首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the increase of the occupation ratio of inoculum strain in the competition with indigenous rhizobia, the relationship between Rj-genotypes of soybean and the preference of Rj-cultivars for various types of rhizobia for nodulation was investigated by using the Rj 2 Rj 4-genotype of soybean isolated from the cross between the Rj 2 Rj 3-cultivar IAC-2 and Rj 4-one Hill (Ishizuka et al. 1993: Soil Sci. Plant Nutr., 39, 79-86). Firstly, these Rj 2 Rj 4-genotypes were found to harbor the Rj 3-gene. The Rj 2Rj3Rj4-genotypes of soybean were considered to exhibit a more narrow microsymbiont range for nodulation than the Rj 2 Rj 3-and Rj4-cultivars. Therefore, rhizobia were isolated from the nodules of various Rj-genotypes of soybeans grown in soils, and the preference of the Rj 2 Rj 3 Rj 4-genotype for indigenous rhizobia was examined. The nodule occupancy of serotype 110 was significantly higher in the bacteroids of the nodules from the Rj 2 Rj 3 Rj 4-rgenotypes than in those from the other genotypes, non Rj-, Rj 2 Rj 3-, and Rj 4-cultivars. These results demonstrated that the Rj 2 Rj 3 Rj 4-genotype prefers more actively serogroup USDA110 to the others of rhizobia. Thus, Rj 2 Rj 3 Rj 4-genotype is superior to non- Rj-, Rj 2 Rj 3-, and Rj 4-genotypes for the formation of efficient nodules for nitrogen fixation.  相似文献   

2.
Rhizobitoxine (2-amino-4-(2-amino-3-hydropropoxy)-trans-but-3-erioic acid) is a phytotoxin produced by some strains of Bradyrhizobium species. Rhizobitoxine-producing strains often induce chlorosis in new leaves of soybean as a result of the synthesis of the toxin in nodules (Owens and Wright 1964; Owens et al. 1972). Some of the B. japonicum bacteroids possessing the hydrogen uptake (Hup) system are capable of ATP production by recycling H2 evolved from nitrogenase (Evans et al. 1987). Adequate uptake hydrogenase activity in soybean bacteroids often enhances plant growth, as well as the efficiency of energy utilization during nitrogen fixation (Evans et al. 1987).  相似文献   

3.
Abstract

Caldwell and Vest (1968) planted soybeans (Glycine max L. Merr.) with various genotypes at Beltsville, USA, without inoculating them with Bradyrhizobium japonicum, and showed that soybeans preferred certain serotypes of rhizobial strains for nodulation. Recently, the authors have reported that soybeans carrying nodulation-conditioning genes preferred appropriate strains showing specific behavior for nodulation (Ishizuka et al. 1991). For instance, nodulation of soybean cv. Hardee which carries the nodulation-conditioning genes, Rj 2 and Rj 3, does not occur with B. japonicum USDA122, USDA33, Is-1, etc. Nodulation of cv. Hill which carries the Rj 4 gene, does not occur with B. japonicum USDA61, Is-21, etc. while A62-2 which carries a recessive gene rj 1, does not nodulate with almost any of the strains of B. japonicum. Therefore, the B. japonicum strains can be classified into three nodulation types based on the compatibility with these Rj-cultivars, that is, type A strains which effectively nodulated both Rj 2 Rj 3-cultivars and Rj 4-ones, type B strains which did not nodulate the Rj 2 Rj 3-cultivars and type C strains which did not nodulate the Rj 4-cultivars. When the nodulation types of the isolates from nodules of field-grown soybeans were examined, it was suggested that the Rj 2 Rj 3-cultivars and Rj 4-cultivars preferred the type C and type B strains, respectively (Ishizuka et al. 1991).  相似文献   

4.
Attempts to improve the symbiotic nitrogen fixation with effective (Brady) rhizobium strains do not always succeed under field conditions due to the lower nodulation competitiveness of the introduced strains than that of the indigenous rhizobia (Triplett and Sadowsky 1992). An introduced strain needs to be marked for monitoring its nodule occupancy under competitive nodulation conditions.  相似文献   

5.
在前期工作中 ,从慢生型大豆根瘤菌菌株 GX2 0 1的基因文库中筛选到一个含 nfe C基因同源片段的重组质粒 p GXN2 0 1。在本工作中 ,将 nfe C基因同源片段定位在 4 kb Cla I Xba I片段上。对该片段的部分序列分析表明与已报道的 nfe C基因具有 95%的同源性  相似文献   

6.
Interstrain competitiveness is a key factor affecting the performance of rhizobium inoculant. In the present study five native strains of Bradyrhizobium japonicum, namely SSF 4, SSF 5, SSF 6, SSF 7 and SSF 8, were assessed for their competitiveness in nodulating soybean using serological methods. The strains were inoculated individually or with the type strain USDA 110 at a 1:1 ratio. Nodule occupancy determined by immunofluorescence and dot immunoblot assay revealed that under in vitro conditions SSF 8 is more competitive than USDA 110 whereas the others were less competitive. The competitive ability of these strains was also estimated in pot culture in the field. In red soil both SSF 8 and USDA 110 were equally competitive whereas in black soil SSF 8 competed better than USDA 110 and produced more nodules. In a black soil field trial using a randomized block design, USDA 110 or SSF 8, when inoculated alone, occupied the majority of the nodules and enhanced nodule dry weight and shoot biomass. SSF 8 was more competitive when the strains were co-inoculated. Received: 1 November 1996  相似文献   

7.
Abstract

Hattori (1985) proposed a model to simulate the relation between the number of bacterial colonies on agar plates and the incubation time, using the following equation:

where N(t) is the number of colonies observed at time t, and N λ, and t r are parameters expressing the expected number of colonies observed at an infinite time, the rate of increase in the number of colonies, and the time of initiation of colony formation, respectively. This model is called the first-order reaction (FOR) model because the Eq. 1 is essentially the same as that of the first-order reaction.  相似文献   

8.
Abstract

Hydrophobic mutants of the Bradyrhizohium japonicum strain 138NR were obtained by transposon Tn5 mutagenesis followed by replica-plating on polystyrene plates. Fifteen mutants were isolated at a frequency of 106. Gel-filtration analysis of the exopolysaccharides revealed that the hydrophobic mutants produced a significantly smaller amount of low-molecular-weight polysaccharides than the parent. Four of the isolated mutants formed a larger number of nodules on soybean (Glycine max L. Merr. cv. Tamahomare) than the parent, two were superior in symbiotic nitrogen fixation, and two were symbiotically defective on soybean. Competitive nodulation abilities of the mutants were examined by inoculating them to soybean with B. japonicum strain 123ET as a competitor and determining the nodule occupancy based on the antibiotic resistance. All the mutants tested except for the symbiotically defective ones were superior in their competitive nodulation ability to the parent strain. When inoculated 24 h before the inoculation with 123ET, the mutants exhibited an increased nodule occupancy (44–93% compared to 9% by the parent).  相似文献   

9.
Abstract

Rhizobial cells are present in soils as saprophytes after the decay of host plant nodules, and must survive in the soil until the next encounter with the infection sites of the host plant root. Biotic and abiotic environmental factors affect the population size of these rhizobia in the soil (Vincent 1977). Precise estimation of the population size of the native and the introduced rhizobia in the soil is necessary to study the conditions for the successful nodule formation by introduced strains.  相似文献   

10.
nfeC基因是从慢生型大豆根瘤菌中克隆到的,与竞争结瘤有关的基因。本研究从慢生型大豆根瘤菌菌株GX201的pLAFR3为载体的基因文库中,筛选出与nfe同源基因克隆。以转座子Tn5gusA5诱变获得了gus基因表达的Tn5gusA5插入突变质粒。  相似文献   

11.
 In a previous study soybean Bradyrhizobium strains, used in Brazilian studies and inoculants over the last 30 years, and strains adapted to the Brazilian Cerrados, a region frequently submitted to environmental and nutritional stresses, were analyzed for 32 morphological and physiological parameters in vivo and in vitro. A cluster analysis allowed the subdivision of these strains into species Bradyrhizobium japonicum, Bradyrhizobium elkanii and a mixed genotype. In this study, the bacteria were analyzed for nodulation, N2 fixation capacity, nodule occupancy and the ability to increase yield. The goal was to find a relationship between the strain groups and the symbiotic performance. Two strains of Brazilian B. japonicum showed higher rates of N2 fixation and nodule efficiency (mg of N mg–1 of nodules) under axenic conditions. These strains also showed greater yield increases in field experiments when compared to B. elkanii strains. However, no differences were detected between B. japonicum and B. elkanii strains when comparing nodule occupancy capacity. The adapted strains belonging to the serogroup B. elkanii SEMIA 566, most clustered in a mixed genotype, were more competitive than the parental strain, and some showed a higher capacity of N2 fixation. Some of the adapted strains, such as S-370 and S-372, have shown similar N2 fixation rates and nodulation competitiveness to two Brazilian strains of B. japonicum. This similarity demonstrates the possibility of enhancing N2 fixing ability, after local adaptation, even within B. elkanii species. Differences in the DNA profiles were also detected between the parental SEMIA 566 and the adapted strains by analyses with the ERIC and REP-PCR techniques. Consequently, genetic, morphological and physiological changes can be a result of adaptation of rhizobia to the soil. This variability can be used to select strains capable of increasing the contribution of N2 fixation to soybean nutrition. Received: 28 May 1997  相似文献   

12.
应用GUS基因标记技术,可简便、快速、准确、原位、直观地确定标记花生根瘤菌株形成的根瘤,从而方便地研究标记菌株与土著根瘤菌的竞争结瘤能力。无氮水培试验表明,标记菌株gusA4-5、gusA2-9分别与土著菌混和接种占瘤率为71.4%、77.0%。盆栽试验表明,接种供试菌株Spr4-5、Spr2-9占瘤率分别为57.9%、63.0%,比对照极显著增产52.5%、22.7%;接种Spr4-5比Spr2-9极显著增产24.2%。初步说明两个供试菌株的竞争结瘤力比土著根瘤菌强,菌株Spr2-9强于Spr4-5;Spr4-5比Spr2-9有效性高,是结瘤适量,竞争结瘤能力强的高效菌株。  相似文献   

13.
根据已报道的脯氨酸脱氢酶基因(putA)序列,通过PCR方法,从慢生型大豆根瘤菌菌株GX201的总DNA中扩增到—PCR产物。序列分析表明,该PCR产物的长度为418bp,与已报道的putA基因具有93.5%的同源性。以广谱寄主范围质粒pLAFR3为载体,在大肠杆菌DH5α中构建了GX201的基因文库,并以该PCR产物为探针,从基因文库中筛选到一重组质粒pGXN300。  相似文献   

14.
在温室条件下,采用石英砂盆栽试验研究了大豆(冀豆6号)接种丛枝菌根真菌(Glomous mosseae)与根瘤菌 (Bradyrhizobium japonicum)对根瘤的形成、分布以及磷素吸收效率的影响。结果表明,大豆生长至开花期(接种后56 d),与单接种根瘤菌处理相比,双接种AM真菌和根瘤菌显著增加大豆生物量、氮、磷含量、根系上的总根瘤数。单接种根瘤菌条件下,总根瘤数的48.4%分布在主根上,51.6%分布在侧根上;根瘤菌与AM真菌双接种时,总根瘤数的32.5%分布在主根上,67.5%分布在侧根上。双接种处理的侧根根瘤的固氮酶活性显著高于单接种处理的。双接种条件下大豆侧根中AMF侵染增强,尤其是结根瘤侧根上的AM真菌的侵染率高于未结瘤的侧根的菌根侵染率。接种后28 d单接种菌根真菌处理显著高于双接种处理的植株磷的吸收效率;而56 d 时趋势相反。以上结果表明,AM真菌侵染改变根瘤在大豆根系上的分布,根瘤数量、分布与结根瘤侧根上AM真菌的侵染强度存在正相关关系。  相似文献   

15.
Abstract

Bacteroids are defined as the symbiotic forms of Rhizobium or Bradyrhizobium cells in the root nodules of their legume host. The differentiation to bacteroids involves various physiological changes and may be associated with some genetical changes. Single-colony isolates from a nodule formed by a Bradyrhizobium strain often differed in their effectiveness and intrinsic antibiotic resistance (Weaver and Wright 1987; Ozawa unpublished data). Detailed analysis of the changes in the gene structure requires the isolation of individual bacteroids from a nodule. However it has been reported that the viability of bacteroids in culture is very low and only a small fraction of a bacteroid population could produce colonies on yeast extract-mannitol (YEM) agar (Sutton et al. 1977). Bergersen (1974) concluded that the reversion of bacteroids to the vegetative, growing form is very rare.  相似文献   

16.
The genome of Bradyrhizobium japonicum and B. elkanii contains multiple copies of the repeated DNA sequence RSα. A collection of 18 B. japonicum, 4 B. elkanii and 72 other bacterial strains was screened by polymerase chain reaction (PCR) using a pair of primers specific for RSα. Only strains of B. japonicum and B. elkanii gave the predicted amplification product. Restriction analysis of PCR products obtained from different strains of B. japonicum showed that the RSα sequence was generally conserved. The usefulness of RSα as a specific probe for Bradyrhizobium strains capable of nodulating soybean was also demonstrated. Received: 11 May 1995  相似文献   

17.
The compatibility between rhizobia and host plants for nodulation was determined based on the genetic and physiological properties of both symbionts. It has been observed that soybean varieties carrying the Rj-gene were not nodulated effectively by certain strains or groups of rhizobia. Soybeans carrying the Rj 2-gene, Rj 2-varieties, were found to nodule ineffectively by the rhizobial strains belonging to the 3-24-44 and 122 serogroups (Caldwell 1966). In the same way, Rj 3- and Rj 4-varieties were found to nodule ineffectively by strains USDA 33 (Vest 1970) and USDA 61 (Vest and Caldwell 1972), respectively.  相似文献   

18.
The fungicide thiram, widely used as a chemical seed protectant, induces a strong inhibition of primary nodulation in the crown zone of soybean roots. The present work reports on the isolation of Bradyrhizobium japonicum strains resistant to thiram, some of which (T3B, A86 and A2) maintained their capacity for nodulation and were still efficient symbionts, but some (A1, C1 and C6) lost the ability to stimulate nodulation. Characterization tests such as growth at different pH, denitrifying ability, salt tolerance, production of siderophores and phosphate solubilization were performed on the resistant strains. Inoculants produced from these strains could be appropriate for use with thiram-treated seeds, without causing a loss of bacteria viability. Received: 16 September 1996  相似文献   

19.
The effects of inoculation with Bradyrhizobium japonicum and Azospirillum brasilense strains on the growth of soybean were evaluated with regard to the estimation of N2 fixation using the 15N isotope dilution technique. Inoculation, in general, increased the dry mass of soybean as well as nitrogen content. Dual inoculation with a mixture of B. japonicum and A. brasilense strains was superior over single inoculation with B. japonicum. Nitrogen fixed (Ndfa) varied according to inoculant and soil conditions. Percentages of nitrogen derived from air (% Ndfa) using a non-nodulating isoline were 72% and 76% for B. japonicum and B. japonicum plus A. brasilense, respectively, in non-sterile soil. A similar but higher trend was recorded in sterilized soil, in which the percentages of N2 fixed were 81% and 86% for single and dual inoculation, respectively. The correlation coefficient between N2 fixed and N uptake (r=0.94) and dry mass (r=0.89) was significant. Application of special bacterial inoculants in agricultural systems of Egypt seems to be a promising technology and could be used for improving soybean growth as well as soil fertility, thus minimizing environmental pollution. Received: 10 January 1996  相似文献   

20.
通过构建快生型大豆根瘤菌B52的基因文库和三亲本杂交,将增效因子DNA片段导入优良的慢生型大豆根瘤菌22-10中,获得携带来自快生菌增效因子DNA片段的工程菌株HN32,经盆栽和小区试验,证明基因工程菌株HN32比出发菌株22-10平均增产6%,比对照平均增产13.2%~16.9%,相当于每公顷施75~150kg尿素.1992~1995年,在广西推广应用基因工程大豆根瘤菌HN322.16万hm2,每公顷平均增产19%,投入产出比1:30。增加经济效益1409.8万元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号