首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 The impacts of crop rotations and N fertilization on different pools of urease activity were studied in soils of two long-term field experiments in Iowa; at the Northeast Research Center (NERC) and the Clarion-Webster Research Center (CWRC). Surface soil samples (0–15 cm) were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1, applied as urea before corn and an annual application of 20 kg P and 56 kg K ha–1. The urease activity in the soils was assayed at optimal pH (THAM buffer, pH 9.0), with and without toluene treatment, in a chloroform-fumigated sample and its nonfumigated counterpart. The microbial biomass C (Cmic) and N (Nmic) were determined by chloroform fumigation methods. The total, intracellular, extracellular and specific urease activities in the soils of the NERC site were significantly affected by crop rotation, but not by N fertilization. Generally, the highest total urease activities were obtained in soils under 4-year oats–meadow rotations and the lowest under continuous corn. The higher total activities under multicropping systems were caused by a higher activity of both the intracellular and extracellular urease fractions. In contrast, the highest values for the specific urease activity, i.e. of urease activity of the microbial biomass, were found in soils under continuous soybean and the least under the 4-year rotations. Total and extracellular urease activities were significantly correlated with Cmic (r>0.30* and >0.40**) and Nmic (r>0.39** and >0.44**) in soils of the NERC and CWRC sites, respectively. Total urease activity was significantly correlated with the intracellular activity (r>0.73***). About 46% of the total urease activity of the soils was associated with the microbial biomass, and 54% was extracellular in nature. Received: 25 May 1999  相似文献   

2.
对三类不同开垦年代的土壤中主要微生物类群的数量和酶活性的演变进行了初步研究,结果发现,因土壤类型的不同,其变化的趋势完全不同。红壤各类微生物的数量和酶活性随耕作年代的增加而升高,而黑土则略呈下降趋势,灰漠土略呈上升趋势,特别是放线菌的数量增加极显著。  相似文献   

3.
对三类不同开垦年代的土壤中主要微生物类群的数量和酶活性的演变进行了初步研究,结果发现,因土壤类型的不同,其变化的趋势完全不同。红壤各类微生物的数量和酶活性随耕作年代的增加而升高,而黑士则略呈下降趋势,灰漠土略呈上升趋势,特别是放线菌的数量增加极显著。  相似文献   

4.
5.
This study focuses on the applicability of multiple-substrate enzyme assays to simultaneously determine various soil enzyme activities within one assay. Mineral soils from agricultural field sites differing in soil properties and management were used to optimise substrate composition and concentration of 4-methylumbelliferone and 7-amino-4-methylcoumarin derivatives as model substrates. In contrast to conventional assays, enzyme activity was measured at soil pH since optimum pH is not more applicable using a multiple-substrate approach. Furthermore, enzyme activity was not calculated from the product formed but from substrate decrease. After incubation the added substrates were re-extracted, separated by high-performance liquid chromatography and quantified by UV-absorption at 320 nm. This approach allows simultaneous measurement of the activity of β-d-glucosidase, N-acetyl-β-d-glucosaminidase, β-d-glucuronidase, β-d-xylosidase, phosphomonoesterase, sulfoesterase and leucine-aminopeptidase within one assay and with sufficient accuracy. However, incomplete re-extraction due to adsorption of substrates to the soil matrix was observed. In addition, certain competitive inhibition effects due to chemically similar substrates were found. Compared to conventional methods, no distinct differences in enzyme activity profile were detected, with both assays—conventional and multiple-substrate approach—leading to similar differentiation among the investigated soils. In conclusion, the multiple-substrate approach may serve as time-saving alternative to standard enzyme assays in mineral soils. Certainly, since the multiple-enzyme assay is conducted at soil pH, the procedure leads to reduced comparability of soils with contrasting pH values.  相似文献   

6.
  目的  探究纳米材料对农田土壤镉(Cd)的钝化效果及其对土壤酶活性、作物生长的影响,以期为Cd污染农田的生态修复和农产品安全、优质生产提供参考依据。  方法  通过盆栽实验,研究了添加纳米生物炭(nBC)、纳米羟基磷灰石(nHAP)和纳米零价铁(nZVI)对土壤化学性质、有效态Cd含量、酶活性以及小白菜体内Cd含量、生长和品质的影响。  结果  添加nBC、nHAP、nZVI后土壤pH分别提高了0.73、0.72、0.16个单位;同时,nBC显著提高了土壤速效磷和速效钾含量, nHAP显著提高了土壤速效磷含量。与对照相比,nBC、nHAP和nZVI显著降低了土壤DTPA和TCLP提取态Cd含量,降幅分别为46.4%和32.0%、67.9%和41.2%、54.8%和28.9%;而纳米材料显著提高了土壤酶活性,其中脲酶、过氧化氢酶和蔗糖酶活性分别为对照的1.50 ~ 3.15倍、1.32 ~ 1.64倍和1.20 ~ 1.39倍。向土壤中添加nBC、nHAP、nZVI后,显著降低了小白菜中Cd含量,提高了小白菜干重和营养品质。其中,地上部、根系Cd含量较对照分别降低了68.4% ~ 78.7%、39.6% ~ 62.0%;可溶性糖、可溶性蛋白、维生素C含量较对照的增幅分别为9.61% ~ 57.5%、36.7% ~ 116%、10.9% ~ 41.4%。  结论  3种纳米材料对土壤中Cd起到了良好的钝化作用,同时提高了土壤酶活性,改善了小白菜的生长状况和营养品质。  相似文献   

7.
In the C2H2-C2H4 assay for measurement of heterotrophic N2 fixation in water-logged soils, the diffusion of C2H2 into the soil and the recovery of C2H4 from it are critical factors regulating the assay result. To establish an C2H2-C2H4 assay technique suitable for waterlogged soils, the C2H2-reducing activities (ARA), assayed by varying the method of assay gas filling, the pC2H2 of the assay gas, the duration of assay incubation and of soil vibration before the gas sampling, were compared.

A maximum ARA was measured when the following set of procedures were applied to the soil sample in assay flasks: 1) a 4-fold repetition of I-min evacuation under 0.01 atmospheric pressure and the subsequent I-min filling under 1 atmospheric pressure with assay gas at pC2H2 of 0.1 atm, 2) an assay incubation for 3 hr, and 3) a sampling of an aliquot of the headspace gas after strongly vibrating the flask for 1 min.

The ARA measured by this technique was several times larger than those measured by the techniques hitherto applied, and corresponded to an almost 80% of the V max of the sample. This technique was, therefore, proposed for the assay of heterotrophic N2 fixation in waterlogged soils.

A striking depression of ARA in the soil sample prepared with agitation indicated that a microbial ecosystem established in the soil should be kept as undisturbed as possible throughout the C2H2-C2H4 assay.  相似文献   

8.
不同培肥模式对茶园土壤微生物活性和群落结构的影响   总被引:6,自引:0,他引:6  
以闽东地区红黄壤茶园定位实验地为对象,通过测定6种不同施肥处理土壤微生物学特性,研究不同培肥对土壤微生物特性和生物化学过程的影响,阐明各指标间的相互关系.结果表明,除了单施无机肥处理外,半量化肥+半量有机肥、全量有机肥、全量化肥+豆科绿肥以及半量化肥+半量有机肥+豆科绿肥等的培肥方式均不同程度提高了土壤有机质,可培养微生物数量,微生物量碳、氮含量及土壤酶活性,尤以半量无机肥+半量有机肥+豆科牧草的培肥模式增幅更为明显,而单施无机肥不利于微生物的生长、酶活性的提高和维持生态系统的稳定性.微生物群落磷脂脂肪酸(PLFAs)标记主成分分析显示,各种不同施肥方式使微生物群落结构发生改变.相关分析表明,微生物量与可培养微生物数量、微生物磷脂脂肪酸含量之间的相关性明显高于微生物量与各种酶活性之间的相关性,说明微生物数量大小对微生物群落结构的影响大于对酶活性功能的影响.研究也表明土壤各微生物指标能从不同方面反映土壤肥力水平,所以采用各种不同的方法能更客观地评价闽东地区茶园红黄壤质量的优劣.  相似文献   

9.
Abstract

A procedure for the rapid and accurate determination of water‐extractable soil nitrates is described. Use of this procedure resulted in quantitative recovery of nitrates added to soil. Reproducibility of results was high, with nitrate‐nitrogen in 40 soil samples determined on successive days differing by a maximum of 4 ppm with 33 determinations differing by 2 ppm or less. Comparison with a phenoldisulfonic acid method on 513 soil samples had a maximum difference of 7 ppm with a majority of determinations having a difference of 4 ppm or less.  相似文献   

10.
绿肥对植烟土壤酶活性及土壤肥力的影响   总被引:18,自引:2,他引:18  
通过田间试验,研究翻压绿肥对植烟土壤酶活性及土壤肥力的影响。结果表明, 翻压绿肥能够明显提高土壤酶活性和土壤肥力水平,当绿肥翻压量在15000 kg/hm2以上时,尤其在22500~30000 kg/hm2之间时对土壤各项指标的影响更加明显。与对照相比,翻压绿肥的各处理土壤脲酶、 酸性磷酸酶、 蔗糖酶、 过氧化氢酶增幅分别为13.10%2~3.81%、 12.92%~29.38%、 75.35%~234.51%、 29.17%~37.08%; 土壤有机质、 全氮、 碱解氮、 有效磷、 速效钾、 pH、 孔隙度增幅分别为13.01%~70.41%、 6.42%~27.52%、 1.14%~10.99%、 15.97%~34.99%、 10.28%~38.30%、 2.74%~7.05%、 0.19%~2.50%,土壤容重降幅为1.47%~5.15%。简单相关分析表明,脲酶、 酸性磷酸酶、 蔗糖酶、 过氧化氢酶4种酶之间以及4种酶与土壤理化因子之间均有极显著的相关关系,而土壤酶活性之间的相互关系表明,土壤酶在促进土壤有机物质转化中不仅显示其专性特性,同时也存在共性关系; 典型相关分析结果为,第一对典型变量线性函数反映了土壤酶活性和土壤养分因子对土壤综合肥力水平的影响,第二对典型变量线性函数反映了施入绿肥对土壤内部重要的生理生化过程变化的影响; 主成分分析结果显示,第一主成分反映了土壤的综合肥力水平,所有因子均对土壤肥力水平起到了正效应,土壤酶活性能够和土壤理化因子共同评价土壤综合肥力水平。以上结果说明,翻压绿肥后土壤生物过程活跃,有利于土壤有机物质的转化和烤烟正常生长所需的营养供应。  相似文献   

11.
Birnessite occurs in a wide variety of natural environments, and plays an important role in soil chemistry. A modified Stāhli procedure was used to synthesize sodium birnessite in an alkali medium by O2 oxidation. The effects of preparative parameters on the synthesis of birnessite, such as pretreatment on solutions with N2, reaction temperature, O2 flow rate, fluxion velocity of the reaction suspension, and dehydration conditions were investigated. The fluxion velocity of the reactive suspension and O2 flow rate significantly influenced the synthesis of birnessite. Vigorous stirring raised the fluxion velocity of the reaction suspension and easily allowed synthesis of pure crystalline birnessite. However pretreatment of the reacting solutions with N2 and the reaction temperature had little effect on the synthesis. Diffusion of O2 was the controlling step during the course of oxidation. The optimum synthetic conditions for pure birnessite were: a NaOH to Mn molar ratio of 13.7, an O2 flow rate of 2 L rain^-1, and oxidation for 5 hours with vigorous stirring at normal temperatures. The chemical composition of the synthesized pure birnessite was Na0.25MnO2.07-0.66H2O.  相似文献   

12.
龚松贵  王兴祥  张桃林  梁圆 《土壤》2009,41(6):968-973
以甘油磷酸钠为底物,通过添加适量无机磷减少土壤吸附作用对磷酸单酯酶活性测定的影响,探讨红壤磷酸单酯酶活性测定方法的改进.在4个红壤样品的测试结果中,与Rogers法相比,RSD从≤10.2%降为≤3.2%;省去了HCl浸提步骤:耗时从19 h左右变为2 h左右.与对硝基苯磷酸盐法相比,底物更具代表性:所测磷酸单酯酶活性为P4.4~6.8 μmol/(g土·h),比对硝基苯磷酸盐法的测定值P 0.8~2.2 μmol/(g土·h)更大,更灵敏.  相似文献   

13.
贮藏因素对核桃脂肪酶活性与油脂酸价的影响   总被引:11,自引:5,他引:11  
试验采用不同的贮藏方法,针对影响核桃脂肪酶活性与油脂酸价因素进行了分析研究。发现核桃的水分含量、核桃贮藏温度对核桃的脂肪酶活性影响显著,核桃品种、核桃的水分含量、核桃贮藏形态及贮藏温度等条件对核桃的酸价有明显的影响,脂肪酶活性高时核桃油脂的酸价升高的速度快。核桃酸价超过7.5时酸败严重,核桃仁变色、变味。  相似文献   

14.
The artificial chromophoric substrate analog of phytic acid, 5-O-[6-(benzoylamino)hexyl]-d-myo-inositol-1,2,3,4,6-pentakisphosphate (T-IP5), may prove useful in measuring soil phytase activity. This chemical probe allows for direct measurement of phytase-catalyzed dephosphorylation (i.e., hydrolysis of the phosphoester bond) using high-performance liquid chromatography with UV detection. Before T-IP5 can be used to measure phytase activity in environmental samples (soil, stream sediment, manure) refinement of the T-IP5 probe methodology is required. Using 31P nuclear magnetic resonance (NMR) spectroscopy, we identified 5-O-[6-(benzoylamino)hexyl]-d-myo-inositol-trisphosphate (T-IP3) as the key intermediate that accumulates during phytase-catalyzed dephosphorylation of T-IP5. An improved HPLC method for separation of reactants is also presented.  相似文献   

15.
Soil sodicity is an increasing problem in arid‐land irrigated soils that decreases soil permeability and crop production and increases soil erosion. The first step towards the control of sodic soils is the accurate diagnosis of the severity and spatial extent of the problem. Rapid identification and large‐scale mapping of sodium‐affected land will help to improve sodicity management. We evaluated the effectiveness of electromagnetic induction (EM) measurements in identifying, characterizing and mapping the spatial variability of sodicity in five saline‐sodic agricultural fields in Navarre (Spain). Each field was sampled at three 30‐cm soil depth increments at 10–30 sites for a total of 267 soil samples. The number of Geonics‐EM38 measurements in each field varied between 161 and 558, for a total of 1258 ECa (apparent electrical conductivity) readings. Multiple linear regression models established for each field predicted the average profile ECe (electrical conductivity of the saturation extract) and SAR (sodium adsorption ratio of the saturation extract) from ECa. Despite the lack of a direct causal relationship between ECa and SAR, EM measurements can be satisfactorily used for characterizing the spatial distribution of soil sodicity if ECe and SAR are significantly auto‐correlated. These results provide ancillary support for using EM measurements to indirectly characterize the spatial distribution of saline‐sodic soils. More research is needed to elucidate the usefulness of EM measurements in identifying soil sodicity in a wider range of salt and/or sodium‐affected soils.  相似文献   

16.
The release of CO2 by soil microorganisms after the addition of nitrogen and glucose in excess and calibration additions of phosphorus has successfully been used to assess microbial available P, assuming the native soil P pool is then limiting respiration. However, in P-fixing soils and soils with high P content, carbon can be exhausted before the available soil P pool. It is not possible to simply increase the amount of glucose as then the glucose concentration would be lethal for microorganisms. A modified method was tested where soil is mixed with perlite. It was hypothesised that perlite, having a high water holding capacity, would dilute the concentration of glucose, while maintaining the bioavailability of added nutrients, thus avoiding carbon limitation. Factorial combinations of amount of soil and perlite (both adjusted to −25 kPa water potential) were tested to examine if perlite as such had any effect on the respiration. Five tropical soil samples with a sharp gradient in P availability and one N-limited compost material were used. The method successfully reduced the risk of carbon limitation. Microbial indices, such as basal respiration, substrate-induced respiration and maximum P-limited respiration, were directly proportional to the amount of soil in the experiments but unrelated to the amount of perlite, showing that perlite did not affect microbial measurements.  相似文献   

17.
After decades of searching for a practical method to estimate the N mineralization capacity of soil, there is still no consistent methodology. Indeed it is important to have practical methods to estimate soil nitrogen release for plant uptake and that should be appropriate, less time consuming, and cost effective for farmers. We fractionated soil organic matter (SOM) to assess different fractions of SOM as predictors for net N mineralization measured from repacked (disturbed) and intact (undisturbed) soil cores in 14 weeks of laboratory incubations. A soil set consisting of surface soil from 18 cereal and root‐cropped arable fields was physically fractionated into coarse and fine free particulate OM (coarse fPOM and fine fPOM), intra‐microaggregate particulate OM (iPOM) and silt and clay sized OM. The silt and clay sized OM was further chemically fractionated by oxidation with 6% NaOCl to isolate an oxidation‐resistant OM fraction, followed by extraction of mineral bound OM with 10% HF (HF‐res OM). Stepwise multiple linear regression yielded a significant relationship between the annual N mineralization (kg N/ha) from undisturbed soil and coarse fPOM N (kg N/ha), silt and clay N (kg N/ha) and its C:N ratio (R2 = 0.80; P < 0.01). The relative annual N mineralization (% of soil N) from disturbed soils was related to coarse fPOM N, HF‐res OC (% of soil organic carbon) and its C:N ratio (R2 = 0.83; P < 0.01). Physical fractions of SOM were thus found to be the most useful predictors for estimating the annual N mineralization rate of undisturbed soils. However, the bioavailability of physical fractions was changed due to the disturbance of soil. For disturbed soils, a presumed stable chemical SOM fraction was found to be a relevant predictor indicating that this fraction still contains bio‐available N. The latter prompted a revision in our reasoning behind selective oxidation and extraction as tools for characterizing soil organic N quality with respect to N availability. Nonetheless, the present study also underscores the potential of a combined physical and chemical fractionation procedure for isolating and quantifying N fractions which preferentially contribute to bulk soil N mineralization. The N content or C:N ratio of such fractions may be used to predict N mineralization in arable soils.  相似文献   

18.
磁场对中国东北主要土壤酶活性的影响   总被引:3,自引:0,他引:3  
Soil enzyme activities as affected by applied magnetic field were studied with three main soils (brown soil,black soil and albic soil) collected from Northeast China,Appropriate intensities of magnetic field could obviously enhance the activities of hydrogen peroxidases,invertases,amylases and phosphatases in the three soils,although the effect varied with types and water regimes of the soils.Increasing times of magnetic treatment could multiple its good effect on the activities of hydrogen peroxidases in soils.  相似文献   

19.
Allicin, an active ingredient of garlic, possesses a range of antimicrobial properties. Unfortunately, certain properties of the compound, such as chemical instability and low miscibility with water, have hampered its practical use in the past. Here, we show that it is possible to use a binary system consisting of the plant enzyme alliinase and its substrate alliin to generate allicin, and hence antifungal activity, in situ. During application, the two inactive components generate compounds that inhibit growth and infection-related development of the rice blast fungus Magnaporthe grisea. It is therefore possible to "trigger" biological activity in a controlled, yet effective manner. Apart from circumventing many of the drawbacks of allicin, this binary system has additional important advantages, such as low toxicity of its individual components and selective activation. Importantly, alliinase is also able to use different substrates, therefore paving the way to a range of novel, binary antimicrobial systems with custom-made chemical and biochemical properties.  相似文献   

20.
土壤活性有机质测定方法的比较   总被引:1,自引:0,他引:1  
用 16种化学方法对红壤、黑土、垆土、褐土、灰漠土五个典型土壤活性有机质进行测定 ,结果表明 ,333mmol/LKMnO4常温振荡 1h的方法测定结果变异系数小 ,重现性好 ,且操作简便快速 ,可作为土壤活性有机质测定的基本方法。虽然不同方法测定的活性有机质数量不同 ,但它们之间表现出较好的相关性 ,说明它们在一定程度上都可反映土壤有机质的活性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号