首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees with high density on the poor soils in semiarid regions. Little is known about the impacts of afforestation on the sandy soil properties, although the evaluation of these impacts is fundamental to judge the rationality of afforestation policy. Soil phosphorus (P) fractions, acid phosphomonoesterase activities, and other soil chemical properties were compared among five adjoining typical ecosystems on poor sandy soils in southeastern Horqin sandy land. The ecosystems studied are natural elm savanna, degraded grassland, Mongolian pine (Pinus sylvestris var. mongolica) plantation, Chinese pine (Pinus tabulaeformis) plantation, and mixed plantation of Mongolian pine and poplar (Populus simonii). The results showed that organic P dominated soil P (47%-65%) was the principal source of available P. The degradation of elm savanna to grassland significantly reduced soil pH and resulted in an overall reduction in soil fertility, although slightly increased labile inorganic P. Grassland afforestation had no significant influence on soil pH, organic carbon, and total N but significantly reduced total P. Impacts of grassland afforestation on soil P fractions depended on tree species. Natural elm savanna had higher soil P conserving ability than artificial plantations. Therefore, with the aim of developing a sustainable ecosystem, we suggested that vegetations with low nutrient demand (particularly P) and efficient nutrient cycling would be more suitable for ecosystem restoration in the semiarid region.  相似文献   

2.
石羊河流域干旱荒漠区人工梭梭林对土壤碳库的影响   总被引:3,自引:0,他引:3  
采用野外调查与室内分析相结合的方法,研究石羊河流域民勤干旱沙区种植人工梭梭林4,13,36年后的土壤有机碳(Soil organic carbon,SOC)、无机碳(Soil inorganic carbon,SIC)、全氮(Total nitrogen,TN)和总碳(soil total carbon,TC)含量及储量变化特征。结果表明:流动沙地种植梭梭后,0-50cm层灌丛下和行间SOC和TN含量总体随造林年限增加而增加,5-50cm层灌丛下SIC含量在13年梭梭林地最高。36,13年林地0-50cm层灌丛下SOC和TN储量均高于行间,而13年灌丛下SIC储量低于行间,4年灌丛下5-50cm层SOC、TN和SIC储量均低于行间。0-50cm层土壤有机碳、无机碳、全氮储量增幅分别为102.44%,24.66%,54.55%,36年林地SOC和TN储量随土层加深先降低后增加,但4,13年和流动沙地SOC、SIC和TN储量均随土层加深而增加。土壤有机碳占总碳比例随造林年限增加而增加。相关分析结果表明,土壤颗粒组成、造林年限、土层深度等与土壤有机碳和全氮储量显著相关(P0.01)。民勤干旱沙区造林提高了土壤碳库截存量,并且随林龄增长而增长。  相似文献   

3.
黄土高原半湿润区苜蓿草地土壤氮素消耗特征研究   总被引:3,自引:2,他引:3  
本文研究了黄土高原地区生长年限分别为4a、6a、10a、12a、18a及26a苜蓿草地土壤氮素的变化特征。结果表明,在0—1000 cm土层,不同生长年限苜蓿草地土壤全氮与碱解氮含量呈现规律性的变化,即随土层深度的增加,全氮及碱解氮含量下降,350cm土层以下,变化趋势平缓。在0—200 cm土层,26a苜蓿草地全氮、碱解氮含量低于4a、6a苜蓿草地,高于10a、12a苜蓿草地;在200—1000 cm土层,土壤全氮、碱解氮含量在不同生长年限之间差异不大,表明苜蓿生长超过一定年限,土壤氮素有一定恢复,但受土壤氮素累计消耗的影响,只能使土壤上层的氮素逐步得到恢复,而深层土壤氮素难以恢复;苜蓿草地有机碳与全氮、碱解氮及C:N之间均为正相关关系。苜蓿生长6a以后,应对苜蓿草地进行合理施肥,以维持苜蓿草地氮素平衡。  相似文献   

4.
[目的]探讨人工樟子松林对毛乌素沙地土壤颗粒组成和固碳的长期影响,为综合评价沙地植被恢复的生态环境效应提供科学依据。[方法]选择毛乌素沙地东南缘人工栽植21,36和56 a的樟子松林和流沙地为采样地,对0—30 cm的土壤进行了分层取样分析,以探讨人工林建设对半干旱荒漠区土壤颗粒组成及不同粒级含碳量的长期影响。[结果]随着栽植年限的增加,土壤颗粒呈逐渐细化的趋势,且表层(0—5 cm)细颗粒含量均高于下层(5—30 cm)。造林后土壤有机碳(SOC)和无机碳(SIC)含量均显著增加,最高值分别是流沙地的4.90倍和4.32倍;栽植年限对SOC含量和土壤有机碳密度(SOCD)的影响大于SIC含量和土壤无机碳密度(SICD)。相对于流沙地,各粒级SOC,SIC含量均在栽植56 a样地增幅最大,且均在细砂粒组分中增幅最大。团聚体和粉黏粒有机碳含量与土壤总有机碳含量之间存在显著的线性相关关系(p0.01),粗砂粒和粉黏粒有机碳对总有机碳的贡献率和粉黏粒无机碳对总无机碳的贡献率较为显著(p0.05)。[结论]随着樟子松栽植年限的增加,土壤团聚体、粉黏粒含量和土壤固碳能力均显著提高。  相似文献   

5.
阔叶幼林取代杉木林后的土壤肥力研究   总被引:1,自引:0,他引:1  
研究了3种阔叶混交幼林的土壤肥力,并将其肥力特征与杉木幼林进行对比研究。3种林分的立地条件相似常绿阔叶混交林1由12种观赏树种组成,常绿阔叶混交林2由7种速生乡土阔叶树种组成,常绿阔叶混交林3由12种阔叶树种组成。结果表明,各林地的土壤呈强酸性。常绿阔叶混交林1的土壤有机质、全氮和有效磷含量居各林地之首,其余的养分含量也大于或近似于杉木林地;常绿阔叶混交林2的全磷、全钾、有效氮、有效钾含量在4种林分中最高,有机质、全氮和有效磷含量也较高,说明这两种阔叶混交林有效地改善了土壤养分状况。常绿阔叶混交林3的土壤有机质、全氮和有效氮含量大于杉木林地,但是全磷、全钾、有效磷、有效钾含量小于后者。常绿阔叶混交林地1和常绿阔叶混交林地2的细菌、真菌和放线菌数量大于杉木林地,脲酶、磷酸酶、过氧化氢酶活性也较高,表明这2种阔叶混交林显著地改善了林地肥力。  相似文献   

6.
Desertification is reversible and can often be prevented by adopting measures to control the causal processes. Desertification has generally decreased in most of the arid and semiarid areas of China during the last few decades because of the restoration of degraded vegetation and soil nutrients. However, little is known about the responses of soil nutrients in different particle‐size fractions to the restoration process and about the importance of this response to the restoration of bulk‐soil nutrients. In this study, we separated bulk‐soil samples in different sieve fractions: coarse‐fine sand (2·0–0·1 mm), very fine sand (0·10–0·05 mm) and silt + clay (<0·05 mm) fractions. Soil organic carbon (SOC), N, P and K contents stored in the silt + clay were greater than the contents of non‐protected nutrients in the coarser fractions. During the restoration of desertified land, the content and stability of bulk‐soil SOC, total N and P and available N, P and K increased with increasing nutrient contents in all fractions. Topsoil nutrients stored in coarse‐fine sand and very fine sand fractions were more sensitive than those stored in the silt + clay fraction to the fixation of mobile sandy lands and vegetation recovery. The changes of bulk‐soil nutrients and their stability were decided by the soil nutrients associated with all particle‐size fractions. Path analysis revealed that SOC and total nutrients in very fine sand and available nutrients in coarse‐fine sand were the key factors driving the soil recovery. These results will help us understand soil recovery mechanisms and evaluate the degree of recovery. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Residue retention and reduced tillage are both conservation agricultural management options that may enhance soil organic carbon (SOC) stabilization in tropical soils. Therefore, we evaluated the effects of long-term tillage and residue management on SOC dynamics in a Chromic Luvisol (red clay soil) and Areni-Gleyic Luvisol (sandy soil) in Zimbabwe. At the time of sampling the soils had been under conventional tillage (CT), mulch ripping (MR), clean ripping (CR) and tied ridging (TR) for 9 years. Soil was fully dispersed and separated into 212–2000 μm (coarse sand), 53–212 μm (fine sand), 20–53 μm (coarse silt), 5–20 μm (fine silt) and 0–5 μm (clay) size fractions. The whole soil and size fractions were analyzed for C content. Conventional tillage treatments had the least amount of SOC, with 14.9 mg C g−1 soil and 4.2 mg C g−1 soil for the red clay and sandy soils, respectively. The highest SOC content was 6.8 mg C g−1 soil in the sandy soil under MR, whereas for the red clay soil, TR had the highest SOC content of 20.4 mg C g−1 soil. Organic C in the size fractions increased with decreasing size of the fractions. In both soils, the smallest response to management was observed in the clay size fractions, confirming that this size fraction is the most stable. The coarse sand-size fraction was most responsive to management in the sandy soil where MR had 42% more organic C than CR, suggesting that SOC contents of this fraction are predominantly controlled by amounts of C input. In contrast, the fine sand fraction was the most responsive fraction in the red clay soil with a 66% greater C content in the TR than CT. This result suggests that tillage disturbance is the dominant factor reducing C stabilization in a clayey soil, probably by reducing C stabilization within microaggregates. In conclusion, developing viable conservation agriculture practices to optimize SOC contents and long-term agroecosystem sustainability should prioritize the maintenance of C inputs (e.g. residue retention) to coarse textured soils, but should focus on the reduction of SOC decomposition (e.g. through reduced tillage) in fine textured soils.  相似文献   

8.
黄土高原丘陵区退耕还林地土壤碳氮库的动态变化(英文)   总被引:1,自引:1,他引:1  
为了揭示坡耕地退化土壤植被恢复后土壤中碳(C)、氮(N)运移规律,采用植被次生演替空间序列代替时间序列的方法,研究了黄土丘陵沟壑区纸坊沟流域不同植被恢复模式下的C、N库及其相互关系在土壤剖面的时空变化。结果表明退化农地的造林显著地促进了CO2的固存,恢复了土壤N的可获得性,进而降低了N不足对可持续的CO2固存的限制。植被恢复显著地促进了0~60 cm土壤有机碳(soil organic carbon,SOC)和总氮(total nitrogen,TN)的积累,而只有在高于一定的恢复时间阈值(如26 a)下,促进了SOC库和TN库间的线性相关性。在土壤剖面上,SOC和TN库、SOC/TN库比以及SOC-TN间的线性相关性均随着土壤深度的增加而降低。与自然恢复相比,人工林在短期内具有CO2固存的优势,但由于随着恢复时间的增加,SOC增幅越来越大于TN增幅的事实,表明造林对碳固存的可持续性需在一个较长的时段下来评估,尤其需要关注20 cm以下层土壤。研究结果为黄土高原的生态修复和减缓温室效应提供了理论依据。  相似文献   

9.
泥质海岸盐碱地刺槐-杨树混交林改土效果研究   总被引:4,自引:0,他引:4  
在北方泥质海岸盐碱地采用工程整地措施修筑台田,于台田上布置刺槐纯林、杨树纯林、刺槐—杨树混交林3种树种配置模式,对混交林及纯林的降盐改土效果进行研究。结果表明,11a后3种林分类型基本郁闭,保存率为63%~72%,郁闭度为0.6~0.7。混交林的树高、胸径优于纯林。3种模式脱盐作用范围在0—70cm土层;在50—70cm这一土层形成了养分亏缺层。混交林可提高林地土壤有机质含量;0—100cm全氮含量的土壤剖面分布规律与有机质相似,3种模式土壤全磷含量变幅不大,总体表现为磷素总量不足,有效性低。因子分析表明刺槐—杨树混交林降盐改土效果好于杨树纯林,也好于刺槐纯林,能够改善泥质海岸盐碱地土壤肥力状况,可作为一项成功的造林模式进行推广应用。  相似文献   

10.
Afforestation is recognized as an important driving force for soil organic C(SOC) dynamics and soil element cycling.To evaluate the relationships between soil C:N:P stoichiometry and SOC fractions,soil C:N:P stoichiometry distributions at 0–200 cm soil depths were analyzed and the contents of SOC fractions were evaluated in 9 typical land-use systems on the Loess Plateau of China.The contents of light fraction organic C,particulate organic C(53,53–2 000,and2 000 μm),labile organic C,microbial biomass C,and dissolved organic C decreased with increasing soil depth and were higher in afforested soil than in slope cropland soil.Compared with the slope cropland,different vegetation types influenced soil C:N,C:P,and N:P ratios,especially when C:P and N:P ratios were significantly higher(P0.05).Moreover,SOC fractions at the 0–10 and 10–40 cm depths were particularly affected by soil C:P ratio,whereas those at the 40–100 and 100–200 cm soil depths were significantly affected(P0.05) by soil N:P ratio.These results indicate that changes in SOC fractions are largely driven by soil C:P and N:P ratios at different soil depths after afforestation.  相似文献   

11.
研究了95个桉树林的土壤肥力。按母岩将95个林分土壤合并为花岗岩、石灰岩、紫色砂岩、砂页岩、玄武岩发育的土壤类型,分析各类土壤的理化性质与桉树生长的关系。结果表明:花岗岩发育成的土壤的容重较小,非毛管孔隙较多,通气好,持水量一般;各种养分都处于中等或偏低水平,但在5种母岩形成的土壤中多处于较高水平,整体土壤肥力较高;石灰岩发育成的土壤容重最小,毛管孔隙和最大持水量大,非毛管孔隙较小,故保水能力强,通气差,全N含量在5种土壤中稍低,其它养分含量均较高,整体土壤肥力高;紫色砂岩发育成的土壤容重大,非毛管孔隙极少,通气差,持水量小,全K和速效K含量位于5种土壤之首,其它养分含量低,整体的土壤肥力低;砂页岩发育成的土壤毛管孔隙度小,非毛管孔隙度大,通气好,在5种土壤中全N含量较高,其它养分含量处于中等或较低水平,土壤肥力较差;玄武岩发育成的土壤容重中等、毛管孔隙少、非毛管孔隙中等,全P和有效P含量在5种土壤中较高,其余养分含量较低,土壤肥力较低。将桉树林地与其它林地的土壤理化性质比较可知,桉树林地的土壤容重大,通气不良,持水能力差,有机质、全N、全K、速效N、速效K含量低。  相似文献   

12.
Soil C and N contents play a crucial role in sustaining soil quality and environmental quality. The conversion of annually cultivated land to forage grasses has potential to increase C and N sequestration. The objective of this study was to investigate the short-term changes in soil organic C (SOC) and N pools after annual crops were converted to alfalfa (Medicago sativa L. Algonguin) forage for 4 years. Soil from 24 sets of paired sites, alfalfa field versus adjacent cropland, were sampled at depths of 0–5, 5–10 and 10–20 cm. Total soil organic C and N, particulate organic matter (POM) C and N were determined. Organic C, total N, POM-C, and POM-N contents in the 0–5 cm layer were significantly greater in alfalfa field than in adjacent cropland. However, when the entire 0–20 cm layer was considered, there were significant differences in SOC, POM-C and POM-N but not in total N between alfalfa and crop soils. Also, greater differences in POM-C and POM-N were between the two land-use treatments than in SOC and total N were found. Across all sites, SOC and total N in the 0–20 cm profile averaged 22.1 Mg C ha−1 and 2.3 Mg N ha−1 for alfalfa soils, and 19.8 Mg C ha−1and 2.2 Mg N ha−1 for adjacent crop soils. Estimated C sequestration rate (0–20 cm) following crops to alfalfa conversions averaged 0.57 Mg C ha−1 year−1. Sandy soils have more significant C accumulation than silt loam soils after conversion. The result of this suggests that the soils studied have great C sequestration potential, and the conversion of crops to alfalfa should be widely used to sequester C and improve soil quality in this region.  相似文献   

13.

Purpose

Plantation is an important strategy for forest restoration and carbon (C) storage. Plantations with different tree species could significantly affect soil properties, including soil pH, soil nutrient content, soil microbial activities, and soil dissolved organic C. Changes in these abiotic and biotic factors could regulate mineralization of soil organic C (SOC). However, it remains unclear to what extent these factors affect the mineralization of SOC under different tree species plantations.

Materials and methods

Soil was collected at 0–10 cm depth from plantations with Pinus elliottii Engelm. var. elliottii, Araucaria cunninghamii, and Agathis australis, respectively, in southeast Queensland, Australia. Soil samples were assayed for soil organic C; organic N and mineralization of SOC; soil particle size; total C, N, and P; and pH. In addition, a 42-day laboratory incubation with substrate additions was done to examine the influence of different substrates and their combinations on bio-available organic C.

Results and discussion

Our results suggested that SOC mineralization was mainly determined by soil pH and soil C content among plantations with different tree species, whereas SOC mineralization was not correlated with soil N and P contents. These results were further confirmed by the substrate addition experiments. SOC mineralization of soils from slash pine showed greater response to C (glucose) addition than soils from other two plantations, which suggested significant differences in SOC mineralization among plantations with different tree species. However, neither N addition nor P addition had significant effects on SOC mineralization.

Conclusions

Our results indicated that plantations with different tree species substantially affect the mineralization and stability of soil organic C pool mainly by soil pH and soil C content.
  相似文献   

14.
Poplar plantations are an important resource in China, which possess significant potential to offset carbon (C) emissions through the sequestration of atmospheric carbon dioxide (CO2) within biomass and soil. The traditional rotation age of poplar plantations is determined by maximizing the economic return from timber production. However, the optimal rotation age that results in the highest level of carbon sequestration within the soil remains unclear. In this study, we examined the total C, nitrogen (N) and microbial biomass (SMB) content of soils, as well as other properties in 0–10, 10–25 and 25–40 cm soil profiles along a 0‐ to 20‐yr chronosequence in a coastal region of Eastern China. Soil C stocks were determined for 1 m soil profiles, and the stand biomass in poplar plantations of different ages was investigated. We found that C concentrations within soils increased with plantation age, primarily in the topsoil layers. The periodic annual increment of C in soils peaked between stand ages of from 6 to 10 yr (0.71 t/ha/yr) and then decreased considerably at 17.5 yr, while the mean annual increment of C in soils was the highest at 15 yr (0.573 t/ha/yr). Soil C accumulation (i.e. soil C sequestration) was positively correlated with poplar biomass, soil N and SMB, and negatively correlated with soil potassium (K), calcium (Ca), magnesium (Mg) and sodium (Na), but not with sulphur (S) or phosphorus (P). Our results suggest that a rotation age of 15 yr is optimal for the sequestration of atmospheric CO2 in poplar plantations in the coastal region of Eastern China. The C sequestration capacity of soil was primarily controlled by poplar biomass, soil N and SMB.  相似文献   

15.
黄土高原丘陵区不同土地利用方式对土壤理化性质的影响   总被引:16,自引:0,他引:16  
对晋西北黄土高原丘陵区持续利用30年的小叶锦鸡儿人工林、农田、杨树林、小叶锦鸡儿和杨树的混交林地以及撂荒地的土壤理化性状进行了研究。结果表明,不同土地利用方式对土壤理化性质影响很大。小叶锦鸡儿和杨树的混交林以及小叶锦鸡儿人工林可以降低土壤容重,提高土壤酶活性、有机质和全N含量,从而改善土壤肥力。混交林和小叶锦鸡儿人工林的土壤培肥作用高于杨树纯林。粗放的农业耕作措施提高土壤容重,降低土壤养分含量,使土壤退化。撂荒地一定程度上可以起到培肥土壤的作用。在黄土高原丘陵区,种植小叶锦鸡儿人工林以及小叶锦鸡儿和杨树的混交林是较好的生态重建和植被恢复方式。  相似文献   

16.
硫是作物生长发育所需的营养元素。根据多年多点田间试验和土壤有效硫测定,研究福建主要粮经作物的硫肥效应、土壤有效硫临界指标和耕地土壤硫肥力状况。64个田间试验表明,福建主要农作物施用硫肥平均增产10.5%,增产幅度是旱作物>水稻>香蕉;水田土壤和旱地土壤有效硫临界指标分别为23mgkg-1和25mgkg-1。根据全省372个耕层土样有效硫测定结果,土壤有效硫含量平均为27.6mgkg-1,低于土壤有效硫临界值的样品数占57.0%,其中,闽东南地区耕地土壤有效硫缺乏程度比闽西北地区高;在土地不同利用类型中,旱地土壤有效硫总体比水田匮乏,旱地土壤有效硫平均含量是茶果园>菜园>农地,其中,农地土壤有效硫低于临界指标的样品占75.3%;水田中不同土种的土壤有效硫含量以埭田最高,灰沙泥田为最低,旱地则以灰赤土最高而风沙土最低。  相似文献   

17.
为了阐明人工梭梭林土壤碳氮磷密度及其生态化学计量特征演变规律,以吉兰泰荒漠区不同林龄(3,6,11,16年)人工梭梭林为研究对象,分析0—20,20—40,40—60 cm土层土壤有机碳(SOC)、全氮(TN)、全磷(TP)密度和生态化学计量特征。结果表明:(1)4种林龄人工梭梭林0—60 cm土层SOC、TN含量及其密度随林龄增加而升高,而TP含量及其密度随林龄增加而降低。其中,3,6年梭梭林SOC、TN含量及其密度随土层深度增加而升高,TP含量及其密度则与之相反;11,16年梭梭林SOC、TN、TP含量及其密度随土层深度增加而降低。(2)4种林龄梭梭林土壤C∶N、C∶P、N∶P分别为2.24~9.21,1.59~7.05,0.56~0.81,均属于中等变异水平,且变异系数随林龄和土层深度增加逐渐减小,说明土壤C∶N、C∶P、[JP]N∶P趋于平稳状态。(3)林龄、土层深度及其交互作用显著影响SOC含量、SOC密度、C∶N、C∶P,对TN含量、TP含量、TN密度、TP密度、N∶P无显著影响。(4)土壤孔隙度(STP)与SOC密度呈显著正相关关系(P<0.05),说明土壤孔隙度增加有助于SOC密度增加,提高土壤肥力。在干旱荒漠区建植梭梭林有利于提高土壤肥力,改善干旱荒漠区土壤环境。  相似文献   

18.
Regeneration of degraded grassland ecosystems is a significant issue in restoration ecology globally. To understand the effects of artificial management measures on alpine meadows, we surveyed topsoil properties including moisture, organic carbon (SOC), nitrogen (N), and phosphorus (P) contents five years after fencing and fencing + reseeding management practices in a sandy meadow in the eastern Qinghai-Tibetan Plateau, northwestern China. Both the fencing and fencing + reseeding management practices significantly increased soil moisture storage, SOC, total N, available N, total P, and available P, as compared to the unmanaged control. Fencing plus reseeding was more effective than fencing alone for improving soil C, N, and P contents. These suggested that rehabilitation by reseeding and fencing generally had favorable effects on the soil properties in degraded sandy alpine meadows, and was an effective approach for restoration of degraded meadow ecosystems of the Qinghai-Tibetan Plateau.  相似文献   

19.
The aim of this study was to determine the effect of land‐use and forest cover depletion on the distribution of soil organic carbon (SOC) within particle‐size fractions in a volcanic soil. Emphasis was given to the thermal properties of soils. Six representative sites in Mexico were selected in an area dominated by Andosols: a grassland site, four forested sites with different levels of degradation and an agricultural site. Soils were fractionated using ultrasonic energy until complete dispersion was achieved. The particle‐size fractions were coarse sand, fine sand, silt, clay and particulate organic matter from the coarse sand sized fraction (POM‐CS) and fine sand (POM‐FS). Soil organic carbon decreased by 70% after forest conversion to cropland and long‐term cultivation; forest cover loss resulted in a decrease in SOC of up to 60%. The grassland soil contained 45% more SOC than the cropland one. Soil organic carbon was mainly associated with the silt‐size fraction; the most sensitive fractions to land‐use change and forest cover depletion were POM followed by SOC associated with the silt and clay‐sized fractions. Particulate organic matter can be used as an early indicator of SOC loss. The C lost from the clay and silt‐sized fractions was thermally labile; therefore, the SOC stored in the more degraded forest soils was more recalcitrant (thermally resistant). Only the transformation of forest to agricultural land produced a similar loss of thermally stable C associated with the silt‐sized fraction.  相似文献   

20.
Soil inorganic carbon (SIC) is an important reservoir of carbon (C) in arid, semi-arid, and semi-humid regions. However, knowledge is incomplete on the dynamics of SIC and its relationship with soil organic C (SOC) under different land use types in the semi-humid region, particularly in coastal zones impacted by soil salinization. We collected 170 soil samples from 34 profiles across various land use types (maize-wheat, cotton, paddy, and reed) in the middle-lower Yellow River Delta (YRD), China. We measured soil pH, electrical conductivity (EC), water-soluble salts, and SOC and SIC contents. Our results showed significant differences in both SOC and SIC among land use types. The dry cropland (maize-wheat and cotton) soils had significantly higher SOC and SIC densities (4.71 and 15.46 kg C m-2, respectively) than the paddy soils (3.28 and 14.09 kg C m-2, respectively) in the 0–100 cm layer. Compared with paddy soils, reed soils contained significantly higher SOC (4.68 kg C m-2) and similar SIC (15.02 kg C m-2) densities. There was a significant positive correlation between SOC and SIC densities over a 0–100 cm soil depth in dry cropland soils, but a negative relationship in the paddy soils. On average, SOC and SIC densities under maize-wheat cropping were 15% and 4% lower, respectively, in the salt-affected soils in the middle-lower YRD than the upper YRD. This study indicated that land use types had great influences on both SOC and SIC and their relationship, and salinization had adverse effect on soil C storage in the YRD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号