首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of soil properties and cropland age on atmospheric nitrous oxide (N2O) emissions following the conversion of grassland to cropland in temperate grassland ecosystems are uncertain. In this study, N2O emissions were compared among grassland and cropland soils in the agro-pastoral ecotone of Inner Mongolia over three growing seasons. Four adjacent sites with different land-use histories were selected, including grassland and croplands cultivated for 5, 10, and 50 years after conversion. N2O flux measurements were obtained using a closed-chamber method and were performed continuously during vegetation periods. After the conversion of grassland to cropland, N2O emission initially decreased and thereafter increased in the study sites. The cumulative N2O emissions of the cropland soils 5 and 10 years in age were 10–50% less than those of the grassland, and the N2O emissions from the cropland soil 50 years in age were 10–30% greater than the grassland. When the seasonal emissions were correlated against single soil parameter, the key soil parameter that affected N2O emissions over the entire growing season was the soil moisture content. When the interactions among soil parameters were considered, the amount of N2O emissions could be quantitatively described by a linear combination of two soil variables, the soil ammonium nitrogen (NH4+-N) and moisture concentrations. This study demonstrates how the time of land use conversion from grassland to cropland can positively or negatively affect N2O emission.  相似文献   

2.
In order to investigate the diurnal, seasonal, and inter-annual variations of nitrous oxide (N2O) flux and associated microbiological mechanisms, in situ measurements of N2O Flux from unfertilized, ungrazed, and unirrigated semi-arid grassland soils in Inner Mongolia, northeast China were undertaken using a closed chamber technique from 1995 to 2003. In addition, laboratory experiments were carried out using the acetylene inhibition method (AIM) in 1998 and 2001. The results showed no significant linear relationship between soil moisture and diurnal N2O flux, or between N2O flux and temperature (i.e., temperature at 0-15 cm depth, temperature of surface soil, and temperature of inner chamber air). However, the results showed a significant influence of growing season on diurnal variations of N2O flux. N2O efflux was usually high in spring or summer, and low in winter. The mean total annual N2O fluxes was 0.73±0.52 kg N2O-N ha−1 yr−1, with a coefficient of variation of annual N2O flux of 71.6%. Based on our estimates from 5 yr of data, the total N2O emission from all of the temperate grassland soils of China was approximately 0.21 Tg N2O-N yr−1, which was about 21% of the total global flux from temperate grassland soils. It was the distribution of effective rainfall, rather than precipitation intensity, that influenced seasonal and inter-annual variations of N2O flux. Our laboratory incubation study revealed that heterotrophic nitrification was the principal source of N2O in the studied soils.  相似文献   

3.
Drainage of peatlands affects the fluxes of greenhouse gases (GHGs). Organic soils used for agriculture contribute a large proportion of anthropogenic GHG emissions, and on-farm mitigation options are important. This field study investigated whether choice of a cropping system can be used to mitigate emissions of N2O and influence CH4 fluxes from cultivated organic and carbon-rich soils during the growing season. Ten different sites in southern Sweden representing peat soils, peaty marl and gyttja clay, with a range of different soil properties, were used for on-site measurements of N2O and CH4 fluxes. The fluxes during the growing season from soils under two different crops grown in the same field and same environmental conditions were monitored. Crop intensities varied from grasslands to intensive potato cultivation. The results showed no difference in median seasonal N2O emissions between the two crops compared. Median seasonal emissions ranged from 0 to 919?µg?N2O?m?2?h?1, with peaks on individual sampling occasions of up to 3317?µg?N2O?m?2?h?1. Nitrous oxide emissions differed widely between sites, indicating that soil properties are a regulating factor. However, pH was the only soil factor that correlated with N2O emissions (negative exponential correlation). The type of crop grown on the soil did not influence CH4 fluxes. Median seasonal CH4 flux from the different sites ranged from uptake of 36?µg CH4?m?2?h?1 to release of 4.5?µg?CH4?m?2?h?1. From our results, it was concluded that farmers cannot mitigate N2O emissions during the growing season or influence CH4 fluxes by changing the cropping system in the field.  相似文献   

4.
Intensively managed grasslands are potentially a large source of nitrous oxide (N2O) in the Netherlands because of the large nitrogen (N) input and the fairly wet soil conditions. To quantify the effects of soil type, N-fertilizer application and grazing on total N2O losses from grassland, fluxes of N2O were measured weekly from unfertilized and mown, N fertilized and mown, and N fertilized and predominantly grazed grassland on a sand soil, a clay soil, and two peat soils during the growing season of 1992. Total N2O losses from unfertilized grassland were 2.5–13.5 times more from the peat soils than from the sand and clay soils. Application of calcium ammonium nitrate fertilizer significantly increased N2O flux on all sites, especially when the soil was wet. The percentage of fertilizer N applied lost to the atmosphere as N2O during the season ranged from 0.5 on the sand soil to 3.9 on one of the peat soils. Total N2O losses were 1.5–2.5 times more from grazed grassland than from mown grassland, probably because of the extra N input from urine and dung. From 1.0 to 7.7% of the calculated total amount of N excreted in urine and dung was emitted as N2O on grazed grassland. The large N2O losses measured from the peat soils, combined with the large proportion of grassland on peat in the Netherlands, mean that these grasslands contribute significantly to the total emission from the country.  相似文献   

5.
Abstract

Nitrous oxide (N2O) emissions were measured and nitrogen (N) budgets were estimated for 2?years in the fertilizer, manure, control and bare plots established in a reed canary grass (Phalaris arundinacea L.) grassland in Southern Hokkaido, Japan. In the manure plot, beef cattle manure with bark was applied at a rate of 43–44?Mg fresh matter (236–310?kg?N)?ha?1?year?1, and a supplement of chemical fertilizer was also added to equalize the application rate of mineral N to that in the fertilizer plots (164–184?kg?N?ha?1?year?1). Grass was harvested twice per year. The total mineral N supply was estimated as the sum of the N deposition, chemical fertilizer application and gross mineralization of manure (GMm), soil (GMs), and root-litter (GMl). GMm, GMs and GMl were estimated by dividing the carbon dioxide production derived from the decomposition of soil organic matter, root-litter and manure by each C?:?N ratio (11.1 for soil, 15.5 for root-litter and 23.5 for manure). The N uptake in aboveground biomass for each growing season was equivalent to or greater than the external mineral N supply, which is composed of N deposition, chemical fertilizer application and GMm. However, there was a positive correlation between the N uptake in aboveground biomass and the total mineral N supply. It was assumed that 58% of the total mineral N supply was taken up by the grass. The N supply rates from soil and root-litter were estimated to be 331–384?kg?N?ha?1?year?1 and 94–165?kg?N?ha?1?year?1, respectively. These results indicated that the GMs and GMl also were significant inputs in the grassland N budget. The cumulative N2O flux for each season showed a significant positive correlation with mineral N surplus, which was calculated as the difference between the total mineral N supply and N uptake in aboveground biomass. The emission factor of N2O to mineral N surplus was estimated to be 1.2%. Furthermore, multiple regression analysis suggested that the N2O emission factor increased with an increase in precipitation. Consequently, soil and root-litter as well as chemical fertilizer and manure were found to be major sources of mineral N supply in the grassland, and an optimum balance between mineral N supply and N uptake is required for reducing N2O emission.  相似文献   

6.
施肥对夏玉米季紫色土N2O排放及反硝化作用的影响   总被引:9,自引:0,他引:9  
采用原状土柱-乙炔抑制培养法研究了施肥对紫色土玉米生长季土壤N2O排放通量和反硝化作用的影响.结果表明:玉米季施肥显著增加土壤N2O排放和反硝化损失,同时,各施肥处理间N2O排放与反硝化损失量差异显著.猪厩肥、猪厩肥配施氮磷钾肥、氮肥、氮磷钾肥和秸秆配施氮磷钾肥等处理的土壤N,O排放量分别为3.01、2.86、2.51、2.19和1.88 kg hm-2,分别占当季氮肥施用量的1.63%、1.53%、1.30%、1.09%和0.88%,反硝化损失量分别为6.74、6.11、5.23、4.69和4.12 kg hm-2,分别占当季氮肥施用量的3.97%、3.55%、2.97%、2.61%和2.23%,不施肥土壤的N2O排放量和反硝化损失量仅为0.56和0.78 kg hm-2.施肥是紫色土玉米生长前期(2周内)土壤N2O排放和反硝化速率出现高峰的主要驱动因子,土壤铵态氮和硝态氮含量是影响土壤N2O排放、土壤硝化和反硝化作用的限制因子,土壤含水量是重要影响因子,降雨是主要促发因素.土壤N2O排放量与反硝化损失量的比值介于0.45 ~0.72之间,土壤反硝化损失量极显著高于土壤N2O排放量,说明土壤反硝化作用是紫色土玉米生长季氮肥损失的重要途径.  相似文献   

7.
A great deal of uncertainty is associated with estimates of global nitrous oxide (N2O) emissions because emissions from arid and polar climates were not included in the estimates due to a lack of available data. In particular, very few studies have assessed the response of N2O flux to grazing under future warming conditions. This experiment was conducted to determine the effects of warming and grazing on N2O flux at different time scales for three years under a controlled warming-grazing system. A free-air temperature enhancement system (FATE) using infrared heaters and grazing significantly increased soil temperatures for both of growing (average 1.8 °C in 2008) and no-growing seasons (average 3.0 °C for 3-years) within 20-cm depth, but only warming reduced soil moisture at 10-cm soil depth during the growing season during the drought year of 2008. Generally, the effects of warming and grazing on N2O flux varied with sampling date, season, and year. No interactive effect between warming and grazing was found. Warming did not affect annual N2O flux when grazing was moderate during the growing season because the tradeoff of the effect of warming on N2O flux was observed between the growing season and no-growing season. No-warming with grazing (NWG) and warming with grazing (WG) significantly increased the average annual N2O flux (57.8 and 31.0%) compared with no-warming with no-grazing (NWNG) and warming with no-grazing (WNG), respectively, indicating that warming reduced the response of N2O flux to grazing in the region. Winter accounted for 36-57% of annual N2O flux for NWNG and NWG, whereas only for 5-8% of annual N2O flux for WNG and WG. Soil temperature could explain 5-35% of annual N2O flux variation.  相似文献   

8.
A pot experiment was conducted to investigate the effect of growing soybean on N2O emission from soil. When soybean was growing in pots, the cumulative N2O emission during the growing season was 2.26 mg N pot−1, which was 5.9 times greater than that from the identical but unplanted pots (CK). However, the difference in N2O fluxes between the two treatments was not significant until the grain-filling stage. Of the total N2O emission, 94% took place during the period from grain-filling to ripening. Premature harvesting of the aerial parts of the plants at various growth stages substantially stimulated N2O emission from the soil. These results implied that the process of symbiotic N fixation per se does not stimulate N2O production or emission, but rather senescence and decomposition of the roots and nodules in the late growth stage. Therefore, additional N2O would be emitted from the soil after harvesting of soybean with roots, litter, and residues left in situ.  相似文献   

9.
农田改为农林(草)复合系统对红壤CO2和N2O排放的影响   总被引:1,自引:0,他引:1  
以鄂南玉米地、紫穗槐/玉米地、香根草/玉米地、紫穗槐林地、香根草草地与撂荒地6种土地利用类型为研究对象,利用静态箱法,对夏玉米生长期间土壤CO2和N2O通量及影响因子进行了测定,研究我国北亚热带丘陵红壤区农田改变为林(草)地和农林(草)复合系统后土壤CO2和N2O排放特征。研究结果表明:(1)土地利用方式改变后,撂荒地土壤CO2排放量明显低于其他5种土地利用类型,但紫穗槐/玉米地、单作玉米地、香根草/玉米地、紫穗槐林地、香根草草地5种土地利用类型之间土壤CO2排放量差异不显著。(2)玉米生长期间,6种不同土地利用方式下,土壤N2O排放总量从高到低依次为紫穗槐/玉米地(508 g·hm-2·a-1)、紫穗槐林地(470 g·hm-2·a-1)、撂荒地(390 g·hm-2·a-1)、香根草/玉米地(373 g·hm-2·a-1)、香根草草地(372 g·hm-2·a-1)、单作玉米地(285 g·hm-2·a-1)。(3)土壤CO2通量与土壤有机碳、土壤微生物生物量碳和土壤含水量无显著相关关系;土壤N2O通量与土壤氮素净矿化率呈显著线性相关,但与土壤无机氮和土壤含水量无显著相关关系。农田改变为农林(草)复合系统可能潜在地增加土壤CO2和N2O排放;农田改变为林(草)地可能潜在地减少土壤CO2排放,增加土壤N2O排放。  相似文献   

10.
Little information is available on the effects of urease inhibitor, N-(n-butyl)thiophosphoric triamide (NBPT), and nitrification inhibitor, dicyandiamide (DCD), on nitrous oxide (N2O) emissions from fluvo-aquic soil in the North China Plain. A field experiment was conducted at the Fengqiu State Key Agro-Ecological Experimental Station, Henan Province, China, to study the influence of urea added with NBPT, DCD, and combination of both NBPT and DCD on N2O emissions during the maize growing season in 2009. Two peaks of N2O fluxes occurred during the maize growing season: the small one following irrigation and the big one after nitrogen (N) fertilizer application. There was a significant positive relationship between ln [N2O flux] and soil moisture during the maize growing season excluding the 11-day datasets after N fertilizer application, indicating that N2O flux was affected by soil moisture. Mean N2O flux was the highest in the control with urea alone, while the application of urea together with NBPT, DCD, and NBPT + DCD significantly lowered the mean N2O flux. Total N2O emission in the NBPT + DCD, DCD, NBPT, and urea alone treatments during the experimental period was 0.41, 0.47, 0.48, and 0.77 kg N2O–N ha−1, respectively. Application of urea with NBPT, DCD, and NBPT + DCD reduced N2O emission by 37.7%, 39.0%, and 46.8%, respectively, over urea alone. Based on our findings, the combination of DCD and NBPT together with urea may reduce N2O emission and improve the maize yield from fluvo-aquic soil in the North China Plain.  相似文献   

11.
Nitrous oxide (N2O) emissions were measured by the closed chamber technique from five plots along a transect in a nitrogen‐fertilised grassland, together with soil water content, soil temperature and water table depth, to investigate the effect of water table depth on N2O emissions. N2O fluxes varied from <1 g N2O‐N ha?1 day?1 to peaks of around 500–1200 g N2O‐N ha?1 day?1 after N fertiliser applications. There was no significant difference in overall average water table depth between four of the five plots, but significant short‐term temporal variations in water table depth did occur. Rises in the water table were accompanied by exponential increases in N2O emissions, through the associated increases in the water‐filled pore space of the topsoil. Modelling predicted that if the water table could be managed such that it was kept to no less than 35 cm below the ground surface, fluxes during the growing season would be reduced by 50%, while lowering to 45 cm would reduce them by over 80%. The strong implication of these results is that draining grasslands, so that the water tables are only rarely nearer to the surface than 35 cm when N is available for denitrification, would substantially reduce N2O emissions.  相似文献   

12.
小麦-玉米轮作田与菜地N2O排放的对比研究   总被引:6,自引:0,他引:6  
于亚军  高美荣  朱波 《土壤学报》2012,49(1):96-103
应用静态箱/气相色谱法对旱地小麦-玉米轮作田和种菜历史超过20a的菜地进行了N2O排放的定位观测,分析了旱地和菜地生态系统N2O排放特征的差异,及施氮、土壤温度、土壤湿度和作物参与对两种农田系统N2O排放的不同影响。结果表明,不施氮情况下,旱地和菜地N2O排放通量分别为17.8±5.6和50.7±13.3μg m-2h-1,菜地N2O排放通量是旱地农田的3.1倍。在施氮(N 150 kg hm-2)情况下,菜地N2O排放系数较旱地高39.0%。粮食作物参与和蔬菜作物参与对增加各自农田生态系统N2O排放量的贡献无明显差异。旱地和菜地不同作物季N2O排放量的差异主要是由于作物生育期长短不同造成单位时间施肥强度存在差异。所以,根据作物生育期特点调节施肥量可能会减少农田生态系统N2O排放量,并且由于菜地各蔬菜生育期长短的差异更大,因此,菜地若能实现精量施肥,其N2O减排的潜力可能大于旱地农田。  相似文献   

13.
Abstract

Microbial nitrification and denitrification are responsible for the majority of soil nitrous (N2O) emissions. In this study, N2O emissions were measured and the abundance of ammonium oxidizers and denitrifiers were quantified in purple soil in a long-term fertilization experiment to explore their relationships. The average N2O fluxes and abundance of the amoAgene in ammonia-oxidizing bacteria during the observed dry season were highest when treated with mixed nitrogen, phosphorus and potassium fertilizer (NPK) and a single N treatment (N) using NH4HCO3as the sole N source; lower values were obtained using organic manure with pig slurry and added NPK at a ratio of 40%:60% (OMNPK),organic manure with pig slurry (OM) and returning crop straw residue plus synthetic NH4HCO3fertilizer at a ratio of 15%:85% (SRNPK). The lowest N2O fluxes were observed in the treatment that used crop straw residue(SR) and in the control with no fertilizer (CK). Soil NH4+provides the substrate for nitrification generating N2O as a byproduct. The N2O flux was significantly correlated with the abundance of the amoA gene in ammonia-oxidizing bacteria (r = 0.984, p < 0.001), which was the main driver of nitrification. During the wet season, soil nitrate (NO3?) and soil organic matter (SOC) were found positively correlated with N2O emissions (r = 0.774, p = 0.041 and r = 0.827, p = 0.015, respectively). The nirS gene showed a similar trend with N2O fluxes. These results show the relationship between the abundance of soil microbes and N2O emissions and suggest that N2O emissions during the dry season were due to nitrification, whereas in wet season, denitrification might dominate N2O emission.  相似文献   

14.
Our previous research showed large amounts of nitrous oxide (N2O) emission (>200?kg?N?ha?1?year?1) from agricultural peat soil. In this study, we investigated the factors influencing relatively large N2O fluxes and the source of nitrogen (N) substrate for N2O in a tropical peatland in central Kalimantan, Indonesia. Using a static chamber method, N2O and carbon dioxide (CO2) fluxes were measured in three conventionally cultivated croplands (conventional), an unplanted and unfertilized bare treatment (bare) in each cropland, and unfertilized grassland over a three-year period. Based on the difference in N2O emission from two treatments, contribution of the N source for N2O was calculated. Nitrous oxide concentrations at five depths (5–80?cm) were also measured for calculating net N2O production in soil. Annual N fertilizer application rates in the croplands ranged from 472 to 1607?kg?N?ha?1?year?1. There were no significant differences in between N2O fluxes in the two treatments at each site. Annual N2O emission in conventional and bare treatments varied from 10.9 to 698 and 6.55 to 858?kg?N?ha?1?year?1, respectively. However, there was also no significant difference between annual N2O emissions in the two treatments at each site. This suggests most of the emitted N2O was derived from the decomposition of peat. There were significant positive correlations between N2O and CO2 fluxes in bare treatment in two croplands where N2O flux was higher than at another cropland. Nitrous oxide concentration distribution in soil measured in the conventional treatment showed that N2O was mainly produced in the surface soil down to 15?cm in the soil. The logarithmic value of the ratio of N2O flux and nitrate concentration was positively correlated with water filled pore space (WEPS). These results suggest that large N2O emission in agricultural tropical peatland was caused by denitrification with high decomposition of peat. In addition, N2O was mainly produced by denitrification at high range of WFPS in surface soil.  相似文献   

15.
The effects of elevated CO2 supply on N2O and CH4 fluxes and biomass production of Phleum pratense were studied in a greenhouse experiment. Three sets of 12 farmed peat soil mesocosms (10 cm dia, 47 cm long) sown with P. pratense and equally distributed in four thermo-controlled greenhouses were fertilised with a commercial fertiliser in order to add 2, 6 or 10 g N m−2. In two of the greenhouses, CO2 concentration was kept at atmospheric concentration (360 μmol mol−1) and in the other two at doubled concentration (720 μmol mol−1). Soil temperature was kept at 15 °C and air temperature at 20 °C. Natural lighting was supported by artificial light and deionized water was used to regulate soil moisture. Forage was harvested and the plants fertilised three times during the basic experiment, followed by an extra fertilisations and harvests. At the end of the experiment CH4 production and CH4 oxidation potentials were determined; roots were collected and the biomass was determined. From the three first harvests the amount of total N in the aboveground biomass was determined. N2O and CH4 exchange was monitored using a closed chamber technique and a gas chromatograph. The highest N2O fluxes (on average, 255 μg N2O m−2 h−1 during period IV) occurred just after fertilisation at high water contents, and especially at the beginning of the growing season (on average, 490 μg N2O m−2 h−1 during period I) when the competition of vegetation for N was low. CH4 fluxes were negligible throughout the experiment, and for all treatments the production and oxidation potentials of CH4 were inconsequential. Especially at the highest rates of fertilisation, the elevated supply of CO2 increased above- and below-ground biomass production, but both at the highest and lowest rates of fertilisation, decreased the total amount of N in the aboveground dry biomass. N2O fluxes tended to be higher under doubled CO2 concentrations, indicating that increasing atmospheric CO2 concentration may affect N and C dynamics in farmed peat soil.  相似文献   

16.
南京郊区番茄地中氮肥的气态氮损失   总被引:13,自引:0,他引:13       下载免费PDF全文
采用田间试验研究了番茄地施用化学氮肥后的氨挥发、反硝化损失和N2O排放及其影响因素。氨挥发采用通气密闭室法测定,反硝化损失(N2+N2O)采用乙炔抑制-土柱培养法测定,不加乙炔测定N2O排放。结果表明,番茄生长期间全部处理均未检测到氨挥发,其原因是土表氨分压低于检测灵敏度,较低的氨分压是由于表层土壤的铵态氮浓度和pH都不高所致。在番茄生长期间,对照区即来自有机肥和土壤本身的反硝化损失和N2O℃排放量相当高,反硝化损失总量高达N29.6kghm^-2,N2O排放量为N7.76kghm^-2。施用化学氮肥显著增加了反硝化损失和N2O排放,3个施用化学氮肥处理的反硝化损失变化在N40.8~46.1kghm^-2之间,占施入化肥氮量的5.50%~6.01%;N2O排放量为N13.6~17.6kghm^-2,占施入化肥氮量的2.62%~4.92%;与尿素相比,包衣尿素未能显著减低反硝化损失和N2O排放。施用尿素的处理在每次追肥后,耕层土壤均会出现NO3^--N高峰,继之的反硝化和N2O排放高峰。反硝化速率与土壤含水量呈极显著正相关。总的看来,番茄生长期间没有氨挥发,而硝化反硝化是氮素损失的重要途径之一。  相似文献   

17.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

18.
Marine ecosystems are a known net source of greenhouse gases emissions but the atmospheric gas fluxes, particularly from the mangrove swamps occupying inter-tidal zones, are characterized poorly. Spatial and seasonal fluxes of nitrous oxide (N2O) and carbon dioxide (CO2) from soil in Mai Po mangrove swamp in Hong Kong, South China and their relationships with soil characteristics were investigated. The N2O fluxes averaged from 32.1 to 533.7 μg m−2 h−1 and the CO2 fluxes were between 10.6 and 1374.1 mg m−2 h−1. Both N2O and CO2 fluxes in this swamp showed large spatial and seasonal variations. The fluxes were higher at the landward site than the foreshore bare mudflat, and higher fluxes were recorded in warm, rather than cold, seasons. The landward site had the highest content of soil organic carbon (OC), total Kjeldahl nitrogen (TKN), nitrate (NO3–N) and total phosphorus (TP), while the bare mudflat had the highest ammonium nitrogen (NH4+–N) concentration and soil denitrification potential activity. The N2O flux was related, positively, to CO2 flux. Soil NO3–N and TP increased N2O flux, while soil OC and TP concentrations contributed to the CO2 flux. The results indicated that the Mai Po mangrove swamp emitted significant amounts of greenhouse gases, and the N2O emission was probably due to soil denitrifcation.  相似文献   

19.
Chamber measurements of total ecosystem respiration (TER) in a native Canadian grassland ecosystem were made during two study years with different precipitation. The growing season (April–September) precipitation during 2001 was less than one-half of the 30-year mean (1971–2000), while 2002 received almost double the normal growing season precipitation. As a consequence soil moisture remained higher in 2002 than 2001 during most of the growing season and peak aboveground biomass production (253.9 g m−2) in 2002 was 60% higher than in 2001. Maximum respiration rates were approximately 9 μmol m−2 s−1 in 2002 while only approximately 5 μmol m−2 s−1 in 2001. Large diurnal variation in TER, which occurred during times of peak biomass and adequate soil moisture, was primarily controlled by changes in temperature. The temperature sensitivity coefficient (Q10) for ecosystem respiration was on average 1.83 ± 0.08, and it declined in association with reductions in soil moisture. Approximately 94% of the seasonal and interannual variation in R10 (standardized rate of respiration at 10 °C) data was explained by the interaction of changes in soil moisture and aboveground biomass, which suggested that plant aboveground biomass was good proxy for accounting for variations in both autotrophic and heterotrophic capacity for respiration. Soil moisture was the dominant environmental factor that controlled seasonal and interannual variation in TER in this grassland, when variation in temperature was held constant. We compared respiration rates measured with chambers and that determined from nighttime eddy covariance (EC) measurements. Respiration rates measured by both techniques showed very similar seasonal patterns of variation in both years. When TER was integrated over the entire growing season period, the chamber method produced slightly higher values than the EC method by approximately 4.5% and 13.6% during 2001 and 2002, respectively, much less than the estimated uncertainty for both measurement techniques. The two methods for calculating respiration had only minor effects on the seasonal-integrated estimates of net ecosystem CO2 exchange and ecosystem gross photosynthesis.  相似文献   

20.
Switchgrass (Panicum virgatum L.) grown for biomass feedstock production has the potential to increase soil C sequestration, and soil CO2 flux in grassland is an important component in the global C budget. The objectives of this study were to: (1) determine the effects of N fertilization and harvest frequency on soil CO2 flux, soil microbial biomass carbon (SMBC), and potentially mineralizable carbon (PMC); and (2) evaluate the relationship of soil CO2 flux with soil temperature, soil moisture, SMBC, and PMC. Two N rates (0 and 224 kg ha−1) were applied as NH4NO3 and cattle (Bos Taurus L.) manure. Switchgrass was harvested every year at anthesis or alternate years at anthesis. The data were collected during growing season (May-October) 2001-2004 on switchgrass-dominated Conservation Reserve Program (CRP) land in east-central South Dakota, USA. Manure application increased soil CO2 flux, SMBC, and PMC during the early portion of the growing season compared with the control, but NH4NO3 application did not affect soil CO2 flux, SMBC, and PMC. However, seasonal variability of soil CO2 flux was not related to SMBC and PMC. Estimated average soil CO2 fluxes during the growing periods were 472, 488, and 706 g CO2-C m−2 for control, NH4NO3-N, and manure-N plots, respectively. Switchgrass land with manure application emitted more CO2, and approximately 45% of the C added with manure was respired to the atmosphere. Switchgrass harvested at anthesis decreased soil CO2 flux during the latter part of the growing season, and flux was lower under every year harvest treatment than under alternate years harvest. Soil temperature was the most significant single variable to explain the variability in soil CO2 flux. Soil water content was not a limiting factor in controlling seasonal CO2 flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号