首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Radiocesium (RCs) discharged by the Fukushima Daiichi Nuclear Power Plant (Tokyo Electric Power Co., Inc.) accident has extensively contaminated agricultural land in Fukushima Prefecture and its neighboring areas. Many studies have demonstrated that Cs (RCs and 133Cs) uptake of plants is affected by the exchangeable K (Ex-K) concentration in soil. However, the precise plant–soil interaction in relation to Cs uptake is still unclear. The aim of this study was to investigate Cs uptake of plant in field by focusing on xylem exudate and roots because nutrients in xylem exudate reflect medium (soil) conditions and affect nutrient accumulation in shoots. Two varieties of amaranth, K4 (Amaranthus caudatus L.) and Mexico type (A. hypochondriacus L.), which have different Cs uptake abilities, were grown in four fields and in pots (750 to 3440 Bq kg?1 of RCs) in Fukushima Prefecture. Cs concentrations in xylem exudate, shoot, and soil; Ex-K concentration in soil; and root distribution in soil were determined. RCs concentration in xylem exudate varied from 0.04 to 164 Bq kg?1 and 133Cs concentration in xylem exudate ranged from 0.01 to 33.7 μg kg?1. The Cs concentrations were decreased by the high Ex-K concentration and the large amount of 2:1 type clay minerals in soil. The average of the ratios of Cs concentration in shoot to Cs concentration in xylem exudate for all samples was 127 ± 112 (mean ± standard deviation), although no clear correlation was found between them. The correlations betwee\n RCs and 133Cs concentrations in xylem exudate and shoot were strong in pot and in the field with low Ex-K concentration. Eighty-five percent of the total root length was distributed in the topsoil (0–20 cm soil layer). The positions where roots take up Cs were estimated from the differences in the vertical distribution of RCs and 133Cs concentrations in soil. The estimated Cs uptake ratios of topsoil to total soil layer ranged from 7% to 91% and varied with the concentration and the vertical distribution of Ex-K in soil.  相似文献   

2.
Abstract

Radioactivity levels of cesium (Cs)-134 and 137Cs in bamboo [Phyllostachys reticulata (Rupr) K. Koch] sprouts grown from April to June 2011 over a wide area (including Fukushima Prefecture) were elevated (max. 3100 Bq kg?1 fresh weight) after the Tokyo Electric Power Company, Inc. (TEPCO) Fukushima Daiichi Nuclear Power Plant disaster in March 2011. Bamboo sprouts in 2012 also contained high radioactivity levels. Radioactivity imaging analysis of bamboo sprouts harvested in 2012 showed increasing concentration gradients of radioactivity from the lower parts to the top of the sprouts. The peels were individually separated from the sprouts, and the inner edible part (trunk) was cross-sectioned at the internodal sections from the top to the lower parts. Each segmented trunk and its corresponding peel were analyzed for radioactive cesium (134Cs and 137Cs) and stable cesium (133Cs). The concentrations of 134Cs and 137Cs showed significant increases from the lower part to the top, whereas 133Cs showed an almost constant value in the trunk and peel except in the peel of the top node. We speculated that 134Cs and 137Cs in newly emerging bamboo sprouts in 2012 were translocated mainly from various plant tissues (where the fallout was layered on the bamboo tissues) in older bamboo, while 133Cs was translocated from the soil through the roots of the new bamboo sprouts and was present in the roots and stems.  相似文献   

3.
Abstract

The accident at Fukushima Dai-Ichi Nuclear Power Station (NPS) extensively contaminated the agricultural land in the Tohoku region of Japan with radioactive cesium [sum of cesium-134 (134Cs) and cesium-137 (137Cs)]. We evaluated the status of radioactive cesium (Cs) contamination in soil and plants at the Field Science Center of Tohoku University, northern Miyagi prefecture, 150 km north of the NPS. In seven pastures with different management, we examined: (1) the distribution of radioactive Cs in soil, (2) the concentration of radioactive Cs in various herbaceous plant species and (3) the change in radioactive Cs content of plants as they matured. We collected samples of litter, root mat layer (root mat soil and plant roots), and subsurface soil (0–5 cm beneath the root mat) at two to three locations in each pasture in December 2011 and May 2012. The aboveground parts of herbaceous plants (four grasses, two legumes, and one forb species) were collected from May 9 to June 20, 2012, at 14-d intervals, from one to five fixed sampling locations in each pasture. The distribution of radioactive Cs in soil differed among pastures to some degree: a large proportion of radioactive Cs was distributed in the root mat layer. Pasture management greatly influenced the radioactive Cs content of herbaceous plants (p < 0.001); plant species had less influence. Radioactive Cs content was highest (> 3 kBq kg?1 dry weight) on May 9 and significantly decreased with maturity (p < 0.001) for most of the pastures, whereas it remained low (0.04–0.18 kBq kg?1 dry weight) throughout the measurement period in the pasture where composted cattle manure was applied. The soil-to-plant transfer factor was negatively correlated to pH(H2O) (R2 = 0.783, p < 0.001) and exchangeable K content (R2 = 0.971, p < 0.001) of root mat soils, which suggests that surface application of composted cattle manure reduces plant uptake of radioactive Cs by increasing the exchangeable K content of the soil. The radioactive Cs content of plants decreased with plant maturity; its degree of decrease (May 9 to June 6) was smaller in legumes (80.6%) than grasses (55.5%) and the forb (58.6%). Radioactive Cs content decreased with plant maturity; also, the proportion remaining in the aboveground plant was higher in legumes (80.6%) than grasses (55.5%) and the forb (58.6%).  相似文献   

4.
The fate of the radioisotopes of caesium (134Cs, 135Cs and 137Cs) in the environment depends largely on the extent and reversibility of its adsorption on soil, but there is still debate as to the underlying mechanisms and the best experimental approach to study the processes. The aim of this study was to elucidate the variation of the interaction of a trace amount of 137Cs with soil and to find the best methodology to monitor these changes. The loss of 137Cs from solution has been monitored over 4 months in soil microcosms at 20°C under both flooded and aerated conditions, and with or without organic amendments (leaf compost or lucerne straw). These treatments were chosen to vary concentrations of potassium and ammonium that compete with Cs for adsorption. We distinguished between spatial heterogeneity within soil aggregates leading to diffusion limitation of adsorption, adsorption kinetics at the soil‐solution interface and changes in soil affinity caused by the dynamics of competing cations. The extractability of 137Cs by stable Cs was used to probe the degree of fixation. Adsorption was initially under‐estimated, caused by equilibration of 137Cs within soil aggregates at a sub‐millimetre scale. Ammonium produced under reducing conditions in flooded samples and potassium released by lucerne straw inhibited 137Cs adsorption by up to a factor of 2. Important differences between samples were masked when soil was suspended in a simple electrolyte solution, thus diluting the competing cations, potassium and ammonium. There was evidence of increased fixation both during incubation and by air‐drying leading to up to a two‐fold decrease in extraction. Monitoring of dynamics of Cs and competing cations in soil solution provided useful information that was lost when soil was suspended in solution or air‐dried.  相似文献   

5.
Isotopically exchangeable phosphate (P) is a major source of P for plants. In practice, however, plant‐available P is assessed by chemical extractions solubilizing a mixture of P forms the availability of which is ill defined. We undertook an isotopic approach to assess the exchangeability of P extracted by (1) CO2‐saturated water (P‐CO2), (2) ammonium acetate EDTA (P‐AAEDTA), and (3) sodium bicarbonate (P‐NaHCO3) compared to the exchangeability of P extracted by water. Five topsoils with similar P‐fertilization histories but different soil properties were studied. Phosphorus was extracted from soils labeled with carrier‐free 33P after 1 week of incubation, and the specific activity (SA = 33P / 31P) of the extracts was compared with the SA of P extracted by water to calculate the amount of P isotopically exchangeable that had been solubilized during the extraction. P‐CO2 extracted between 20 and 100 times less P than P‐AAEDTA and P‐NaHCO3. The SA of P‐CO2 was not different from the SA of water‐extractable P, showing that P‐CO2 solubilized similar forms of P as water and that these forms can be considered as available. The SA of P extracted by the two other methods ranged between 25% and 63% for P‐AAEDTA and 66% and 92% for P‐NaHCO3 of the SA of water‐extractable P. The fraction of exchangeable P extracted by AAEDTA decreased linearly with increasing soil pH, suggesting that this method dissolves slowly or non‐exchangeable P from calcium phosphates.  相似文献   

6.
Pot and field experiments were conducted to clarify the effect of soil exchangeable potassium (K) and cesium-137 (137Cs) on 137Cs accumulation and to establish soil index in rice (Oryza sativa L.). Four paddy soils in Fukushima Prefecture, Japan, showing different transfer factors for radioactive Cs derived from the accident of Fukushima Daiichi Nuclear Power Station in the field were compared in terms of 137Cs accumulation in rice in a pot experiment. 137Cs accumulation in shoots and brown rice widely varied among soils with the transfer factor ranging from 0.018 to 0.068 for shoots and 0.004 to 0.065 for brown rice. 137Cs concentration in brown rice and shoots tended to decrease with higher levels of soil exchangeable K, and they were more closely related to the exchangeable Cs/K ratio. Similar relationships between the Cs/K ratio and Cs accumulation in plants were obtained for the stable isotope cesium-133 (133Cs). The distributions of 137Cs and 133Cs in grains were also similar and variable among soils. The transfer factors obtained in pot experiments mostly agreed with field observations. The results imply that the exchangeable 137Cs/K can be a potential soil index to estimate 137Cs accumulation in rice.  相似文献   

7.
Radioactive substances were released into the environment after the nuclear accident at the Fukushima Daiichi Nuclear Power Station; this led to the contamination of the soil at Fukushima Prefecture. Mixing of organic matter with soil during plowing is known to influence radiocesium (134Cs and 137Cs) absorption by crops. However, the effect of mixing organic matter polluted by radioactive substances during plowing on radiocesium absorption by plants is not yet known. The aim of this study was to investigate the effect on the radiocesium absorption by komatsuna (Brassica rapa L. var. perviridis) cultivated in a 45-L container containing Andosol (14,300 Bq kg?1) or Gray Lowland soil (33,500 Bq kg?1) mixed with polluted wheat (Triticum aestivum L. Thell.) straw (2080 Bq kg?1). The radiocesium concentration of the plants and the soil and the amount of exchangeable radiocesium in the soil were determined using a germanium semiconductor. The transfer of radiocesium from the soil to plants decreased by 53 and 27% in Andosol and Gray Lowland soil, respectively, after the application of 10 t ha?1 polluted wheat straw. This reduction in the level of radiocesium transfer might be attributed to potassium contained in the wheat straw, which might compete with cesium during membrane transport and thereby block the transport of cesium from the soil solution to the roots and from the roots to the shoots. Alternatively, the applied wheat straw probably absorbed radiocesium and decreased the amount of exchangeable radiocesium in the soil. Our findings suggest that the mixing of polluted wheat straw with contaminated soil might influence the absorption of radiocesium content by agricultural products. Further studies are warranted to determine the long-term effects of the application of polluted wheat straw on the rate of radiocesium transfer to crops.  相似文献   

8.
Our understanding of leaf litter carbon (C) and nitrogen (N) cycling and its effects on N management of deciduous permanent crops is limited. In a 30-day laboratory incubation, we compared soil respiration and changes in mineral N [ammonium (NH4+-N) + nitrate (NO3-N)], microbial biomass nitrogen (MBN), total organic carbon (TOC) and total non-extractable organic nitrogen (TON) between a control soil at 15N natural abundance (δ15N = 1.08‰) without leaf litter and a treatment with the same soil, but with almond (Prunus dulcis (Mill.) D.A. Webb) leaf litter that was also enriched in 15N (δ15N = 213‰). Furthermore, a two-end member isotope mixing model was used to identify the source of N in mineral N, MBN and TON pools as either soil or leaf litter. Over 30 d, control and treatment TOC pools decreased while the TON pool increased for the treatment and decreased for the control. Greater soil respiration and significantly lower (p < 0.05) mineral N from 3 to 15 d and significantly greater MBN from 10 to 30 d were observed for the treatment compared to the control. After 30 d, soil-sourced mineral N was significantly greater for the treatment compared to the control. Combined mineral N and MBN pools derived from leaf litter followed a positive linear trend (R2 = 0.75) at a rate of 1.39 μg N g?1 soil day?1. These results suggest early-stage decomposition of leaf litter leads to N immobilization followed by greater N mineralization during later stages of decomposition. Direct observations of leaf litter C and N cycling assists with quantifying soil N retention and availability in orchard N budgets.  相似文献   

9.
Different forms of manganese (Mn) were investigated, including total, diethylenetriamine penta-acetic acid (DTPA) extractable, soil solution plus exchangeable (Mn), Mn adsorbed onto inorganic sites, Mn bound by organic sites, and Mn adsorbed onto oxide surfaces, from four soil taxonomic orders in northwestern India. The total Mn content was 200–950 mg kg?1, DTPA-extractable Mn content was 0.60–5.80 mg kg?1, soil solution plus exchangeable Mn content was 0.02–0.80 mg kg?1, Mn adsorbed onto inorganic sites was 2.46–90 mg kg?1, and Mc adsorbed onto oxide surfaces was 6.0–225.0 mg kg?1. Irrespective of the different fractions of Mn their content was generally greater in the fine-textured Alfisols and Inceptisols than in coarse-textured Entisols and Aridisols. The proportion of the Mn fractions extracted from the soil was in the order as follows: Adsorbed onto oxide surfaces > adsorbed onto inorganic site > organically bound > DTPA > soil solution + exchangeable. Based on coefficient of correlation, the soil solution plus exchangeable Mn, held onto organic site and oxide surface (amorphous) and DTPA-extractable Mn, increased with increase in organic carbon of the soil. The two forms, adsorbed onto inorganic site (crystalline) and DTPA extractable, along with organic carbon, increased with increase in clay content of the soil. DTPA-Mn and Mn adsorbed onto oxide surfaces and held on organic site decreased with increased with an increase in calcium carbonate and pH. Total Mn was strongly correlated with organic carbon and clay content of soil. Among the forms, Mn held on the organic site, water soluble + exchangeable and adsorbed onto oxide surface were positively correlated with DTPA-extractable Mn. DTPA-extractable Mn seems to be a good index of Mn availability in soils and this form is helpful for correction of Mn deficiency in the soils of the region. The uptake of Mn was greater in fine-textured Inceptisols and Alfisols than in coarse-textured Entisols and Aridisols. Among the different forms only DTPA-extractable Mn was positively correlated with total uptake of Mn. Among soil properties Mn uptake was only significantly affected by pH of the soil.  相似文献   

10.
Evaluation of nutrient status in soil is important for nutritional, environmental, and economical aspects. The objective of this work was to find out the most suitable universal extractant for determination of available phosphorus (P) and nitrate (NO3-) and exchangeable potassium (K), calcium (Ca), and magnesium (Mg) from soils using 0.01 M calcium chloride (CaCl2), 0.01 M barium chloride (BaCl2), 0.1 M BaCl2, 0.02 M strontium chloride (SrCl2), Mehlich 3, and ammonium bicarbonate diethylene triamine penta acetic acid (AB-DTPA) extractants. Composite surface soil samples (0–20 cm) were collected from the Eastern Harage Zone (Babile and Haramaya Districts), Wolaita Zone (Damot Sore, Boloso Bombe, Damot Pulasa, and Humbo Districts), and Dire Dawa Administrative Council by purposive sampling. The experiment was carried out in a completely randomized design (CRD) with three replications. Results indicated that the greatest correlations were found between Mehlich 3 and Olsen method and also between 0.02 M SrCl2 and Olsen method for available P. The amount of NO3 extracted by 0.02 M SrCl2 was significantly correlated to the amount determined by 0.5 M potassium sulfate (K2SO4). The amounts of exchangeable K, Ca, and Mg determined by ammonium acetate (NH4OAc) method were significantly correlated to the amount determined by universal extractants tested. In general, both 0.02 M SrCl2 and Mehlich 3 can serve as universal extractants for the macronutrients considered in this study with the former being more economical when NO3 is included.  相似文献   

11.
Abstract

The technique of simultaneous quantitative determination of mineral N soil forms (nitrates, exchangeable and non‐exchangeable ammonium, and total amount of these compounds) and sample pretreatment for the analysis of 15N:14N ratio is suggested. The technique is based on the selective association of NH4 +‐ions into indophenol complex and subsequent ethyl‐acetate extraction of this complex from solution. The mineralization of indophenol is carried out in alkaline medium with simultaneous NH3 distillation into H2SO4 titrant. The application of given technique allows us to shorten significantly the time required for analysis and to increase the accuracy of analytical determination.  相似文献   

12.
Abstract

Radioactive 137Cs concentrations of forage corn (Zea mays L.) and Italian ryegrass (Lolium multiflorum Lam.) in a double cropping system under continuous cattle farmyard manure (FYM) application were observed for more than 2 years after the Fukushima Daiichi Nuclear Power Station accident in 2011. The experiment field is located 110 km southwest of the Fukushima Daiichi Nuclear Power Station, and the soil contains 137Cs of 920 Bq kg?1 on average. For crop cultivation, nitrogen fertilizer was applied in addition to FYM. The 137Cs concentrations in corn decreased significantly between 2011 and 2012, but only differed significantly between 2012 and 2013 for the plot with no FYM application. For Italian ryegrass, no significant differences were observed between the harvest in 2012 and 2013 despite the FYM application rate. To minimize corn 137Cs concentrations, the FYM application rate should be more than and equal to 30 Mg ha?1 when FYM is used as the major nutrient source. Exchangeable potassium oxide (K2O) greater than around 0.3 g kg?1 was mostly maintained with the FYM application rates. Corn 137Cs concentration appeared to increase at exchangeable K2O levels below 0.15 g kg?1. These results suggest that continuous FYM application can maintain soil nutrients including K2O and thereby control radioactive Cs transfer from the soil. FYM application rate of 30 Mg ha?1 is within the levels recommended by the prefectural governments around Fukushima Prefecture for crop production before the accident. These levels are sufficient to decrease the radioactive Cs concentrations for corn. However, unlike corn, differences in soil chemical properties by FYM application did not affect 137Cs concentrations in Italian ryegrass in this study, although low exchangeable K2O seemed to increase concentrations of stable 133Cs. Further experiments should be conducted to understand the observed differences between corn and Italian ryegrass.  相似文献   

13.
Abstract

The mineralization of nutrients from deoiled neem seed (neem seed cake), the residue left after oil extraction, was examined in a typical savanna soil with a view to determining its potential for fertility improvement. The neem seed cake (NSC) application rates were 0, 2.5, and 5.0 g kg?1 soil (0, 5, and 10 tons ha?1). The concentrations of ammonium‐nitrogen (NH4‐N) and nitrate (NO3)‐N mineralized from the neem‐amended soil were two to three times greater than the control. Similarly, exchangeable potassium (K), magnesium (Mg), and cation exchange capacity were significantly greater than the control. The neem‐amended soil maintained organic carbon (OC) at the pre‐incubation level, whereas OC in the control soil declined to significantly less than the pre‐incubation concentration. The electrolytic conductivity of the soil saturation extract with neem application was 8–10 times greater than the control soil. However, the NSC increased exchange acidity markedly and decreased the soil pH significantly. Thus, the benefits of NSC in increasing the concentrations of N, K, and Mg and maintaining OC of the soil must be weighed against the consequences of soil acidity, though it is unlikely that NSC can acidify the soil to the same extent under field conditions as it did in this closed‐system incubation study.  相似文献   

14.
Accurate estimation of the available potassium (K+) supplied by calcareous soils in arid and semi‐arid regions is becoming more important. Exchangeable K+, determined by ammonium acetate (NH4OAc), might not be the best predictor of the soil K+ available to crops in soils containing micaceous minerals. The effectiveness of different extraction methods for the prediction of K‐supplying capacities and quantity–intensity relationships was studied in 10 calcareous soils in western Iran. Total K+ uptake by wheat grown in the greenhouse was used to measure plant‐available soil K+. The following methods extracted increasingly higher average amounts of soil K+: 0.025 M H2SO4 (45 mg K+ kg?1), 1 M NaCl (92 mg K+ kg?1), 0.01 M CaCl2 (104 mg K+ kg?1), 0.1 M BaCl2 (126 mg K+ kg?1), and 1 M NH4OAc (312 mg K+ kg?1). Potassium extracted by 0.01 M CaCl2, 1 M NaCl, 0.1 M BaCl2, and 0.025 M H2SO4 showed higher correlation with K+ uptake by the crop (P < 0.01) than did NH4OAc (P < 0.05), which is used to extract K+ in the soils of the studied area. There were significant correlations among exchangeable K+ adsorbed on the planar surfaces of soils (labile K+) and K+ plant uptake and K+ extracted by all extractants. It would appear that both 0.01 M CaCl2 and 1 M NaCl extractants and labile K+ may provide the most useful prediction of K+ uptake by plants in these calcareous soils containing micaceous minerals.  相似文献   

15.
This study aimed at quantifying nitrogen (N) and potassium (K) released from winery solid waste (WSW) composts during laboratory incubation to address deficiency in two texturally distinct soils. Composts had 4, 10, 20, 30, 40% (w/w) of filter materials (FMs) mixed with grape marc and pruning canes. The composts were mixed with the soils at equivalent rate of 200 kg N ha?1 and incubated for 42 days. Quantitatively higher (p < 0.05) ammonium N content was recorded in sandy than sandy loam soil during the incubation duration while exchangeable K was increased in K-deficient sandy soil. Cumulative total mineralized N (TMN) measured during the incubation duration ranged from 59 mg kg?1 to 672 mg kg?1 depending on compost type and soil texture while a 10-fold increase in compost FMs content resulted in 144% and 139% increases in cumulative mineralized K in sandy and sandy loam textured soil, respectively. Percent N mineralized from the composts relative to the amount applied during the incubation duration was less than 54% reflecting the composts and soils inherent characteristics. The high ammonium N and K mineralized suggests that farmers must be cautious in utilizing these composts for field crops production due to the potential environmental risks.  相似文献   

16.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

17.
Profiles of semi-arid-zone soils in Punjab, northwestern India, were investigated for different forms of copper (Cu), including total Cu, diethylenetriaminepentaacetic acid (DTPA)–extractable Cu, soil solution plus exchangeable Cu, Cu adsorbed onto inorganic sites, Cu bound by organic sites, and Cu adsorbed onto oxide surfaces. When all soils were considered, total Cu content ranged from 7 to 37 mg kg?1, while DTPA-extractable and soil solution plus exchangeable Cu contents ranged from 0.30 to 3.26 mg kg?1 and from 0.02 to 0.43 mg kg?1, respectively. Copper adsorbed onto inorganic sites ranged from 0.62 to 2.6 mg kg?1 and that onto oxide surfaces ranged from 2.0 to 13.2 mg kg?1. The Cu bound by organic sites ranged from 1.2 to 12.2 mg kg?1. The magnitudes of different forms of Cu in soils did not exhibit any consistent pattern of distribution. Organic matter and size fractions (clay and silt) had a strong influence on the distribution of different forms of Cu. The content of all forms of Cu was generally greater in the fine-textured Alfisols and Inceptisols than coarse-textured Entisols. Soil solution plus exchangeable Cu, Cu held onto organic sites, and and Cu adsorbed onto inorganic sites (crystalline) had significant positive correlations with organic carbon and silt contents.The DTPA Cu was positively correlated with organic carbon, silt, and clay contents. Total Cu content strongly correlated with silt and clay contents of soils. Among the forms, Cu held on the organic site, water soluble + exchangeable Cu, and Cu adsorbed onto oxide surface were positively correlated with DTPA-extractable Cu. The DTPA-extractable Cu and soil solution plus exchangeable Cu seems to be good indices of Cu availability in soils and can be used for correction of Cu deficiency in the soils of the region. The uptake of Cu was greater in fine-textured Inceptisols and Alfisols than coarse-textured Entisols. Among the different forms only DTPA-extractable Cu was positively correlated with total uptake of Cu.  相似文献   

18.
Aerobic incubations to estimate net nitrogen (N) mineralization typically involve periodic leaching of soil with 0.01 M calcium chloride (CaCl2), so as to remove mineral N that would otherwise be subject to immobilization. A study was conducted to evaluate the accuracy of leaching for analysis of exchangeable ammonium (NH4+)-N and nitrate + nitrite (NO3?+ NO2)-N, relative to conventional extractions using 2 M potassium chloride (KCl). Ten air-dried soils were used, five each from Illinois and Brazil, that had been amended with NH4+-N (1 g kg?1) and NO3-N (0.6 g kg?1). Both methods were in good agreement for inorganic N analysis of the Brazilian Oxisols, whereas leaching was significantly lower by 12–48% in recovering exchangeable NH4+-N from Illinois Alfisols, Mollisols, and Histosols. The potential for underestimating net N mineralization was confirmed by a 12-wk incubation experiment showing 9–86% of mineral N recoveries from three temperate soils as exchangeable NH4+.  相似文献   

19.
Abstract

Within Amaranthaceae, 33 different varieties, including local varieties from Japan, were grown in 2012 in a field in the town of Iino in the Fukushima prefecture, which is located approximately 51 km north of Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP). The contamination level of the soil was 2770 ± 140 Bq kg?1 dry weight (134Cesium (Cs) + 137Cs, average ± SE), and the field was also cultivated in 2011. There was a significant varietal difference in the dry weight production, radiocesium accumulation and transfer factor (TF) of radiocesium from the soil to the plant. The ratio of the lowest TF to the highest TF was approximately 3. Because the ratio of 137Cs to 133Cs was significantly positive, radiocesium seems to be absorbed in a manner similar to that of 133Cs. It is suggested that the varietal difference in the behavior of radiocesium uptake mainly depends on its genetic background rather than on environmental factors.  相似文献   

20.
LI Fa-Hu  R. KEREN 《土壤圈》2009,19(4):465-475
A laboratory lysimeter experiment was conducted to investigate the effects of forage corn (Zea mays L.) stalk application on the CO2 concentration in soil air and calcareous sodic soil reclamation. The experimental treatments tested were soil exchangeable sodium percentage (ESP) levels of 1, 11, and 19, added corn stalk contents of 0 to 36 g kg-1, and incubation durations of 30 and 60 days. The experimental results indicated that corn stalk application and incubation significantly increased CO2 partial pressure in soil profile and lowered pH value in soil solution, subsequently increased native CaCO3 mineral dissolution and electrolyte concentration of soil solution, and finally significantly contributed to reduction on soil sodicity level. The reclamation effciency of calcareous sodic soils increased with the added corn stalk. When corn stalks were added at the rates of 22 and 34 g kg-1 into the soil with initial ESP of 19, its ESP value was decreased by 56% and 78%, respectively, after incubation of 60 days and the leaching of 6.5 pore volumes (about 48 L of percolation water) with distilled water. Therefore, crop stalk application and incubation could be used as a choice to reclaim moderate calcareous sodic soils or as a supplement of phytoremediation to improve reclamation effciency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号