首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

A rapid steam distillation of assessing potentially available organic nitrogen in soil is described. It involves determination of the ammonia‐N produced by steam distillation of the soil sample with pH 11.2 phosphate‐borate buffer solution for 8 min. The method is simple and precise, and its results are not significantly affected by air‐drying or air‐dry storage of the soil sample before analysis. It is well suited for use in soil testing laboratories because it does not require extraction, filtration or transfer steps. Studies using 33 Brazilian soils showed that the results obtained by this method were highly correlated with those obtained by aerobic and anaerobic incubation methods of assessing potentially available organic nitrogen in soil.  相似文献   

2.
Abstract

Nitrogen content of forest vegetation is analyzed frequently by the microKjeldahl method. After digestion, nitrogen recovery is determined traditionally by distillation and titration‐processes that require considerable time and bench space. The ammonia electrode technique applied to Kjeldahl digests offers a four‐fold saving in analytic time per sample and yields results comparable to those derived by the traditional method. Concentrations of nitrogen can be measured accurately in digests containing as little as 0.18 mg nitrogen, if calibration standards and samples are treated identically.  相似文献   

3.
Some microbial nitrogen (N) cycling processes continue under low soil moisture levels in drought-adapted ecosystems. These processes are of particular importance in winter cropping systems, where N availability during autumn sowing informs fertilizer practices and impacts crop productivity. We evaluated the organic and inorganic N-cycling communities in a key cropping soil (Vertosol), using a controlled-environment incubation study that was designed to model the autumn break in south Australian grain growing regions. Soils from wheat, lucerne, and green manure (disced-in vetch) rotations of the Sustainable Cropping Rotations in Mediterranean Environments trial (Victoria, Australia) were collected during the summer when soil moisture was low. Microbial community structure and functional capacity were measured both before and after wetting (21, 49, and 77 days post-wetting) using terminal restriction fragment length polymorphism measures of bacterial and fungal communities, and quantitative PCR of nitrogen cycling genes. Quantified genes included those associated with organic matter decomposition (laccase, cellobiohydrolase), mineralization of N from organic matter (peptidases) and nitrification (bacterial and archaeal ammonia monooxygenase and nitrite oxidoreductase). In general, the N cycling functional capacity decreased with soil wetting, and there was an apparent shift from organic-N cycling dominance to autotrophic mineral-N cycling dominance. Soil nitrate levels were best predicted by laccase and neutral peptidase genes under drought conditions, but by neutral peptidase and bacterial ammonia monooxygenase genes under moist conditions. Rotation history affected both the structural and functional resilience of the soil microbial communities to changing soil moisture. Discing in green manure (vetch) residues promoted a resilient microbial community, with a high organic-N cycling capacity in dry soils. Although this was a small-scale microcosm study, our results suggest that management strategies could be developed to control microbial organic-N processing during the summer fallow period and thus improve crop-available N levels at sowing.  相似文献   

4.
Abstract

We recently developed two rapid and precise chemical methods of assessing potentially available organic N in soils. One method involves determination of the ammonia‐N produced by steam distillation of the soil sample with pH 11.2 phosphate‐borate buffer solution for 8 min. The other involves determination of the ammonium‐N produced by treatment of the soil sample with 2M KCl solution at 100°C for 4 hours. Studies using 33 Brazilian soils showed that the results obtained by these methods were highly correlated with those obtained by anaerobic and aerobic incubation methods of assessing potentially available organic N in soil.

The two methods were further evaluated by applying them to 30 Iowa soils and by comparing their results and those obtained by other chemical methods with the results of the incubation methods considered to be the best laboratory methods currently available for assessment of potentially available organic N in soil. The chemical methods used included the acid KMnO4 method, the alkaline KMnO4 method, the CaCl2‐autoclave method, and the NaHCO3 UV method. The incubation methods used involved determination of the ammonium‐N produced by incubation of the soil sample under anaerobic conditions for 1 week or determination of the (ammonium + nitrate + nitrite)‐N produced by incubation of the sample under aerobic conditions for 2 and 12 weeks. The data obtained showed that the results of the two chemical methods evaluated were highly correlated with those obtained by the incubation techniques used for comparison and that the correlations observed with these two methods were higher than those observed with the previously proposed chemical methods. It is concluded that these two rapid and simple methods are the best chemical methods thus far developed for laboratory assessment of potentially available organic N in soil.  相似文献   

5.
Abstract

An ammonia electrode was evaluated as a means of determining ammonium concentration in semi‐micro Kjeldahl digests of plant samples. Results of the ammonia electrode determination agreed closely with distillation and titration results. Advantages of the electrode method include speed, precision, increased safety, simplicity and the fact that only a small aliquot of the digest is used.  相似文献   

6.
(pp. 833–841)

In order to learn the status of available soil nitrogen (N), two sequential extraction methods (A and B) were tested. Proposed methods are as follows.

(A) Extraction with water, KCl, acetic acid, 1/15 M phosphate buffer, sulfuric acid, and NaOH.

(B) Extraction with water, KCl, 0.01 M sulfuric acid, 0.1 M sulfuric, 0.2 M sulfuric acid and 0.4 M sulfuric acid.

1) NO3-N was only detected in a solution extracted with water. Major N in an extract with KCl was in ammonium form. Extracts with phosphate buffer and sulfuric acid contained organic-N only. When these two fractions were examined by size exclusion chromatography (HPLC-SEC), only one major peak in each extract appeared.

2) Minerals, such as Al and Fe in each extract were determined using ICP (Varian Co., Ltd.). With the increase in concentration of sulfuric acid, the high Fe concentration in each extract increased. On the other hand, much higher Al was found in extracts with lower concentrations of sulfuric acid compared to Fe.

3) Though some crop species such as spinach and carrot show the potential to take up organic-N in a soil applied with organic matter, this sequential soil-nitrogen extraction method may be useful to evaluate availability of soil nitrogen fertility with more accuracy compared to conventional methods in the case of these superior crop species.  相似文献   

7.
朱兆良 《土壤学报》1962,10(1):55-72
一般说来,耕作土壤在作物生长期间的氮素供应状况是影响产量的最活泼因素之一。在土壤肥力不高、氮肥供应不足的情况下,增加氮肥用量,作物产量也随之相应的增加。过去关于氮肥施用效果的研究多偏重于施肥量与增产的关系,或不同土壤上施用氮肥的效果,在这方面长期以来集中了不少农业化学工作者的注意力。在研究方法方面,除了大量的田间及盆栽试验外,常用的是室内培养法,即测定土壤氮素供应能力或可矿化氮量。  相似文献   

8.
Abstract

In order to supply the correct amount of ammonium to the crop when slurry is spread on the field, it is necessary to know the ammonium concentration. Slurry is a heterogeneous substance and there is a risk that organic N-compounds and the ionic strength will interfere with the determination of ammonium. The usability of five different methods for the determination of ammonium in solution has been tested on 18 different cattle and pig slurries and compared to a manual distillation titration technique. Colorimetric determination using an autoanalyzer and an automatic titration distillation device using MgO were highly accurate, and the precision was close to 1%. Distillation with NaOH caused interference from hydrolysable organic compounds. An ammonium electrode could be used, but the accuracy was not good. When using the automatic titration distillation device, samples should immediately be transferred to Kjeldahl flasks with water or acidified to prevent loss of volatile ammonia, unless they are to be distilled within 30 min.  相似文献   

9.
Abstract

This study determined the effects of soil preservation methods on inorganic nitrogen (N) analysis and evaluated methods of soil inorganic N analysis. Soils were preserved by oven‐drying at 55'C, air‐drying at 27°C, and freezing at ‐ 7°C. Inorganic N results were compared with initial N levels prior to imposing preservation treatments. Soil preservation effects on ammonium‐nitrogen (NH4 +‐N) were not consistent across soil types. Soil nitrate‐nitrogen (NO3 ‐N) levels after air‐drying and freezing compared most favorably with initial levels indicating that both are acceptable methods of soil inorganic‐N preservation. Levels of NH4 +‐N averaged across soils were 3.9 mg/kg for steam distillation, 4.2 mg/kg for sodium salicylate‐hypochlorite, and 3.7 mg/kg for indophenol blue. When compared with steam distillation averaged across soils, NO3 ‐N for cadmium‐copper (Cd‐Cu) reduction was 4 mg/kg greater, followed by nitrate electrode at 3 mg/kg, and salicylic acid at 2 mg/kg. Recovery of added N ranged from 83.3 to 94.8% for the NH4+‐N methods and from 74.8 to 112.4% for the NO3 ‐N methods with the nitrate electrode averaging 98.3%.  相似文献   

10.
Abstract

A simple procedure for routine estimation of total nitrogen (N) in soils is described. It involves (a) digestion of the soil sample with an acidified dichromate (K2Cr2O7‐H2SO4) solution for 45 minutes in a Pyrex digestion tube in a 40‐tube block digester preheated to 170°C, (b) titrimetric determination of the ammonia‐N liberated by direct steam distillation of the digest with alkali (NaOH), and (c) calculation of the total‐N value by application of a correction factor (1.1) to the measured NH3‐N value. Studies using 14 soils selected to obtain a wide range in total N content and other properties showed that the uncorrected recovery of N by the procedure described ranged from 88.5% to 92.3% and averaged 90.5%. When a correction factor of 1.1 was applied to the results, the recovery of N ranged from 97.4% to 101.5% and averaged 99.6%.

The dichromate procedure described is rapid and precise, and it permits at least 80 analyses in a normal working day. The only equipment required for its use is equipment commonly used for total N analysis of soils by the Kjeldahl method (40‐tube block digester and steam distillation unit), and the acidified dichromate solution used for digestion of the soil is, the reagent commonly used for determination of organic carbon in soil by a modified Mebius procedure. Besides being simpler and more rapid than the Kjeldahl method, the procedure described has the advantage that it does not require the expensive fume disposal system needed for Kjeldahl digestion.  相似文献   

11.
土壤微生物体氮测定方法的研究   总被引:29,自引:4,他引:25  
用熏蒸-0.5mol/LK2SO4 直接浸取NH4+-N法 (简称薰蒸 铵态氮法 ) ,熏蒸 淹水培养法和熏蒸 通气培养法测定了有机质、全氮和C/N比差异较大的 15种土壤的铵态氮增量 (FN)。结果表明 ,它们之间有极显著的正相关 ,在反映土壤微生物体氮上有相同趋势。两种培养方法测定的FN 近乎一致 ,由此而计算的微生物体氮也几乎相同。对红油土铵态氮法测定值仅为两种培养法的 1/ 10。把铵态氮法中的FN 校正后 ,其结果与 2种培养法测定的微生物体氮同样近乎一致。用 3种方法测定的微生物体氮均与土壤有机碳存在显著正相关性。淹水培养和铵态氮法水分条件易控制 ,又无NH3的挥发损失 ,比通气培养法更加优越。对培养试验和长期肥料定位试验的土样测定结果表明 ,土壤中易矿化新鲜有机物料也会使熏蒸 淹水培养法测定的FN 显著下降 ,由此而计算的微生物体氮也显著减少 ,但熏蒸 铵态氮法测定的FN 不受新鲜有机物质的影响。与土壤微生物数目进行比较后发现 ,土壤中含易分解有机物质少或微生物体氮含量低时 ,选用熏蒸 淹水培养法测定误差小 ;当土壤中富含新鲜有机物质时 ,熏蒸 铵态氮法测定的结果更加可靠。用这两种方法在同类土壤上测定的FN 的比值相对稳定 ,微生物体氮 (BN)的平均比值为 0.98~1.01,不受施肥的影响  相似文献   

12.
Abstract

Work to evaluate the Orion nitrogen oxide electrode indicated that this electrode can be used satisfactorily for determination of nitrite in soil extracts and water samples. The electrode method of analysis described is simple, rapid, and precise, and its results agree closely with those obtained by the colorimetric method of Griess‐Ilosvay. The electrode method has the advantage that its results are not affected by color or turbidity or by Cu2+ and Hg2+ present in samples under analysis  相似文献   

13.
Abstract

A second rotation forest sand (Mt Burr sand) was separated by a combination of dry sieving and winnowing into different particle sizes rich in either soil or organic matter. These fractions were analysed for % loss on ignition, % organic carbon, total organic nitrogen and mineral nitrogen. Mineralization of soil organic nitrogen and nitrification of ammonium sulphate added to these fractions were studied. Amongst the heavier fractions obtained by sieving, the <125 μm fraction (the finest) contained the highest concentration of organic and exchangeable nitrogen and was the most active in nitrogen transformations. Amongst the lighter fractions obtained by winnowing, the 125 to 500 μm fraction had the highest organic nitrogen content but mineralization of nitrogen was greatest in the 500 to 2000 μm. Nitrification of native and applied ammonium nitrogen was similar in both the 125 to 500 μm and 500 go 2000 μm organic matter fractions.  相似文献   

14.
Abstract

A simple steam distillation method of determining nitrate is described that is not subject to interference by substantial amounts of phosphate or silicate. It involves use of FeSO4 and MgO for reduction of nitrate to ammonia. The method is rapid and precise, and tests reported show that it is satisfactory for nitrate analysis of soil extracts.  相似文献   

15.
Abstract

Modified version of a dichromate digestion procedure, earlier found suitable for simultaneous determination of organic carbon (C) and potentially mineralizable nitrogen (N) in soils, was evaluated for total N determination in 44 diverse soil samples from the semi‐arid region of India. The soils belonged to Vertisols and Alfisols and had a wide range in total N contents. The method involves digestion of the soil sample with an acidified dichromate solution for 30 minutes in a digestion tube in a block digester preheated to 165°C followed by determination of N in the digest by steam distillation procedure. The efficacy of the dichromate procedure for determining total N differed for the two soil types. Excellent correlations were observed between the values of total N obtained by the dichromate procedure (Dichro‐N) and by Kjeldahl method (Kjeldahl‐N) for Vertisols (R2=0.995; n=21) and Alfisols (R2=0.952; n=23). The regression equations describing the relationships between the two soil types can be used to estimate Kjeldahl‐N from Dichro‐N. Both Kjeldahl and the proposed acid dichromate methods were found to be more precise in determining total N in Vertisols than Alfisols. The proposed procedure is rapid and simple and can be used for routine total N determination especially, in soils such as Vertisols. Based on our results the acid digestion procedure certainly deserves a wider evaluation with a range of soil types.  相似文献   

16.
Abstract

To evaluate the content of nitrogen (N) fractions of agricultural soils in Java, Indonesia, in relation to soil type and land use, 46 surface soil samples, 23 from paddy and 23 from upland, were collected throughout Java to include various types of soils. Soil N was separated into four fractions according to form and availability: inorganic extractable nitrogen (Iex-N), fixed ammonium nitrogen (Ifix-N), organic mineralizable nitrogen (Omin-N) and organic stable nitrogen (Osta-N). The total-N content was determined by the dry combustion method. The Iex-N content was determined by extraction with a 2 mol L?1 potassium chloride (KCl) solution and the Ifix-N content by extraction with an hydrofluoric and hydrochloric acid (HF-HCl) solution after removal of organic-N. The Omin-N content was evaluated as the potentially mineralizable N based on a long-term incubation method. The Osta-N content was calculated as the difference between the contents of total-N and the three other fractions. The total-N content was 2.06 g kg?1 on average. The contents of Iex-N, Ifix-N, Omin-N and Osta-N were 25.8, 99.1, 103 and 1,832 mg kg?1, respectively, and corresponded to 1.3, 4.8, 5.0 and 88.9% of the total-N. Hence, available (Iex-N and Omin-N) and stable (Ifix-N and Osta-N) fractions accounted for 6.3% and 93.7% of the total-N, respectively. Correlation analysis indicated that the contents of total-N and Osta-N had positive correlation with (Alo + 1/2Feo) as an index of amorphous minerals (p < 0.01), suggesting strong influence of volcanic materials for the accumulation of organic matter in Java soils. The content of Ifix-N had a positive correlation with nonexchangeable potassium (K) content (p < 0.01), suggesting the contribution of 2:1 clay minerals which can fix both ammonium (NH4+) and K+ in their interlayer sites. On the contrary, Omin-N did not have any significant correlation with soil properties, implying the importance of management for the improvement of the available N level in soils, rather than intrinsic soil properties. Soil N status further showed strong topographical trends depending on the elevation where soil developed. The contents of total N, Iex-N, Ifix-N, Omin-N and Osta-N in Java soils were on average 80, 69, 90, 65 and 80% of those in Japanese soils, respectively, suggesting that the soil N level in Java was lower than that in Japan, probably due to accelerated decomposition of organic matter, especially degradable fractions, reflecting high temperature, but that the level was relatively high for tropical soils due to the effect of volcanic materials. In conclusion, these results should be taken into account for the sustainable management of soil N in agricultural fields in Java, Indonesia.  相似文献   

17.
Abstract

Ammonia and chloride electrodes were used to measure cation exchange capacity (C.E.C.) on a selection of Victorian soils. The C.E.C. values obtained using these electrodes correlated closely with the values obtained using established titrimetric procedures. The electrode method is preferred for subsequent soil studies because it is rapid, simple and less expensive, whereas titrimetric analyses require separate determination of ammonia and chloride ion which involve preparation of numerous reagents and standards.  相似文献   

18.
ABSTRACT

Hot-water- and water-extractable organic matter were obtained from soil samples collected from a rice paddy 31 years after the start of a long-term rice experiment in Yamagata, Japan. Specifically, hot-water-extractable organic carbon and nitrogen (HWEOC and HWEON) were obtained by extraction at 80°C for 16 h, and water-extractable organic carbon and nitrogen (WEOC and WEON) were obtained by extraction at room temperature. The soil samples were collected from surface (0–15 cm) and subsurface (15–25 cm) layers of five plots that had been treated with inorganic fertilizers alone or with inorganic fertilizers plus organic matter, as follows: PK, NPK, NPK plus rice straw (RS), NPK plus rice straw compost (CM1), and NPK plus a high dose of rice straw compost (CM3). The soil/water ratio was 1:10 for both extraction temperatures. We found that the organic carbon and total nitrogen contents of the bulk soils were highly correlated with the extractable organic carbon and nitrogen contents regardless of extraction temperature, and the extractable organic carbon and nitrogen contents were higher in the plots that were treated with inorganic fertilizers plus organic matter than in the PK and NPK plots. The HWEOC and WEOC δ13C values ranged from ?28.2% to ?26.4% and were similar to the values for the applied rice straw and rice straw compost. There were no correlations between the HWEOC or WEOC δ13C values and the amounts of HWEOC or WEOC. The δ13C values of the bulk soils ranged from ?25.7% to ?23.2% and were lower for the RS and CM plots than for the PK and NPK plots. These results indicate that HWEOC and WEOC originated mainly from rice plants and the applied organic matter rather than from the indigenous soil organic matter. The significant positive correlations between the amounts of HWEOC and HWEON and the amount of available nitrogen (P < 0.001) imply that extractable organic matter can be used as an index for soil fertility in this long-term experiment. We concluded that the applied organic matter decomposed more rapidly than the indigenous soil organic matter and affected WEOC δ13C values and amounts.  相似文献   

19.
Abstract

The measurement of NH4+‐N in soil, and plant digests is one of the greatest needs in laboratories conducting agricultural and environmental research. Many laboratories do not have access to automated equipment for colorimetric analysis of soil and plant digests. The objective of this research was to modify an automated colorimetric analysis procedure for determining NH4+‐N in soil and plant digests for manual use, and compare the proposed technique with the standard distillation‐titration technique. The modified procedure is based on the color reaction between NH4 +‐ and a weakly alkaline mixture of Na salicylate and a chlorine source in the presence of Na nitroprusside. Wavelength scans indicated a very well defined peak for determinations at 650 nm. Time scans showed that color development in the manual procedure was rapid, 12 to 40 minutes depending on temperature, and that the color development remained stable for at least 120 minutes. Regression analysis of the results from 18 soil and 20 plant tissue sample determinations by distillation‐titration and the proposed method indicated NH4 + ‐N recoveries of 99% or higher. The results obtained using the colorimetric procedure were very similar to the values obtained by distil ling and titrating the digests for both soil and plant samples as indicated by the large coefficients of determination (R2 = 0.99).  相似文献   

20.
Abstract

Simple steam distillation methods are described for determination of ammonium N and nitrate N in acid KMnO4 solution used to absorb NH3, NO and NO2 evolved from soils. They involve use of MgO for distillation of ammonia and of FeSO4, Ag2SO4, and MgO for reduction of nitrate to ammonia. The methods are rapid and precise, and they permit nitrogen‐15 analysis of NH3‐N and (NO + NO2)‐N evolved from soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号