈现出随土壤深度先下降后上升的趋势,高氮处理和低氮处理~(15) N累积量均以40—60cm和60—80cm土层最多,这两层残留~(15) N总量分别占总投入量的37.55%和18.99%。与对照相比,施氮处理均显著提高了玉米地上、地下生物量和籽粒产量以及各部分吸氮量。虽然高氮处理较低氮处理施氮量增加了1倍,但籽粒产量仅增加0.14倍。氮肥农学效率与氮肥表观利用率随着施氮量增加而显著降低。高氮处理和低氮处理中玉米对~(15) N标记氮肥的利用率分别为28.86%和31.15%,土壤氮残留率分别为50.42%和36.52%,当季进入地下水的比率分别为4.27%和0.68%,其他损失率分别为16.45%和32.33%。研究结果表明,施氮量为120kg/hm~2可有效增加玉米产量,同时提高氮肥利用率,减少土壤氮累积,减小氮肥施用产生的环境污染风险。  相似文献   

4.
Diagnostic tests for organic production of crops would be useful. In this study, the difference in natural 15N abundances (δ15N) of soils and plants between fertilizer-applied upland (FU) and compost-applied upland (CU) fields was investigated to study using δ15N as a marker of organic produce. Twenty samples each of soils and plants were collected from each field in early summer after applying fertilizer or compost. The δ15N of fertilizers and composts was −1.6±1.5‰ (n=8) and 17.4±1.2‰ (n=10), respectively. The δ15N of total soil-N was significantly (P<0.05) higher in CU fields (8.8±2.0‰) than in FU fields (5.9±0.7‰) due to long-term continuous application of 15N-enriched compost, as indicated by a positive correlation (r=0.62) between N content and δ15N of total soil-N. The NO3 pool of CU soils (11.6±4.5‰) was also significantly (P<0.05) enriched in 15N compared to FU soils (4.7±1.1‰), while the 15N contents of NH4+ pool were not different between both soils. Compost application resulted in 15N enrichment of plants; the δ15N values were 14.6±3.3‰ for CU and 4.1±1.7‰ for FU fields. These results showed that long-term application of compost resulted in a significant 15N-enrichment of soils and plants relative to fertilizer. Therefore, this study suggested that δ15N could serve as promising indicators of organic fertilizers application when used with other independent evidence. However, further studies under many conditions should be conducted to prepare reliable δ15N guidelines for organic produce, since the δ15N of inorganic soil-N and plant-N are influenced by various factors such as soil type, plant species, the rate of N application, and processes such as mineralization, nitrification, and denitrifcation.  相似文献   

5.
The effects of annual application of rice straw or cow manure compost for 17–20 y on the dynamics of fertilizer N and soil organic N in Gley paddy fields were investigated by using the 15N tracer technique during the rice cropping season. The chloroform fumigation-extraction method was evaluated to determine the properties of soil microbial biomass under submerged field conditions at the tillering stage before mid-summer drainage, with special reference to the fate of applied NH4 +-15N.

The transfer ratios from applied NH4 +-15N to immobilized N in soil and to uptake N by rice during given periods varied with the rice growth stages and were affected by organic matter application. The accumulated amounts of netmineralized soil organic N (net-Mj ), immobilized N (Ij ), and denitrified N (Dj ) during the cropping season were estimated to be 14.0–22.5, 6.3–11.2, and 3.4–5.3 g N m-2, respectively. Values of net-Mj and Ij were larger in the following order: cow manure compost plot > rice straw plot > plot without organic matter application, and their larger increase by the application of cow manure compost contributed to a decrease of the Dj values, as compared with rice straw application.

Values of E N extra extractable soil total N after fumigation, increased following organic matter application, ranging from 2.1 to 5.4 g N m-2. Small residual ratios of applied 15N in the fraction E N at the end of the given period indicated that re-mineralization of newly-assimilated 15N through the easily decomposable fraction of microbial biomass had almost ended. Thus, the applicability to paddy field soils of the chloroform fumigation-extraction method was confirmed.  相似文献   

6.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

7.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

8.
This study was performed to clarify whether areal variation exists in the relationship between natural 15N abundances (δ15N values) of rice (Oryza sativa L.) and soil without an applied nitrogen (N) source, and to explore possible reasons for any areal variation. We investigated the relationships between δ15N values of rice and those of unamended soil with no applied N source in two locations; Daisen and Ogata, in Akita Prefecture, Japan. The δ15N values of rice in Daisen were higher than those in Ogata from 2007 to 2009, irrespective of the cropping year. Results demonstrated areal variation in the relationship between δ15N values of rice and those of unamended soil. The variation might be attributed to variation in the δ15N of natural N input and to ammonia nitrification and subsequent denitrification. When the relationship between δ15N values of rice and those of unamended soil is used to discriminate between organic and conventional rice, the areal variation of the relationship in the target area should be taken into account, from the point of the δ15N value of natural N input and N transformation in the soil.  相似文献   

9.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

10.
不同管理方式对夏玉米氮素吸收、分配及去向的影响   总被引:3,自引:5,他引:3  
【目的】本文利用15N同位素示踪技术探讨传统(CT)和优化(YH)两种管理方式对夏玉米氮素吸收、分配及去向的影响。分析目标产量下化肥氮的变化,解析夏玉米花前、花后氮素利用及转移规律,探讨肥料氮、土壤氮与作物氮之间的关系,为该地区夏玉米的科学合理施氮提供合理依据。【方法】在传统和优化两种管理方式定位试验中设置15N微区,采用将15N标记的尿素表施的方法,分析植株和土壤样品。新鲜土壤用1 mol/L KCl浸提,滤液用TRACCS 2000型流动分析仪测定土壤的NH+4-N和NO-3-N含量。15N标记的土壤和植物全氮的测定用烘干样(过0.15 mm筛),然后用美国THERMO finnigan公司生产的稳定同位素质谱仪DeltaplusXP进行测定。【结果】在该试验条件下,优化方式下夏玉米籽粒产量和总吸氮量显著高于传统方式,分别增加12%和10%。作物收获后,优化方式的15N吸收量及利用率显著高于传统方式,利用率分别为20.81%、32.54%。夏玉米各器官中氮素的积累量和向籽粒中的转移量土壤氮显著高于肥料氮,传统方式籽粒中氮素的57.73%、优化方式籽粒中氮素的45.15%来自各器官的转移,近一半的氮素是在花后积累的,基施高氮对作物生长作用不大。开花期土壤表层硝态氮含量传统方式显著高于优化方式,收获后有所降低,而土壤深层含量明显增加,有向下淋洗的趋势。夏玉米收获后,传统方式各土层的原子百分超均高于优化方式,而且在20—40 cm处出现了明显的15N累积峰,与开花期相比,40 cm以下土层的原子百分超明显增大,氮肥随水向下淋洗强烈。夏玉米收获后传统方式土壤氮素残留率高达56.18%,表现为土壤残留损失作物吸收;优化方式则表现为土壤残留作物吸收损失。【结论】在优化方式中夏玉米施氮量为N 185 kg/hm2时,玉米达到高产水平且氮肥的利用率高。适当减少施氮量及增加后期追肥次数可实现夏玉米的高产和肥料的高效利用。  相似文献   

11.
为探明盐渍化农田不同施氮水平下向日葵氮素吸收利用规律,采用15N同位素示踪技术进行田间微区试验,以不施氮处理(N0)为对照,设计3种施氮水平(N1=150 kg/hm2、N2=225 kg/hm2、N3=300 kg/hm2),于向日葵成熟期测定植株和0—100 cm土层土壤15N同位素丰度及总氮含量,研究各处理肥料氮素的去向及其利用机制。结果表明:向日葵氮素吸收量随施氮量的增加而增加,成熟期作物氮素吸收量在N2水平较不施氮显著增加38.7%;土壤氮和肥料氮对作物当季氮素吸收的贡献比例为84.9%和15.1%。N2水平下,肥料氮的贡献比例较N1增加35.7%,土壤氮的贡献比例较N1降低4.3%。肥料氮残留量随土层深度增加而减少,土壤中47.4%的残留肥料氮主要集中在0—20 cm土层。不同施氮水平下肥料氮去向均表现为氮肥损失率>氮肥残留率>氮肥利用率,N2施氮水平下氮肥利用率较N1、N3显著提高22.7%和14.6%,土壤残留率较N1、N3减少8.5%和8.6%。综...  相似文献   

12.
We investigated 15N abundance (δ15N) of winter wheat (Triticum aestivum cv. Jinmai 1) plants and soil at different growth stages in a field with a 13-year fertilization history of urea and compost, to determine whether or not the δ15N of plant parts can be used as an indicator of organic amendment with compost. Plant parts (roots, leaves, stems and grains) and soil were sampled at re-greening, jointing, grain filling and mature growth stages of winter wheat. There were significant differences between the urea and compost treatments in 815N of whole plants, plant parts and soil over the whole growing season. Determination of the δ15N of plant parts was more convenient than that of whole plant to distinguish between the application of organic amendment and synthetic N fertilizer.  相似文献   

13.
Abstract

Recovery of residual nitrogen (N) from the subsoil by maize (Zea mays L.) was studied by injecting 15N‐labeled nitrate at 110 cm for treatments with and without N fertilizer in a calcareous soil on the North China Plain. The results show that the recovery of 15N‐labeled nitrate diffusing in the 90‐ to 130‐cm soil horizon was 11.9% with N fertilizer application and 6.7% without N application in maize. Nitrogen fertilizer applied to topsoil stimulated growth of maize roots in the subsoil, thus increasing the recovery of 15N‐labeled nitrate. In the relatively dry growing season in this experiment, the 15N‐labeled nitrate did not move downward because there was no downward water flow at 110 cm. Hence, under dry weather conditions, the maize crop can re‐utilize a small part of the residual soil nitrate in deep soil layers. Most of the nitrogen uptake was in the 0‐ to 80‐cm layer during the experiment.  相似文献   

14.
This study was conducted to examine whether the applications of N-inputs (compost and fertilizer) having different N isotopic compositions (δ15N) produce isotopically different inorganic-N and to investigate the effect of soil moisture regimes on the temporal variations in the δ15N of inorganic-N in soils. To do so, the temporal variations in the concentrations and the δ15N of NH4+ and NO3 in soils treated with two levels (0 and 150 mg N kg−1) of ammonium sulfate (δ15N=−2.3‰) and compost (+13.9‰) during a 10-week incubation were compared by changing soil moisture regime after 6 weeks either from saturated to unsaturated conditions or vice versa. Another incubation study using 15N-labeled ammonium sulfate (3.05 15N atom%) was conducted to estimate the rates of nitrification and denitrification with a numerical model FLUAZ. The δ15N values of NH4+ and NO3 were greatly affected by the availability of substrate for each of the nitrification and denitrification processes and the soil moisture status that affects the relative predominance between the two processes. Under saturated conditions for 6 weeks, the δ15N of NH4+ in soils treated with fertilizer progressively increased from +2.9‰ at 0.5 week to +18.9‰ at 6 weeks due to nitrification. During the same period, NO3 concentrations were consistently low and the corresponding δ15N increased from +16.3 to +39.2‰ through denitrification. Under subsequent water-unsaturated conditions, the NO3 concentrations increased through nitrification, which resulted in the decrease in the δ15N of NO3. In soils, which were unsaturated for the first 6-weeks incubation, the δ15N of NH4+ increased sharply at 0.5 week due to fast nitrification. On the other hand, the δ15N of NO3 showed the lowest value at 0.5 week due to incomplete nitrification, but after a subsequence increase, they remained stable while nitrification and denitrification were negligible between 1 and 6 weeks. Changing to saturated conditions after the initial 6-weeks incubation, however, increased the δ15N of NO3 progressively with a concurrent decrease in NO3 concentration through denitrification. The differences in δ15N of NO3 between compost and fertilizer treatments were consistent throughout the incubation period. The δ15N of NO3 increased with the addition of compost (range: +13.0 to +35.4‰), but decreased with the addition of fertilizer (−10.8 to +11.4‰), thus resulting in intermediate values in soils receiving both fertilizer and compost (−3.5 to +20.3‰). Therefore, such differences in δ15N of NO3 observed in this study suggest a possibility that the δ15N of upland-grown plants receiving compost would be higher than those treated with fertilizer because NO3 is the most abundant N for plant uptake in upland soils.  相似文献   

15.
The aim of this study was to understand impacts of long-term (43 years) fertilization on soil aggregation, N accumulation rates and δ15N in surface and deep layers in an Alfisol. Soil samples from seven treatments were analysed for N stocks, aggregate-associated N in 0–30 cm and the changes in δ15N in 0–90 cm depths. The treatments were: unfertilized control (control); recommended N dose (N); recommended N and phosphorus doses (NP); recommended N, P and potassium doses (NPK); 150% of recommended N, P and K doses (150% NPK); NPK + 10 Mg FYM ha?1 (NPK + FYM) and NPK + 0.4 Mg lime ha?1 (NPK + L). Results revealed that plots under NPK + FYM had ~39% higher total N concentrations than NPK + L in 0–30 cm soil layers. In NPK + L, macro-aggregates had 35 and 11% and microaggregates had 20 and 9% lower δ15N values than NPK + FYM in 0–15 and 15–30 cm soil layers, respectively. However, plots receiving NPK + FYM had ~39% greater deep soil (30–90 cm) N accumulation than NPK + L. These results would help understanding N supplying capacity by long-term fertilization and assist devising N management strategies in sub-tropical acidic Alfisols.  相似文献   

16.
To test the hypothesis that N isotope composition can be used as evidence of excessive compost application, we measured variation in patterns of N concentrations and corresponding δ15N values of plants and soil after compost application. To do so, a pot experiment with Chinese cabbage (Brassica campestris L. cv. Maeryok) was conducted for 42 days. Compost was applied at rates of 0 (SC0), 500 (SC1), 1000 (SC2), and 1500 mg N kg−1 soil (SC3). Plant-N uptake linearly increased with compost application (r2 = 0.956, P < 0.05) with an uptake efficiency of 76 g N kg−1 of compost-N at 42 days after application, while dry-mass accumulation did not show such linear increases. Net N mineralized from compost-N increased linearly (r2 = 0.998, P < 0.01) with a slope of 122 g N kg−1 of compost-N. Plant-δ15N increased curvilinearly with increasing compost application, but this increase was insignificant between SC2 and SC3 treatments. The δ15N of soil inorganic-N (particularly NO3-N) increased with compost application. We found that plant-δ15N reflected the N isotope signal of soil NO3-N at each measurement during plant growth, and that δ15N of inner leaves and soil NO3-N was similar when initial NO3 in the compost was abundant. Therefore, we concluded that δ15N of whole plant (more obviously in newer plant parts) and soil NO3-N could reveal whether compost application was excessive, suggesting a possible use of δ15N in plants and soil as evidence of excess compost application.  相似文献   

17.
Nitrogen and carbon dynamics in paddy and upland soils for rice cultivation and in upland soil for corn cultivation was investigated by using 13C and 15N dual-labeled cattle manure compost (CMC). In a soil with low fertility, paddy and upland rice took up carbon and nitrogen from the CMC at rates ranging from 0.685 to 1.051% of C and 17.6–34.6% of N applied. The 13C concentration was much higher in the roots than in the plant top, whereas the 15N concentration differed slightly between them, indicating that organic carbon taken up preferentially accumulated in roots. The 13C recovery in the plant top tended to be higher in upland soil than in paddy soil, whereas 15N applied was recovered at the same level in both paddy and upland soils. In the experiment with organic farming soil, paddy rice took up C and N from the CMC along with plant growth and the final recovery rates of 13C and 15N were 2.16 and 17.2% of C and N applied. In the corn experiment, a very large amount of carbon from the CMC was absorbed, accounting for at least 7 times value for rice. The final uptake rates of 13C and 15N reached about 13 and 10% of C and N applied, respectively. Carbon emission from the CMC sharply increased by 2 weeks after transplanting and the nitrogen emission was very low. It is concluded that rice and corn can take up an appreciable level of carbon and nitrogen from the CMC through roots.  相似文献   

18.
不同质地土壤上烤烟氮素积累、分配及利用率的研究   总被引:7,自引:0,他引:7  
【目的】土壤质地能概括反映土壤内在的肥力特征,对土壤养分供应具有调控作用,是影响农田中土壤氮素供应和氮肥利用的重要因素。本试验通过在皖南烟区3种质地(壤土、黏壤、砂壤)土壤上施用等量氮肥来研究其对烤烟不同生育期的氮素吸收、积累及利用特征的影响,旨在为烟田土壤改良及烤烟合理施肥提供理论依据。【方法】在皖南烟区现代农业科技园的典型壤土、黏壤和砂壤土上分别建立田间试验,采用15N田间微区试验和室内分析相结合的研究方法,在烤烟的团棵期(移栽后38 d)、现蕾期(移栽后53 d)、平顶期(移栽后64d)和成熟期(移栽后103 d),采集长势一致的烟株样品,测定烟株各部位的生物量,并采用凯氏定氮法检测其全氮含量,采用ZHTO2型同位素质谱仪测定其15N丰度。【结果】皖南烟区壤土和黏壤土上烤烟总氮和肥料氮积累均随生育期呈单峰变化,在烤烟平顶期达最大,总氮积累量分别为4.25 g/plant和3.96 g/plant,肥料氮积累量分别为2.34 g/plant和2.54 g/plant,而砂壤土上烤烟到成熟期其总氮和肥料氮的积累量达到最大,分别是5.64 g/plant和2.73 g/plant,均显著高于同时期的壤土和黏壤;壤土、黏壤和砂壤土上烤烟均以叶部肥料氮占总氮比例及氮素分配率较高,茎部次之,根部最低;不同质地土壤上烤烟氮肥利用率与肥料氮的积累动态具有一致的变化趋势,其中壤土和黏壤在平顶期最大,分别为34.5%和40.7%,之后壤土利用率缓慢下降,黏壤下降幅度较大,而砂壤土上烤烟氮肥利用率在生育期内呈上升趋势,至成熟期最大,为43.7%。【结论】不同质地土壤上烟株对氮素的吸收利用顺序为砂壤壤土黏壤,黏壤土在烤烟生育期内供氮能力较弱,应合理调控土壤氮的矿化及增加肥料氮的供应;砂壤土氮肥利用率较高,应严格控制氮肥的施用量。  相似文献   

19.
针对蔬菜灌溉水肥渗漏问题,采用田间试验和室内分析相结合,研究了番茄膜下沟灌灌水量与土壤硝态氮的根层外渗漏关系,分析了灌水量与不同根层土壤硝态氮的淋溶和保蓄特征,结果表明:灌溉不施肥条件下灌水量与土壤硝态氮淋溶量和淋溶率、灌溉施肥条件下灌水量与土壤施入硝态氮的保蓄率和渗漏率均呈直线关系;灌溉均会引起浅根层(0—20 cm)硝态氮淋溶,灌溉施肥条件下7.5~15 mm灌水量范围硝态氮积累有一个峰值,而22.5~45 mm范围则有两个峰值;灌水量在7.5~15mm之间,灌溉不施肥条件下根层土壤硝态氮淋溶率为0,灌溉施肥条件下土壤硝态氮渗漏率为0~5.19%;灌水量在22.5~45 mm之间,灌溉不施肥土壤硝态氮淋溶率为5.38%~19.08%,灌溉施肥条件下根层土壤硝态氮渗漏率为21.91%~61.96%。日光温室番茄膜下沟灌能减少肥料淋溶与渗漏的节水灌水量为15 mm。  相似文献   

20.
We did a pot experiment with three different fertilized soils (no fertilizer (No-F), inorganic fertilizer nitrogen, phosphorus and potassium (NPK), manure plus inorganic fertilizer (MNPK)) from a 19-year fertilizer trial. Three N treatments, (1) no N, (2) 100 mg/kg urea-15N (N), (3) 50 mg/kg urea-15N + 50 mg/kg corn straw-N (1/2N + 1/2S), were applied to each soil. The residual soil from the same treatments was used to grow second wheat crop. The MNPK soil had significantly higher nitrogen use efficiency (NUE) in the first growing season, and lower N loss than the NPK, and No-F soils. The 1/2N + 1/2S treatment decreased NUE on each soil, even though the MNPK soil still had highest NUE and lowest N loss. The residual 15N use efficiency (RNUE) in 1/2N + 1/2S treatment of MNPK soil was higher than NPK and No-F soils. We concluded that long-term application of manure plus inorganic fertilizer increased NUE and decreased N loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号