首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During a 4-week period of composting of wheat straw-amended pig faeces, humin (HU)- and core-HU-like matter were isolated by NaOH-Na4P2O7 treatment of the compost bed, respectively, without and with previous extraction by organic solvent and by H2SO4. The changes in the content and elemental composition of both fractions in the compost bed were monitored. Evidence of the compositional changes was also obtained by NMR spectroscopy and by pyrolysis-GC / MS studies. The results indicated that core-HU-like matter was mainly aromatic, while HU contained both core-HU-like and other types of easily degradable organic matter. Correlation of the data found in this study with data from previous studies on humic acid (HA)- and core-HA-like matter in the same composting process indicated that in the time range from 2 to 4 weeks, the weight loss of the core-HU-like matter amounted to 788 g, whereas the weight of total core-HA-like matter increased by 87 g. In spite of the high weight loss, the NMR and pyrolysis-GC / MS spectra failed to reveal significant changes in the chemical nature of the core-HU-like residue. However, the chemical composition of the core-HA-like matter changed significantly and tended to become similar to that of the core-HU-like matter when the composting time increased. The data suggest that, during composting, core-HU-like matter undergoes both conversion to new core-HA-like soluble matter and biodegradation to volatile products.  相似文献   

2.
Abstract

Chemical properties of hydrophobic acid (HoA) fractions in water-soluble organic matter in soil and water are concerned with its interactions with mineral soil surfaces and organic pollutants. In 2004 we examined the seasonal and vertical changes in chemical properties of the HoA fraction in a Cambisol profile and compared these properties with those in the HoA fraction of an adjacent stream (aquatic humic substances) in a temperate forested watershed using high performance size exclusion chromatography (HPSEC) and 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The HoA fractions from Oi, Oe/Oa, A and B horizon soils in summer had lower O-alkyl C proportions than those recorded in samples in other seasons. The proportions of aromatic C in HoA fractions from A and B horizons were highest in summer. These seasonal variations were less significant than variations with soil depth. O-alkyl C proportions in HoA fractions decreased with increasing soil depth from the Oi to the A horizon. The HoA fractions from the B horizon showed a higher alkyl C proportion than samples from other horizons in winter and spring. These changes with soil depth from the Oi to A horizons might result from selective utilization of carbohydrate carbon by microorganisms, whereas those in the B horizon may result from sorption to mineral surfaces. The HoA fractions in the stream were similar in relative molecular weight, distribution of each type of proton and carbon species in HoA fractions from the B horizon, whereas stream HoA fractions collected in summer would be derived from organic horizons. This indicated that vertical changes in the chemical properties of HoA fractions in soil and pathways of water to the stream would largely affect the chemical properties of HoA fractions in the stream.  相似文献   

3.
To be considered beneficial, nutrient-rich, and be applied safely to soil, a batch of compost should be assessed for its maturity. We tested a new method to follow the time course of maturation on a compost consisting of sheep manure, grape and coffee by-products. This method was based upon the content of the humic acid-like compost fraction in methoxyl (-OCH3) groups, functional groups characteristic of lignin structural units. It involved the conversion of OCH3 groups to the corresponding alkyl iodide (ICH3) groups by treatment with boiling hydriodic acid, before gas chromatography determination. Among the various characteristics studied (ash, organic C, N, lignin), the OCH3 content appeared to be a good tracer of compost maturity.  相似文献   

4.
Forest management practices such as prescribed burning and thinning in forest ecosystems may alter the properties of soil organic matter (SOM).In this study,surface soils from field plots in the Bankhead National Forest,Alabama,USA,were used to investigate possible SOM transformations induced by thinning and burning.Elemental analysis and solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize SOM fractions in whole soils,humic substances,and density fractions.Our data revealed that the changes in SOM fractions due to the repeated burning carried out in the forest ecosystem studied were involved mainly with alkyl C,O-alkyl C,and carbohydrate functional groups,implying that most prominent reactions that occurred involved dehydrogenation,de-oxygenation,and decarboxylation.In addition,burning and thinning might have also affected the distribution and composition of free and occluded particulate SOM fractions.The limited structural changes in SOM fractions suggested that low-intensity prescribed fire in the forest ecosystem studied will not create major structural changes in SOM fractions.  相似文献   

5.
A glasshouse incubation experiment was conducted to study the carbon (C) and nitrogen (N) mineralization of municipal solid waste compost (MSWC) added at differential rates to a laterite soil where cassava has been continuously cultivated for the past 10 years. The rate of C mineralization from added substrates increased with increasing rates of addition of MSWC. Available N significantly increased with increase in the rate of application of MSWC. There was a decreasing trend in E465/E665 ratio of humic acid as we increased the rate of application of MSWC from 2.5 to 20 t ha?1. The Cross Polarization Magic Angle Spinning (CPMAS) 13C NMR spectral analysis revealed that there are differences in the rate of humification of added MSWC, and application of MSWC at 15 t ha?1 resulted in least humification with the greatest alkyl C, lowest aromatic C, and greater O-alkyl C content. The decomposition rate (R) was found to be greater for this treatment. The residual C in soil was found to increase over time coincident with greater rates of MSWC application, indicating increased C stabilization, which could improve soil quality.  相似文献   

6.
Incorporation of newly-immobilized N into major soil organic matter fractions during a cropping period under paddy and upland cropping systems in the tropics was investigated in Jawa paddy fields with and without fish cultivation and a Sumatra cassava field in Indonesia. 15N-labelled urea (15N urea) was applied as basal fertilizer, and the soil samples were collected after harvest. The percentage of distribution of the residual N in soil from 15N urea into the humic acids, fulvic acid fraction, and humin were 13.1–13.9, 19.0–20.5, and 53.4–54.3%, respectively, for the Jawa paddy soils, and 14.9, 27.4, and 52.4%, respectively, for the Sumatra cassava soil. These values were comparable to the reported ones for other climatic zones. The percentage of distribution of 15N urea-derived N into humic acids was larger than that of total N into the same fraction in all the soils. The distribution into the fulvic acid fraction was also larger for 15N urea-derived N than for total N in the Jawa soils. Humic and non-humic substances in the fulvic acid fraction were separated using insoluble polyvinylpyrrolidone (PVP) into the adsorbed and non-adsorbed fractions, respectively. Less than 5% of the 15N urea-derived N in fulvic acid fraction was detected in the PVP-adsorbed fraction (generic fulvic acids). The proportion of non-hydrolyzable N remained after boiling with 6 M HCl in the 15N urea-derived N was 9.4–13.5%, 17.3–26.7%, and 8.4–16.6% for the humic acids, generic fulvic acids, and humin, respectively. The significantly low resistance to acid hydrolysis suggested that the 15N urea-derived N was less stable than the total N in soil regardless of the fractions of humus.  相似文献   

7.
A synchronous increase in crop productivity, nutrient use efficiency, and soil carbon(C) sequestration is important from the point of view of food security and environmental protection. In recent years, integrated soil-crop system management(ISSM), which uses crop models and advanced nutrient management to redesign cropping systems, has been successfully demonstrated to achieve both high crop productivity and high nutrient use efficiency in China, but the effects of ISSM on soil organic C(SOC) characteristics remain unknown. In this study, the effects of current farmers' practice(FP), high-yielding practice(HY), which maximizes yields without considering costs, and ISSM on the content and chemical composition of SOC were studied in a 4-year(2009–2013) field plot experiment with maize(Zea mays L.) monoculture in an Alluvic Primosol in Northeast China. The ISSM resulted in higher soil total organic C(TOC), water-soluble organic C, easily-oxidizable organic C, particulate organic C, and humic acid C compared with HY and FP in the region. The SOC contents in aggregate size fractions generally followed a similar pattern to TOC. Compared with FP,HY decreased the mean weight diameter, geometric mean diameter, percentage of 0.25-mm water-stable aggregates, and the stability ratio of water-stable aggregates, and increased the structure-deterioration rate and index of unstable aggregates. The opposite trend was observed between ISSM and HY. Solid-state ~(13)C nuclear magnetic resonance spectra of bulk soil showed that ISSM had higher O-alkyl C and aliphatic C/aromatic C ratio, but lower aromatic C, carbonyl C, and alkyl C/O-alkyl C and hydrophobic C/hydrophilic C ratios than HY and FP. Our results suggest that ISSM improves the quantity and quality of SOC and has a positive effect on soil aggregation and aggregate stability.  相似文献   

8.
Elemental composition and solution 13C NMR spectra for six humic acid fractions with different particle sizes (i.e. 3K, 10K, 30K, l00K, 300K, and 500K) which were prepared from a humic acid in an Umbric Andosol by successive gel permeation chromatography were determined. Elemental composition of the particle size fractions clearly differed from one another. Contents of nitrogen and hydrogen increased with the increase of the particle size. Small and middle particle size fractions (3K to l00K) showed low contents of hydrogen and nitrogen corresponding to those in typical Andosol humic acids, while the contents in the large fractions (300K and 500K) were distributed in the ranges of those in the other humic acids. As the particle size increased, the HIC ratio increased whereas the O/H decreased. In the HIC versus OIC diagram, the large particle size fractions (300K and 500K) were observed in the area around humic acids with a low humification degree. Variation of the chemical structural properties with particle size differences was assumed, based on the analysis of the HIC versus OIH and HIC versus OIC diagrams. The changes of the carbon species with particle size differences were examined based on the 13C NMR spectra. As the particle size increased, the aliphatic C content increased whereas the carboxylic and aromatic C content decreased and, therefore, the aromaticity decreased. In addition, a negative correlation (r= -0.977) was found to be significant at 0.1% level between the HIC ratios and aromaticity. The peak strength around 30 ppm assigned to chains of methylene group increased remarkably with the increase of the particle size. It was suggested that the changes of the content of the aliphatic carbon with the decrease of the particle size may depend on the changes of the aliphatic chain length. In conclusion, these findings suggest that the Andosol humic acid molecule may be composed of humic acid components with long chains of aliphatic groups for the larger particle size fractions, and of their homologous series through the reduction of the length of the aliphatic long chain for the smaller particle size fractions. These assumptions were compatible with those made in a series of studies previously reported.  相似文献   

9.
应用~(13)C核磁共振技术研究土壤有机质化学结构进展   总被引:11,自引:1,他引:10  
李娜  盛明  尤孟阳  韩晓增 《土壤学报》2019,56(4):796-812
土壤有机质化学结构对准确评价土壤有机质的稳定性及其在土壤中的功能具有重要意义。土壤有机质化学结构的研究方法中,固态~(13)C核磁共振波谱技术(Solid-state ~(13)C-NMR spectroscopy)具有独特优势,对土壤有机质化学结构的解析更贴近真实状态,近年来已取得诸多新进展和新突破。综述了近年来应用~(13)C-NMR测定土壤全土、团聚体和密度组分、腐殖质组分的有机碳化学结构特征,分析了影响化学结构变化的因素。不同气候条件、植被类型、土地利用管理方式、土壤类型、土壤有机碳含量的全土中有机碳化学结构比较相似,均表现为烷氧碳比例最高,其次为烷基碳和芳香碳,羧基羰基碳比例最低。土壤有机碳主要来源于外源植物残体,植物残体化学结构的相似性可能是导致土壤有机碳化学结构相似的主要原因,环境条件、土壤自身属性和微生物活性的差异使土壤有机碳化学结构产生微小差异。土壤颗粒及化学组分间的有机碳分子结构差异较大,大颗粒有机碳中烷氧碳比例最高,小粒径及与矿物颗粒结合的有机碳中烷基碳和羧基羰基碳比例更高,粉黏粒和腐殖酸组分的有机碳化学结构在土壤类型间差异较大。今后的研究重点应更多地关注土壤有机质来源的定量化分析、土壤微生物对土壤有机碳组分和结构稳定性的贡献及调控机制、土壤有机碳稳定性的生物物理化学保护机制、空间大尺度环境因子/土壤生态过程与微观尺度的有机碳化学分子结构的耦合作用机制、跨学科的多种土壤有机碳化学分子结构测定辨识技术等方面的研究。  相似文献   

10.
ABSTRACT

In vitro grown kiwifruit (Actinidia deliciosa, Liang and Ferguson) plantlets were treated with two humic fractions distinguished by two different relative molecular mass and characterized through their elemental composition and 13Carbon (C) nuclear magnetic resonance. The effects exerted on plant growth, root morphology, and nutrition were evidenced by means of leaves and roots mineral content, root respiration, and nitrate reductase activity. The two humic substances differentially influenced the studied parameters. The lower molecular fraction humic substance, endowed with a higher content of phenolic and carboxylic groups, caused an enhanced content of micro- and macro-elements, together with a higher root respiration at lower concentrations (0.5–1 mg C L? 1). The high molecular fraction humic substance, needed higher concentrations (> 5 mg C L? 1) in order to achieve similar effects. This fraction also caused major changes on root morphology. The ability to improve micronutrient assimilation, in particular iron, confirmed the agronomic importance of humic substances on soil fertility.  相似文献   

11.
The crop rotation system in organic farming is a determinant factor to accumulate and preserve soil organic matter (SOM), and in depth knowledge on its effects is still lacking. Tillage intensity in particular is crucial to maintain soil aggregates and protect SOM from degradation. The evolution of SOM was tested in two adjacent fields under two different rotation cropping systems (low-intensity tillage and high-intensity tillage), and the effect of a further cultivation of legume in both fields was evaluated using 13carbon (C)-nuclear magnetic resonance (NMR) and elemental analysis of samples isolated through combined aggregate size and density fractionation. The two adjacent fields had been managed using the following organic farming methods for 13 seasons since 1998: i) alfalfa-based, with nitrogen (N) enrichment and low-frequency tillage with alfalfa (Medicago sativa) (9 seasons), winter wheat (Triticum durum) (3 seasons), and broad bean (Vicia faba) (1 season) and ii) cereal-based, with N depletion and annual tillage with barley (Hordeum vulgare) (7 seasons), sunflower (Helianthus annuus) (2 seasons), broad bean (Vicia faba) (3 seasons), and bare fallow (1 season). Soil sampling was carried out at the end of the 13-year rotation (T0, November 2011) and after winter wheat and chickpea cultivation in both fields over two subsequent years (T1, July 2013). Bulk organic C was significantly higher in the alfalfa-based system than in the cereal-based system at both T0 and T1, with SOM occluded in soil aggregates and associated with mineral particles. In terms of the macroaggregates heavy fraction at T0, the alfalfa-based field contained twice the organic C of that in the cereal-based field, as well as three times the organic C in the occluded particulate organic matter (POM). The occluded POM (oPOM) had a lower aryl/O-alkyl C ratio in the alfalfa-based system than in the cereal-based system, suggesting that oPOM undergoes a lower degree of decomposition during low-intensity management. The aryl/O-alkyl C ratios of the macro-and microaggregate oPOM decreased from T0 to T1 in the cereal-based system, suggesting increased protection of these fractions by soil aggregates. Thus, including legumes in crop rotation appears to positively affect the accumulation of SOM associated with mineral particles and within soil aggregates.  相似文献   

12.
Volcanic ash soils along the western edge of the Omiya tableland, Japan, are covered with thick anthropogenic soil horizons. The formation of anthropogenic soil horizons occurs because of the soil dressing practice known as “Dorotsuke,” where alluvial soil materials are deposited on fields and mixed with volcanic ash topsoil by tillage over the years. To clarify the chronology of this anthropedogenesis, carbon-14 (14C) age profiles were estimated using humic acid fractions from three pedons: an anthropogenic soil, an undressed Andosol, and a Fluvisol. Soil charcoal fragments were also dated to estimate maximum burial age. Charcoal fragments displayed vertically random age distributions, indicating that the fragments may have had multiple origins. However, the age of charcoal in the lower part of the anthropogenic soil horizons indicated that the initiation of anthropedogenesis occurred later than the late 13th century. The 14C age profile of humic acid in the Andosol exhibited little variation in age with depth in the subsoil. The 14C age profile of humic acid in the Fluvisol suggested that the humic acid fraction included allochthonous old carbon (C), although the soil itself had been formed from recent sediments. The 14C age profile of humic acid in the anthropogenic soil showed features of its two component soils. The 14C ages in the volcanic ash subsoil matched with those in the Andosol, whereas the ages increased in the anthropogenic soil horizons because of supplementation with old C from alluvial soil materials. However, the peak 14C ages occurred in the lower part of the anthropogenic horizons, whereas the middle part on the peak position displayed a gradual age-depth gradient. This feature was interpreted as a sign of 14C activity equilibrium throughout anthropedogenesis. On the basis of this postulated 14C activity equilibrium, the linear age-depth gradient at the peak position was derived from differences in burial time, and burial ages were calculated by estimating steady-state 14C. The calculated ages were lower than the charcoal ages. These age estimates suggest that anthropedogenesis was initiated in the Middle Ages and reached an intermediate stage before or during the first half of the Edo period.  相似文献   

13.
In extremely acidic mining sediments of the Lusatian mining district, the alkalinisation process relies on organic C, which can serve as electron donor for microbially induced sulfate reduction. Plant material of the pioneer plant Juncus bulbosus is an important organic matter source in lake sediments. Therefore, decomposition of the plant tissue was assessed during the exposure of litterbags for 30 months in the 0-5 cm layer of waterlogged mining sediments, which have a pH between 2.5 and 3. The ash free dry weight (AFDW) and elemental content of the plant tissue were recorded several times during the exposure. Changes in chemical structure were analyzed by solid-state 13C cross polarization magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectroscopy and the lignin component characterized by wet-chemical CuO oxidation. The AFDW accounted for about 34% of initial biomass after field exposure for 30 months. Mass loss of biomass occurred in two phases with decomposition rates varying between 30 and 430 mg AFDW d−1. The mass loss increased considerably after 5-7 months when litterbags were invaded by fresh J. bulbosus plants. With respect to higher mass loss, 13C CPMAS NMR spectroscopy, showed slight changes of the bulk chemical composition after 11 months, indicating that microorganisms present in the sediments or in the rhizosphere degrade plant material as a whole, rather than selectively. During the second phase from about 11 months until the end of the exposure period, contribution of O-alkyl C most probably assignable to easily degradable polysaccharides decreased. In contrast, the contribution of alkyl, aromatic and carboxyl C increased. CuO oxidation showed that the lignin component of J. bulbosus is degraded oxidatively during field exposure. Our results indicate that the exposed plant material is decomposed in the sediment due to changes in sediment conditions that followed plant invasion of the litterbags. It is suggested that the rhizosphere of J. bulbosus by its influence on the redox potential, pH and the microbial component plays a crucial role in organic matter degradation in acidic mining sediments.  相似文献   

14.
The long-term storage of soil organic matter (SOM) in forest soils is still poorly understood. In this study, particle size fractionation in combination with accelerator mass spectroscopy (AMS) and solid state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to investigate organic carbon (OC) stabilisation in Cambisol and Luvisol profiles under spruce (Picea abies) and beech (Fagus sylvatica L.) forests. In most samples, OC was preferentially associated with <2 μm fractions. Throughout soil profiles the contribution of OC in the clay fraction to the total OC increased from 27%-53% in A horizons to 44-86% in E, B and EB horizons. The 200-2000 μm fractions from all sites and all depths showed a percentage of modern C (pmC)>100. They were enriched in 14C owing to high inputs of recent material from leaves and roots. Clearly less active material was associated with <2 and 2-20 μm fractions. This demonstrated that the particle size fractionation procedure applied to our study was capable to isolate a young OC fraction in all samples. The pmC values were strongly decreasing with depth but the decrease was much more pronounced in the fine fractions. The <2 and 2-20 μm fractions of B, E and EB horizons revealed radiocarbon ages between 512 and 4745 years before present which indicated that the SOM in those horizons was little affected by the recent vegetation. The major components of labile and stable SOM pools in topsoils and subsoils were always O/N-alkyl C (28-53%) and alkyl C (14-48%) compounds. NMR spectra of bulk soils and particle size fractions indicated that high alkyl C and O/N-alkyl C proportions throughout the soil profile are typical of Cambisols and Luvisols which were not subjected to regular burning. A relation between radiocarbon age and chemical composition throughout soil profiles was not observed. This suggests that the long-term stabilisation of SOM is mainly controlled by the existence of various mechanisms of protection offered by the soil matrix and soil minerals but not by the chemical structure of SOM itself.  相似文献   

15.
High-yield (HY) areas of an agricultural cropland were characterized by different positions on a slope and lower silt and clay contents, compared to low-yield (LY) areas, and this was associated with differences in water regime and C and N turnover. To understand differences in N flows of HY and LY areas, a combination of 15N tracer techniques and physical fractionation procedures was applied. Within 570 d after application of 15N labelled mustard litter to an agricultural cropland, the distribution of 15N was measured in particulate organic matter (POM) fractions and in fine mineral fractions (fine silt- and clay-sized fractions). After 570 d, only 2.5% of the initial 15N amount was found in POM fractions, with higher amounts in POM occluded in aggregates than in free POM. After this period, stabilization of the initial 15N in fine silt- and clay-sized fractions amounts to 10% in HY, but 20% in LY soils. 70% to 85% of the added 15N were lost. Initial decomposition of labelled material was faster in HY than in LY areas during the first year, but the remaining 15N amounts in POM fractions of the different areas were similar after 570 d. 15N amounts and concentrations in mineral-associated fractions increased within 160 d after application. From 160 to 570 d, HY and LY areas showed different 15N dynamics, resulting in a decline of 15N amounts in HY, but constant 15N amounts in LY soils. The results indicate faster decomposition processes in HY than in LY areas, due to different soil conditions, such as soil texture and water regime. The higher silt and clay contents of LY areas seem to promote N stabilization in fine mineral fractions. As a whole, N flows were higher in HY compared to LY areas, thus supporting higher yields and accelerated organic matter degradation due to higher N supply.  相似文献   

16.
Decomposing needles from a Norway spruce forest in southern Sweden were studied for 559 days under laboratory conditions. Falling needles were collected in control (Co) plots and plots that had received 100 kg N ha−1 yr−1 as (NH4)2SO4 for 9 years under field conditions. One of the aims was to determine whether the previously documented low decomposition rate of the N fertilized (NS) needles could be explained by a lower degradation degree of lignin. The lignin content was studied using the alkaline CuO oxidation method, the Klason lignin method and CPMAS 13C NMR spectroscopy. The amounts of cellulose and hemicellulose were also determined.The fertilized needle litters initially decomposed faster than the unfertilized, but later this reaction reversed, so that at the end the mass loss was 45% initial C in the control and 35% initial C in NS. Klason lignin decreased with time in both treatments and overall, the change of Klason lignin mirrored the litter mass loss. No major difference as regards the decomposition of hemicellulose occurred between the treatments, whereas significantly lower concentrations of cellulose were found in NS needles throughout the incubation. The CuO derived compounds (VSC) were somewhat lower in NS needles throughout the decomposition time. Initially, VSC increased slightly in both treatments, which contradicts the Klason lignin data. There was a weak positive relationship (p>0.05) between VSC and Klason lignin. Both vanillyls compounds (V) and cinnamyl compounds (Ci) increased slightly during decomposition, whereas syringyl compounds (S) vanished entirely. The lignin degradation degree, i.e. the acid-to-aldehyde ratio of the vanillyl compounds expressed as (Ac/Al)v, showed no significant effect of treatment. The 13C NMR analyses of the combined samples showed increased content of aromatic C with increasing decomposition time. The carbohydrate content (O-alkyl C) was lower in the fertilized needle litter throughout the incubation time. The alkyl C content tended to increase with decomposition time and N fertilization. The alkyl C/O-alkyl C ratios increased in both treatments during the incubation. The NMR results were not tested statistically.In conclusion, no major difference concerning lignin degradation could be found between the unfertilized and N fertilized needle litter. Thus, the study contradicts the hypothesis that higher amounts of N reduce lignin degradation. The reduced biological activity is probably due to direct N effects on the microorganisms and their decomposing ability.  相似文献   

17.
Abstract

Humic acids were extracted from the surface horizon Yu 1 and buried humic horizons (Yu 2, 800-864 AD; Yu 4, ca. 4,000 years B.P.; Yu 6, 7,000 years B.P.; Yu 7, ca. 10,000 years B.P.). The humic acids were filtered with ultramembranes with 20, 10, 5, 1 or 0.1 × 10' M.W. in this order and separated into five fractions; (>20), (20-10), (10-5), (5-1) and (1-0.1) × 104 M.W. fractions. The elementary composition, functional groups, optical properties, and hydrolyzable total- and sugar-carbon contents of each humic acid fraction were determined, and the changes in properties of the humic acid with age after burial were discussed.

In horizons Yu 1 to Yu 6, the patterns of M.W. distribution of the >20 × 104 to (1- 0.1) × 104 fractions were rather similar. In contrast, Yu 7 was characterized by the predominance of (1-0.1) x 10' M.W. fraction and the presence of a small amount of <0.1 × 104 M.W. fraction.

The chemical properties of humic acid (HA) fractions of each humic horizon and their changes with age after burial were as folIows:

1) Elementary composition of HA fractions of each humic horizon was rather similar to each other. The C% and C/N ratio increased, and the H%, N% and H/C ratio decreased in all HA fractions with age.

2) Total acidity and carboxyl contents of HA fractions of Yu 1 were higher in the lower M.W. fractions. These values increased with age up to Yu 4 or Yu 6 horizons, then decreased in the Yu 6 or Yu 7 horizon. The contents of carbonyl groups in all the HA fractions which were very low in Yu 1, showed a wide range of variations in Yu 2, intermediate values from Yu 4 to Yu 6 horizons then decreased in the HA fractions of Yu 7, except for the (>20) fraction.

3) The degree of humification of the HA fractions of Yu 1 judging from the RF and \sDlogK values, tended to be higher in higher M.W. fractions, and increased in all the HA fractions with age after burial.

4) Hydrolyzable total- and sugar-carbon contents were high in the HA fractions of Yu 1 and decreased with age.

5) Changes of elementary composition, degree of humification and hydrolyzable total- and sugar-carbon contents were conspicuous from the Yu 1 to Yu 2 horizons, and less significant afterwards.

6) The 0%, C/O ratio and phenolic OH content did not show any consistent change with age after burial.  相似文献   

18.
The adsorption studies using soils various in the species of clay minerals and organic matter content indicate:

1) That apparent adsorption occurs to the greatest extent on the strong acid soil system compared to the moderate acid soil system, regardless of the species of clay mineral and organic matter content. And there is no adsorption on the slightly acid or neutral soil system.

2) The apparent adsorption involves adsorption of molecules and/or anions and precipitation of molecules in the micell and the external liquid phase.

3) The magnitude of adsorption occurs in the decreasing order of humus-allophanic, allophanic, montmorillonitic, and halloysitic soils.

4) The major factor governing the magnitude of apparent adsorption is pH.  相似文献   

19.
《Geoderma》2005,124(1-2):143-155
With respect to carbon sequestration in soil, attempts have been made to identify soil organic matter (SOM) fractions that respond more rapidly to changes in land-use than bulk SOM, which could thus serve as early indicators for the overall stock change. We used a combination of physical fractionation (size and density separation) and chemical characterisation (C-to-N ratios, CuO lignin signature, 13C NMR spectroscopy) to identify sensitive SOM fractions in an agricultural system with sandy dystric cambisols in Bavaria, Germany, 7 years after a land-use change. Land-use types included long-term arable land and grassland, and conversion from one system to the other. Soil carbon and nitrogen contents in 0–3 cm increased from 14 to 39 mg organic carbon g−1 soil, and from 1.7 to 3.9 mg nitrogen g−1 soil in the following order: permanent arable, conversion grassland to arable, conversion arable to grassland, and permanent grassland. Wet sieving and ultrasonic dispersion with 22 J ml−1 released <5% and 60% to 80%, respectively, of the amount of particles >20 μm relative to complete dispersion. The most sensitive fraction, with respect to land-use, was SOM in the fraction >20 μm not released after sequential wet sieving and ultrasonic dispersion. In contrast, the proportion of free light (wet sieving, density <1.8 g cm−3) and occluded light (ultrasonic dispersion with 22 J ml−1, <1.8 g cm−3) particulate organic matter (POM) showed no clear response to land-use. The structural composition of POM indicated its vegetation origin with a selective enrichment of lignin and a loss of O-alkyl C relative to its plant precursors. Decomposition of the occluded light POM was only slightly advanced relative to the free light POM. In mineral fractions <20 μm, SOM was significantly more transformed than in the coarse fractions, as shown by NMR spectroscopy; however, it revealed no specific land-use pattern. An exception to this was the proportion of O-alkyl C in the clay fraction, which increased with SOC content. Ratios of alkyl to O-alkyl C in mineral fractions <20 μm differentiated samples gave a better differentiation of samples than the C-to-N ratios. We conclude that neither free nor occluded light POM are appropriate early indicators for changes in land-use at the investigated sites; however, total SOM, its distribution with depth, and SOM allocated in stable aggregates >20 μm were more sensitive.  相似文献   

20.
Feedlots in southern Alberta apply composted (CM) or stockpiled (SM) manure with straw (ST) or wood-chip (WD) bedding to cropland, but few studies have examined the effect of manure type and bedding material on carbon composition of these feedlot amendments prior to land application using solid-state 13C NMR-DPMAS (nuclear magnetic resonance-direct polarization, magic angle spinning). The particulate organic matter fraction was extracted from four amendment treatments (CM-ST, CM-WD, SM-ST, SM-WD) to avoid possible paramagnetic interference from considerable mineral soil in the manure from the unpaved feedlot. The hypothesis was that O-alkyl C of POM should be lower for more decomposed manure types (CM than SM) and bedding materials (ST than WD), and that alkyl C, aromatic C, carboxyl C, aromaticity, and alkyl:O-alkyl (A:O-A) ratio should be greater for the more decomposed amendments. The C composition of all feedlot amendments was dominated by aromatic C (8%–14%) and O-alkyl (7%–14%) C and had considerable less contribution from carboxyl (2%–4%) and alkyl C (1%–3%). The manure type hypothesis was supported for O-alkyl C (but not for the other three C groups), aromaticity, but not the A:O-A ratio. The bedding hypothesis was supported for O-alkyl C, aromaticity, and A:O-A ratio, but not for alkyl C, aromatic C, and carboxyl C. A decrease in O-alkyl C, increase in aromaticity, and increase in A:O-A ratio (bedding only) with more decomposed manure types or bedding materials suggested that these 13C NMR parameters may have potential to evaluate the maturity and stability of composted feedlot manures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号