首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

The objective of this study was to determine how the responses of two tomato cultivars to Ralstonia solanacearum relate to their leaf infrared temperature and acquiring of nutrients from soil. Tomato (Solanum lycopersicum L.) cultivars of disease susceptible-‘FL 47’ and resistant-‘H 7998’ were grown in soil inoculated with R. solanacearum. Bacterial wilt incidence, leaf infrared temperatures, and uptake of nutrients were measured for 28 d. In bacterial wilt-resistant cultivar ‘H 7998’, concentration of sulfur (S; +77%), calcium (Ca; +66%), boron (B; +60%) were found higher and nitrogen (N; ?26%) were found lower, compared with susceptible ‘FL 47’. Infrared temperatures were correlated with wilt percentage at 14 d, but not at 7 d. These results provide evidence that there is a correlation between bacterial wilt resistance and translocation of some nutrients in the shoots. Additionally, data indicates that the infrared thermometer could only detect wilting after obvious symptoms were visibly incited by R. solanacearum in tomato.  相似文献   

2.
病原青枯菌土壤存活的影响因素研究进展   总被引:2,自引:0,他引:2  
马超  杨欣润  江高飞  张勇  周开胜  韦中 《土壤学报》2021,58(6):1359-1367
土传青枯病是一种毁灭性的细菌性病害,广泛分布于热带、亚热带和温带地区,严重威胁世界粮食安全。病原青枯菌主要从土壤中侵染作物根系,其在土壤中存活能力强,因此防治极为困难。明确病原青枯菌土壤存活的关键影响因素有助于创建高效阻控土传青枯病的技术。国内外学者在青枯菌土壤存活方面开展了大量研究,但由于影响青枯菌土壤存活的因素复杂,而相关研究多围绕单一因素展开,缺乏针对青枯菌土壤存活规律和影响因素的系统性认识。本文系统梳理了青枯菌的自身特性(基因、行为和代谢产物)及土壤生物、非生物因素对其在土壤中存活的影响,阐明了青枯菌在寄主存在时土体存活、向寄主根表方向运动迁移时根际存活以及入侵寄主根系时根表存活的主要影响因子,以期为土传青枯病的高效阻控提供参考。  相似文献   

3.
Tomato bacterial wilt caused by Ralstonia solanacearum seriously threats tomato growth in tropical and temperate regions around the world. This study reported an antagonistic bacterial strain, Bacillus amyloliquefaciens strain SQRT3, isolated from the rhizosphere soil of tomato plants, which strongly inhibited in vitro growth of pathogenic R. solanacearum. The suppression of tomato bacterial wilt by strain SQRT3 was demonstrated under greenhouse conditions. Additionally, induced systemic resistance (ISR) in tomato as one of the potential disease suppression mechanisms was investigated in the plants inoculated with the isolated bacterial strain SQRT3. The results showed that strain SQRT3 applied with R. solanacearum by drenching significantly reduced tomato bacterial wilt by 68.1% biocontrol efficiency (BE) and suppressed the R. solanacearum populations in the rhizosphere soil compared to the control only drenched with R. solanacearum. The BE of the isolated bacterial strain SQRT3 against tomato wilt increased to 84.1% by root-dipping. Tomato plants treated with both strain SQRT3 and R. solanacearum showed increases in activities of peroxidase and polyphenol oxidase compared with other treatments. The application of strain SQRT3 reduced membrane lipid peroxidation in tomato leaves. The expressions of marker genes for jasmonic acid-and salicylic acid-dependent signaling pathways were faster and stronger in tomato plants treated with both strain SQRT3 and R. solanacearum than in plants treated with either R. solanacearum or strain SQRT3 alone. Collectively, the findings indicated that strain SQRT3 can effectively control tomato wilt.  相似文献   

4.
Potato brown rot disease (Ralstonia solanacearum) is a serious economic problem in Egypt, partly due to an European Union requirement that potatoes for export to the EU should be grown in so-called pest free area's (PFA's), where fields are tested and infested fields are put under quarantine measures. To investigate pathogen survival and to determine the time required to keep infested fields in quarantine, the survival of R. solanacearum race 3 biovar 2 was tested in soils differing in origin (Dutch versus Egyptian soils), soil type (sand versus clay), and management type (organic versus conventional). All eight soils were tested at moderate (15 °C) and elevated temperatures (28 °C). Also the effects of artificial fertilizer and organic (compost and cow manure) amendments on survival of R. solanacearum were tested.In all soils, with and without amendments, the pathogen dropped below the detection limit (102 CFU g−1 d.w. soil) within 5 months. At both temperatures, all Egyptian soils showed a significantly faster decline in pathogen density than the Dutch soils. The decline in colony forming units of R. solanacearum per gram of soil was faster in sandy soils than in clay soils from both countries. Management effects on decline of R. solanacearum were smaller and less consistent: for some soils, organic management resulted in a significantly shorter 50%-reduction-time and/or greater decline rate than conventional management, for other soils the differences were not significant. Survival periods at 15 °C were longer than at 28 °C in Dutch soils, but not in Egyptian soils, where survival was slightly shorter at the lower temperature. Amendments with NPK fertilizer to the conventional soils and with cow manure to the organic soils enhanced the decline rate of R. solanacearum in these soils. The decline rate of the pathogen was negatively correlated with total soluble organic matter and positively with bacterial diversity. In conclusion, the overriding factors determining survival of R. solanacearum in soil may be the production of toxic concentrations of ammonia on the one hand, and availability of substrate in combination with microbial competition on the other hand. The sandy desert soils of Egypt are very suitable for production of export potatoes because the pathogen would survive for only a relatively short period in those soils, if it were accidentally introduced. Addition of ammonia-producing amendments can reduce populations of R. solanacearum, whereas compost addition and organic management do not necessarily result in an enhanced decline of the pathogen.  相似文献   

5.
Arbuscular Mycorrhizae Fungi (AMF) inoculations may improve growth and nutrient uptake of cotton (Gossypium hirsutum L.) plant. Although the importance of mycorrhizal symbioses for growth and nutrient acquisition of cotton plant is known, less is known about mycorrhizal dependency on P and Zn nutrition under low Zn fertile soil conditions. A greenhouse experiment was conducted to investigate the effect of different of P and Zn fertilizer addition on cotton plant growth as well as Zn and P uptake. Sterilized and non-sterilized low Zn fertile Konya series soil was treated with different levels of P and Zn. Soils were inoculated with two mycorrhizae species like Funneliformis mosseae and Claroideoglomus etunicatum after sterilization. Results showed that mycorrhizal inoculation on plant growth and nutrient uptake has significant effect when soil was sterilized. Cl. etunicatum mycorrhizae species has greater effect than Fu. mosseae mycorrhizae species. Root colonization increased 23–65% due to mycorrhizal amendment. The shoot: root ratio increased by 13 and 22% for non-sterile and sterile condition respectively in mycorrhiza amended soil. Mycorrhizal dependency varies 1–55% and 3–64% for non-sterile and sterile soil respectively on mycorrhizae, P and Zn amended soil. Mycorrhizal dependency analysis showed that cotton plant in both sterile and non-sterile soil conditions depends on mycorrhizae species, P nutrition, however is less depend on Zn nutrition. This study concluded that the inoculation of cotton plant with selected mycorrhizae is necessary under both sterile and non-sterile soil conditions.  相似文献   

6.
The survival of Pseudomonas solanacearum biovars 2 and 3 in three soils, a Nambour clay loam, a Beerwah sandy loam and a Redland Bay clay, was compared at pressure potentials of ?0.003, ?0.05 and ?0.15 kPa. The soils were inoculated with mutants of P. solanacearum biovars 2 and 3, resistant to 2000 μg streptomycin sulphate ml?1 and their survival measured every 6 weeks for 86 weeks in the clay loam and clay and for 52 weeks in the sandy loam. Soil populations declined with the initial drying necessary to bring the soil moisture to the specific pressure potentials; the initial counts for biovar 2 varied between 0.20 and 2.00 × 109 cfu g?1 soil and for biovar 3 between 0.17 and 1.29 × 109 cfu g?1 soil.The population decline in soil maintained at a constant pressure potential was expressed as the rate of population decline. Biovar 2 declined more rapidly than biovar 3. The rate of population decline of each biovar at ?0.003 and ?0.05 kPa was greater in clay loam than in sandy loam and at all pressure potentials it was greater in clay loam and sandy loam than in clay. There was also a tendency for the rate of population decline of both biovars to decrease in the drier soil treatments.  相似文献   

7.
In the present investigation, different strains of Plant growth-promoting rhizobacteria (PGPR), namely Bacillus megaterium, Pseudomonas fluorescens and Bacillus subtilis were evaluated for their growth-promoting effects on wheat as well as on soil properties under field conditions at two different sites having sandy loam and silt loam type of soils. PGPR strains were evaluated either singly or in consortia. Amongst all the treatments, wheat inoculated with consortia was found most effective as it increased grain yield up to 53% over control in silt loam soil, whereas, corresponding effects in sandy loam soil were less pronounced as an increase of 31% was observed in corresponding treatments, respectively. Enhanced effects on soil properties were also more intense in silt loam as there was an increase of 205% organic matter as against sandy loam soil where this value was 110%.  相似文献   

8.
 Maize (Zea mays L.) and sunflower (Helianthus annuus L.) grown on a calcareous soil showed poor growth and/or were chlorotic in spite of abundant Fe in the roots. It has been hypothesized that microbial siderophores chelate Fe (III) in the soil, and that in this form Fe is transported towards the root apoplast. On the calcareous soil, total and apoplastic root Fe concentrations were high, probably because of a high apoplastic pH depressing Fe (III)-reductase activity and thus the Fe2+ supply to the cytoplasm. On the acidic soil, total and apoplastic root Fe concentrations were low, probably because of a low apoplastic pH favouring Fe (III) reduction, hence plants showed no Fe-deficiency symptoms. The main objective of the present work was to investigate the role of microbial soil activity in plant Fe acquisition. For this purpose, plants were grown under sterile and non-sterile conditions on a loess loam soil. Plants cultivated under non-sterile conditions grew well, showed no Fe-deficiency symptoms and had fairly high Fe concentrations in the roots in contrast to plants grown in the sterile medium. Low root and leaf Fe concentrations in the axenic treatments indicated that the production of microbial siderophores was totally suppressed. Accordingly, sunflowers were severely chlorotic and this was associated with very poor growth, whereas in maize only growth was drastically reduced. In maize under sterile conditions, root apoplastic and total Fe concentrations were not as low as in sunflowers, which may have indicated that phytosiderophores produced in maize partly sustained Fe acquisition, but due to poor growth were not as efficient in supplying Fe as microbial activity under natural conditions. It may be therefore assumed that in natural habitats soil microbial activity is of pivotal importance for plant Fe acquisition. Received: 11 March 1999  相似文献   

9.
Bacterial wilt caused by Ralstonia solanacearum is one of the most serious tobacco diseases worldwide, and no effective control measures are available to date. Three Bacillus isolates (Bacillus amyloliquefaciens SQR-7 and SQR-101 and Bacillus methylotrophicus SQR-29) were obtained from the rhizosphere soil of tobacco. These bacilli exhibited strong inhibition against R. solanacearum and produced indole acetic acid and siderophores. The three antagonistic strains were used to fortify organic fertilizers to produce bioorganic fertilizers (BOFs named for each isolate) for the control of tobacco bacterial wilt. The application of BOFs delayed wilt development and effectively decreased the disease incidence under both greenhouse and field conditions. The tobacco bacterial wilt control efficacy was 44.3%, 70.5%, and 85.1% using BOF101, BOF29, and BOF7 in the greenhouse. Although the control efficacies in the field were lower, the application of BOF7 still achieved 58.0% and 56.2% control efficacies in two years field experiments. The application of bioorganic fertilizer significantly (p < 0.001) repressed the pathogen R. solanacearum in soil in both pot and field experiments, though the abundance of R. solanacearum increased as during the growth period of the tobacco plants. In general, the populations of the antagonistic bacterial strains declined after soil application and as the tobacco plants grew; however, the density of SQR-7 and SQR-29 in the rhizosphere soil remained at a high level (≥106 cfu/g) in the later growth stages. Additionally, the application of bioorganic fertilizers promoted tobacco growth and increased the leaf yield.  相似文献   

10.
龙会英  张德  金杰 《土壤》2017,49(5):1049-1052
采用大田试验的方法,在云南省元谋县小雷宰流域内壤土、砂壤土和重壤土3种质地土壤上,以热研5号柱花草为材料,研究土壤质地对柱花草生长发育、生物量及土壤有机质、有机碳、全氮和全磷的影响。试验结果表明:3种土壤质地上种植柱花草,柱花草地上部和地下部生长量和生物量表现幼苗期增加缓慢,而分枝期后增加快的趋势。壤土耕性好,兼有砂土和重壤土的优点,有利柱花草地上部分的生长发育,柱花草地上部生长量、生物量及改善土壤肥力方面显著高于重壤土。砂壤土有利于柱花草根系向深层土壤生长,柱花草地下部生长量、生物量及根瘤显著高于种植在重壤土。在3种土壤质地种植柱花草后,土壤有机质、有机碳、全氮和全磷均有上升趋势。综合而言,通气性和保肥保水能力居中的壤土更适合柱花草的生长发育及干物质的积累。  相似文献   

11.
Four strains of bacteria, Rhizobium leguminosarum biovar trifolii, Pseudomonas fluorescens, Pseudomonas cepacia, and Flavobacterium sp., were introduced into loamy sand and then transported by earthworms of the species Lumbricus rubellus to uninoculated soil. Cell densities recovered from the earthworm gut and casts (both expressed per gram dry material) were significantly lower (up to 3 log units) than cell densities recovered from the inoculated soil. Total bacterial counts in casts were similar to those in the inoculated soil. In casts excreted into a sterile environment numbers of colony-forming units (CFU) increased, suggesting a favourable environment for growth. In casts excreted in a non-sterile environment, cell densities of introduced strains decreased. Casts therefore did not offer the introduced bacteria a protective micro-environment for survival in the bulk soil. Transport by worms of R. leguminosarum biovar trifolii and of P. fluorescens appeared to occur mostly by means of cast production; with the Flavobacterium sp. and P. cepacia a large proportion of the cells was possibly transported on the skin of earthworms.  相似文献   

12.
将有益菌引入土壤或植物可在一定程度上减少土传病害的发生,但防控效果常不稳定。为了提升有益菌防控土传病害的稳定性,本研究以有益解淀粉芽孢杆菌QL-18和皮氏罗尔斯顿菌QL-A6为研究对象,将含有菌株QL-18的生物有机肥与茎部注射菌株QL-A6两种防控方式相结合,通过温室盆栽试验与春季和秋季田间试验,探究了二者联合防控番茄土传青枯病的效果,并通过比较根际与茎部样品中有益菌芽孢杆菌和皮氏罗尔斯顿菌与病原青枯菌的数量比揭示潜在机制。结果表明:温室试验中联合防控处理的生防率为80.79%,春季田间试验中为71.88%,秋季田间试验中为81.47%,均显著高于单一防控处理。单独使用茎部防控和根际防控分别在春季和秋季的田间试验中防效下降。并且联合防控处理的番茄根际中芽孢杆菌与青枯菌和番茄茎部皮氏罗尔斯顿菌与青枯菌的数量比均高于单一防控处理。因此,生物有机肥与茎部注射联用可作为提高土传青枯病生物防治效果的有效途径。  相似文献   

13.
Bacillus velezensis strains, belonging to plant growth‐promoting rhizobacteria (PGPR), are increasingly used as microbial biostimulant. However, their field application to winter wheat under temperate climate remains poorly documented. Therefore, three B. velezensis strains IT45, FZB24 and FZB42 were tested for their efficacy under these conditions. Two biological interaction systems were firstly developed under gnotobiotic and greenhouse conditions combined with sterile or non‐sterile soil, respectively, and finally assayed in the field during two years coupled with different N fertilization rates. Under gnotobiotic conditions, all three strains significantly increased root growth of 14 d‐old spring and winter wheat seedlings. In the greenhouse using non‐sterile soil, only FZB24 significantly increased root biomass of spring wheat (+31%). The three strains were able to improve nutrient uptake of the spring wheat grown in the greenhouse, particularly for the micronutrients Fe, Mn, Zn, and Cu, but the observed increases in nutrient uptake were dependent on the organs and the elements. The root biomass increases in inoculated plants coincided with lowered nutrient concentrations of P and K. In 2014, under field conditions and absence of any N fertilizer supply, FZB24 significantly increased grain yields by 983 kg ha?1, or 14.9%, in relation to non‐inoculated controls. The three strains in the 2015 field trial failed to confirm the previous positive results, likely due to the low temperatures occurring during and after inoculations. The Zeleny sedimentation value, indicative of flour quality, was unaffected by the inoculants. The results are discussed in the perspective of bacterial application to wheat under temperate agricultural practices.  相似文献   

14.
Disease suppressiveness against Rhizoctonia solani AG 2-1 in cauliflower was studied in two marine clay soils with a sandy loam texture. The soils had a different cropping history. One soil had a long-term (40 years) cauliflower history and was suppressive, the other soil was conducive and came from a pear orchard not having a cauliflower crop for at least 40 years. These two soils were subjected to five successive cropping cycles with cauliflower or remaining fallow in a greenhouse experiment. Soils were inoculated with R. solani AG 2-1 only once or before every crop. Disease decline occurred in all treatments cropped with cauliflower, either because of a decreased pathogen population or increased suppressiveness of the soil. Disease suppressiveness tests indicated that the conducive soil became suppressive after five subsequent cauliflower crops inoculated each cycle with R. solani AG 2-1. Suppressiveness of all treatments was measured in a seed germination test (pre-emergence damping-off) as well as by measuring the spread of R. solani symptoms in young plants (post-emergence damping-off). Results showed that suppressiveness was significantly stimulated by the successive R. solani inoculations; presence of the cauliflower crop had less effect. Suppressiveness was of biological origin, since it disappeared after sterilization of the soil. Moreover, suppressiveness could be translocated by adding 10% suppressive soil into sterilized soil. The suppressive soil contained higher numbers of culturable filamentous actinomycetes than the conducive soil, but treatments enhancing suppressiveness did not show an increased actinomycetes population. The suppressiveness of the soil samples did also not correlate with the number of pseudomonads. Moreover, no correlation was found with the presence of different mycoparasitic fungi, i.e. Volutella spp., Gliocladium roseum, Verticillium biguttatum and Trichoderma spp. The suppressive soil contained a high percentage of bacteria with a strong in vitro inhibition of R. solani. These bacteria were identified as Lysobacter (56%), Streptomyces (23%) and Pseudomonas (21%) spp. A potential role of Lysobacter in soil suppressiveness was confirmed by quantitative PCR detection (TaqMan), since a larger Lysobacter population was present in suppressive cauliflower soil than in conducive pear orchard soil. Our experiments showed that successive cauliflower plantings can cause a decline of the damage caused by R. solani AG 2-1, and that natural disease suppressiveness was most pronounced after subsequent inoculations with the pathogen. The mode of action of the decline is not yet understood, but antagonistic Lysobacter spp. are potential key organisms.  相似文献   

15.
The average number of survivors of fast-growing medic rhizobia (3 strains), fast-growing Rhizobium leguminosarum types (6 strains) and slow-growing species (9 strains) following desiccation of sandy soil inoculated with 106 bacteria·g?1 soil was 727, 795 and 15,682 bacteria·g?1 soil, respectively. Survival in desiccated sandy soil was not influenced by the degree of extracellular polysaccharide production in strains of R. trifolii, nor was it influenced by growth of R. meliloti and slow-growing species in media of low water activity before desiccation in sandy soil.A progressive increase in numbers of fast-growing bacteria surviving desiccation was observed in sandy soil amended with increasing concentrations of powdered montmorillonite, but not with mont-morillonite added as a suspension to the soil. The clay had either a detrimental effect or no effect on the survival of the slow-growing rhizobia. Maltose, sucrose and polyvinylpyrrolidonc provided a greater degree of protection to both fast- and slow-growing rhizobia than was obtained with montmorillonite. The effect of polyethylene glycol 6000 was similar to the effect of montmorillonite, as the polymer only protected the fast-growing rhizobia and not the slow-growing species.  相似文献   

16.
Bacterial wilt (BW) disease, caused by Ralstonia solanacearum, can severely limit tomato (Solanum lycopersicum) production in southern United States. Tomato genotypes display variable responses to BW disease. The physiological mechanism underlying BW resistance is not well understood. In this study, experiments were conducted to compare two tomato genotypes, PI117566 [calcium (CA)–efficient] and PI109315 (Ca-inefficient), for wilting, shoot growth, final fresh weight, and shoot Ca concentrations when inoculated with R. solanacearum. The inoculation concentration of R. solanacearum varied from 0 to 108 colony forming units/ml. Genotype PI109315 appear to be more BW-resistant compared with genotype PI117566 under sufficient Ca conditions. Furthermore, we found that genotype PI109315 had greater shoot growth and final fresh weight than genotype PI117566. These findings implied that Ca-efficient tomato genotypes may not play a key role in BW resistance of tomato under sufficient Ca conditions because Ca efficiency showed no effect on the suppression of BW.  相似文献   

17.
This study was conducted to evaluate the efficacy of yeast strain TA-2 for controlling rice blast, cabbage black leaf spot, and tomato bacterial wilt diseases. Microscopic and phylogenetic analyses based on rDNA-internal transcribed region (ITS) and rDNA-D1/D2 sequences indicated that yeast strain TA-2 is Meyerozyma guilliermondii. Pretreatment with TA-2 by soil drenching significantly reduced the severity of black leaf spot disease caused by Alternaria brassicicola and leaf blast disease caused by Magnaporthe oryzae. Symptom development of tomato bacterial wilt caused by Ralstonia solanacearum in both soil drench and needle inoculation tests was significantly reduced in TA-2-pretreated plants under soil drenching. Disease severity and R. solanacearum growth were significantly reduced in tomato plants pretreated with yeast culture, cell suspension, or culture filtrate of TA-2 under soil drenching. TA-2 does not produce antibiotics. The present study indicates that disease suppression is systemic, as the roots were treated with TA-2 and the pathogens were inoculated onto leaves or stems, thereby separating the two spatially. M. guilliermondii TA-2 could become a promising natural antimicrobial agent against rice blast, cabbage black leaf spot, and tomato bacterial wilt diseases and might be useful as an eco-friendly control measure, contributing to sustainable agriculture.  相似文献   

18.
The ability of various environmental factors (root exudate from silver tussock, blue tussock, flax, wheat, ryegrass and lupin; simulated-root exudate; moisture; temperature; soil density; salinity; sewage sludge; fertiliser; pesticide) to promote or inhibit transformation of the soil-dwelling bacterium Acinetobacter baylyi BD413 (pFG4ΔnptII) was investigated using soil microcosm studies. A marker-rescue system was used to monitor the transfer of a functional nptII gene from exogenous chromosomal DNA to A. baylyi BD413 (pFG4ΔnptII). Significant differences were detected in A. baylyi BD413 (pFG4ΔnptII) transformation rates in three sterile New Zealand agricultural soils. Addition of simulated-root exudate to the sterile soil was essential for transformation of A. baylyi BD413 (pFG4ΔnptII) in the soil types tested, but addition of plant exudates collected from a variety of New Zealand cropping and native plants did not promote transformation rates to above detectable limits. Increases in soil temperature and bulk density increased the transformation rate but this effect was not consistent across all three soil types. Application of sewage sludge to sterile soils significantly increased transformation in the sandy soil but not in the silt loam and fine sandy loam soil types. Fertiliser (superphosphate) and herbicide (glyphosate) applied at agronomic rates did not affect transformation rates; however, when used at 5× and 50× the agronomic rate respectively, transformation was significantly reduced in all three sterile soils. These results suggest that competence and transformation of the A. baylyi BD413 (pFG4ΔnptII) in soils is highly dependent on the presence of nutrients and is also influenced by the soil texture.  相似文献   

19.
张鹏  王小慧  李蕊  冉炜  沈其荣 《土壤学报》2013,50(2):381-387
利用实时荧光定量PCR方法对田间条件下连作番茄和辣椒施用生物有机肥(BOF)和常规施肥(CK)的根际土壤微生物中青枯病原菌和功能菌群(固氮菌和荧光假单胞菌)的数量进行定量研究.结果表明:与CK相比,BOF处理的番茄和辣椒产量分别提高了26.0%和19.9%,青枯病发病率分别降低了41.5%和44.7%,番茄和辣椒植株根际土壤固氮菌数量分别增加了23.5%和25.8%、荧光假单胞菌数量分别增加了29.5%和20.2%、病原菌数量分别减少了73.2%和90.1%.生物有机肥能够调控根际微生物区系的组成,降低土传病害的发病率,促进作物健康生长;实时荧光定量PCR方法能够快速准确地检测根际土壤中功能微生物种群数量变化.  相似文献   

20.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号