首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of flavonoids released by phosphorus-deficient white lupin roots on inorganic P and soil microorganisms is largely unknown. We report that flavonoids isolated from white lupin roots mobilized inorganic phosphorus and decreased soil microbial respiration, citrate mineralization, and soil phosphohydrolase activities, but did not reduce the soil ATP content. The results suggest that white lupin's release of flavonoids into the rhizosphere plays a significant role in its efficient P-acquisition strategy by solubilizing Fe-bound P and by limiting the microbial mineralization of citrate.  相似文献   

2.
ABSTRACT

The use of organic fertilizer is essential to ensure sustainable agricultural production. Because organic fertilizer normally acts as a slow-release fertilizer, improving its nutrient-use efficiency is important, particularly in terms of nitrogen (N) nutrition. In the present study, we attempted to increase the N-use efficiency of cattle farmyard manure (CM) in the cultivation of pasture grasses by mixed cropping with white lupin (Lupinus albus), which has been reported to decompose organic N in its rhizosphere. Timothy (Phleum pratense) and orchard grass (Dactylis glomerata) were cultivated with or without either lupin or soybean (Glycine max) in pots under three different N treatments (CM, ammonium sulfate, or no N). In the CM treatment, growth was higher in grasses cultivated with lupin than in those cultivated alone or with soybean. Moreover, decomposition of soluble organic N and protease activity in the rhizosphere soil of grasses with CM treatment were enhanced by mixed cropping with lupin. Analyses of microbial activity and bacterial community structure using Biolog EcoPlates suggested that the enhanced decomposition of soluble organic N was facilitated by lupin roots rather than by rhizosphere microorganisms.  相似文献   

3.
Root-induced changes in the rhizosphere may affect mineral nutrition of plants in various ways. Examples for this are changes in rhizosphere pH in response to the source of nitrogen (NH4-N versus NO3-N), and iron and phosphorus deficiency. These pH changes can readily be demonstrated by infiltration of the soil with agar containing a pH indicator. The rhizosphere pH may be as much as 2 units higher or lower than the pH of the bulk soil. Also along the roots distinct differences in rhizosphere pH exist. In response to iron deficiency most plant species in their apical root zones increase the rate of H+ net excretion (acidification), the reducing capacity, the rate of FeIII reduction and iron uptake. Also manganese reduction and uptake is increased several-fold, leading to high manganese concentrations in iron deficient plants. Low-molecular-weight root exudates may enhance mobilization of mineral nutrients in the rhizosphere. In response to iron deficiency, roots of grass species release non-proteinogenic amino acids (?phytosiderophores”?) which dissolve inorganic iron compounds by chelation of FeIII and also mediate the plasma membrane transport of this chelated iron into the roots. A particular mechanism of mobilization of phosphorus in the rhizosphere exists in white lupin (Lupinus albus L.). In this species, phosphorus deficiency induces the formation of so-called proteoid roots. In these root zones sparingly soluble iron and aluminium phosphates are mobilized by the exudation of chelating substances (probably citrate), net excretion of H+ and increase in the reducing capacity. In mixed culture with white lupin, phosphorus uptake per unit root length of wheat (Triticum aestivum L.) plants from a soil low in available P is increased, indicating that wheat can take up phosphorus mobilized in the proteoid root zones of lupin. At the rhizoplane and in the root (root homogenates) of several plant species grown in different soils, of the total number of bacteria less than 1 % are N2-fixing (diazotrophe) bacteria, mainly Enterobacter and Klebsiella. The proportion of the diazotroph bacteria is higher in the rhizosphere soil. This discrimination of diazotroph bacteria in the rhizosphere is increased with foliar application of combined nitrogen. Inoculation with the diazotroph bacteria Azospirillum increases root length and enhances formation of lateral roots and root hairs similarly as does application of auxin (IAA). Thus rhizosphere bacteria such as Azospirillum may affect mineral nutrition and plant growth indirectly rather than by supply of nitrogen.  相似文献   

4.
Phosphorus nutrition of spring wheat (Triticum aestivum L.) in mixed culture with white lupin (Lupinus albus L.). Spring wheat (Triticum aestivum L. ?Schirokko”?) and white lupin (Lupinus albus L.) were grown in mixed culture in Mitscherlich pots with 20 kg of soil in a green house. The soil used was a Bt of a Parabraunerde-Pseudogley from loess low in available P and limed from pH 4.6 to pH 6.5. Phosphorus was added as phosphate rock. In half of the pots cylinders of stainless steel screen prevented intertwining of the roots of the plant species. Independent of P addition, white lupin had higher dry matter production and P uptake than wheat, even although wheat had thinner roots and higher root densities than lupin, factors which favour the utilization of soil and fertilizer P. The higher P efficiency of white lupin was due to higher P uptake rates per unit root length mainly through mobilization of P especially in the rhizosphere of the proteoid roots. When the roots of the two species were allowed to intertwine, shoot dry matter production of wheat was nearly double because of improved tillering. Higher P concentrations and a more than 2-fold higher P uptake indicated that the increase in dry matter production of wheat was due to improved P nutrition. Nitrogen concentrations, however, remained unaffected at sufficient levels. An increased P uptake rate per unit root length was responsible for the better utilization of P by wheat, rather than the increase in total root length, due to the extended root volume. White lupin was able to mobilize P in the rhizosphere in excess of its own requirements. Thus mobilized P may be available to less P-efficient plants grown in mixed culture.  相似文献   

5.
Examples of the effect of mineral nutrition of plants (N, P, K, Mg, Fe) on microbial activity in the rhizosphere are presented with emphasis on our own studies related to root exudation, bacterial numbers, oxygen consumption and denitrification. Direct effects concern changes of pH, e.g. by liming. As the microbial community in the rhizosphere depends on decomposable organic substances released from roots, plant nutrition also indirectly affects microbial activity via its influence on plant metabolism and growth. Important factors affecting denitrification in the rhizosphere are, besides stimulation of denitrifiers by root exudation, air-filled porosity and readily decomposable organic matter content of the soil.  相似文献   

6.
熊艺  郑璐  沈仁芳  兰平 《土壤学报》2022,59(1):218-230
根际微生物在作物养分吸收的过程中发挥着重要作用.为提高小麦的氮肥利用率,有必要深入探究缺氮胁迫对小麦根际微生物群落结构的影响.利用氮素耗竭的陕西关中地区典型的塿土,设置了正常供氮(150 mg·kg-1)和缺氮(不施氮肥)的小麦根箱实验,采用16S rRNA基因扩增子高通量测序技术分析了小麦根际、近根际和非根际土壤微生...  相似文献   

7.
通过microRNA(miRNA)基因芯片及RT-PCR研究了白羽扇豆在缺磷胁迫下miR399与磷响应基因的表达变化。结果表明:缺磷处理后根系生物量显著高于供磷处理,但地上部生物量降低,并且植株体内磷含量明显减少。基因芯片结果表明,缺磷白羽扇豆根、茎和叶中分别有10、7和3个不同成员的miR399s表达上调,平均上调倍数分别为4.4,3.8和2.5。6个磷响应基因LaATPase、LaPT1、LaMATE、La-PEPC3、LaSAP和LaMDH1在缺磷排根中的表达均高于供磷侧根,启动子序列分析表明LaPT1和LaMATE启动子区域有与PHR1或WRKY转录因子结合的磷响应元件。在此基础上得出有关miR399,PHR1与这些受缺磷诱导的基因之间的调控关系。研究表明,miR399和磷响应基因对白羽扇豆适应缺磷环境起着重要作用。  相似文献   

8.
Phosphorus is one of the most limiting macronutrients for plant productivity in agriculture worldwide. The main reasons are the limited rock phosphate reserves and the high affinity of phosphate (P) to the soil solid phase, restricting the P availability to the plant roots. Plants can adapt to soils low in available P by changing morphological or/and physiological root features. Morphological changes include the formation of longer root hairs and a higher root : shoot ratio both parameters increasing the root surface which provides the shoot with P. This may be successful if the P availability in soil, i.e., the P concentration of the soil solution is not extremely low (> 1–2 µM P). If the P concentration of the soil solution is lower, the diffusive flux to the root surface will be very low and may not satisfy the P demand of the shoots. Under these conditions plants have developed strategies to increase the rhizosphere soil solution concentration by secreting mobilizing agents. The most effective way of P mobilization is the release of di‐ and tricarboxylic acid anions, especially oxalate and citrate. Citrate can accumulate in the rhizosphere up to concentrations up to 80 µmol g?1 soil. Cluster root formation is an efficient way of carboxylate accumulation in the cluster root rhizosphere improving P mobilization. Cluster roots strongly improve the acquisition of the mobilized P. Considering a single root, around 80–90% of the mobilized P diffuses away from the root. From the rhizosphere of cluster roots, most of the mobilized P is taken up by the cluster roots. Both, the strong accumulation of carboxylates in and the effective P uptake from the cluster‐root rhizosphere are the basis of the unique ability of P acquisition by cluster root‐forming plants. Plants that do not form cluster roots, e.g., red clover, can also accumulate carboxylates in the rhizosphere. Red clover accumulates high quantities of citrate in the rhizosphere soil. Model calculations show that the release of citrate by red clover roots and its accumulation in the rhizosphere strongly improve P acquisition by this plant species in various soils. Similar results are obtained with alfalfa. In sugar beet, oxalate release can strongly contribute to P acquisition. In summary, P acquisition can be strongly improved by the release of carboxylates and should be taken as a challenge for basic and applied research.  相似文献   

9.
To evaluate the relationship between the potassium (K) status in the microbial community and the exchangeable K concentration in soils, the effects of K addition on microbial activity were assessed in cultivated Andisols not having received K fertilizer. Potassium limitation was not observed in the microbial community, even in a soil amended with only nitrogen (N) and phosphorus (P) but not K since 1938, though crop plants in this soil showed severe K deficiency symptoms. Furthermore, in a soil amended with NP + compost, microbial activity was limited by K only after limitation of carbon (C) and N. These results suggest that soil microorganisms demand more C and N than K, even in soils with low K availability, and also that the soil microbial community is less susceptible to K deficiency than are crop plants.  相似文献   

10.
《Applied soil ecology》2005,28(3):191-201
Annual plant species differ in their rhizosphere microbial community composition. However, rhizosphere communities are often investigated under controlled conditions, and it is unclear if perennial plants growing in the field also have rhizosphere communities that are specific to a particular plant species. The aim of our study was to determine the bacterial community composition of three species of Banksia (B. attenuata R. Brown, B. ilicifolia R. Brown and B. menziesii R. Brown) growing in close proximity in a native woodland in Western Australia and to relate community structure to function. All three species are small trees that produce cluster roots in the field following winter rains. Cluster roots and rhizosphere soil were sampled in early spring (August 2001) and again four weeks later (September 2001). Many new cluster roots were formed in the period between the August and the September sampling. Rhizosphere soil pH, percent soil moisture and C and N content did not differ significantly among species or sampling times. However, the bacterial community composition on the cluster roots and in the rhizosphere soil, studied by denaturing gradient gel electrophoresis (DGGE), differed among the three species, with cluster root age class (young or mature to senescing) and also between sampling times. These changes in community composition were accompanied by changes in the activity of some of the enzymes studied. The activities of β-glucosidase and protease increased over time. The three species differed in asparaginase activity, but not in the activity of acid and alkaline phosphatase in the rhizosphere. These results suggest a relationship between the changes in composition and function of bacterial communities.  相似文献   

11.
Previous studies describe the suitability of a new type of phosphorus (P) fertilizer, called “rhizosphere‐controlled fertilizer” (RCF), to supply available P to plants while reducing soil phosphorus fixation. In order to explore the involvement of organic acid root exudation in P uptake from RCF, we investigated the relationship between shoot and root P concentrations, and the concentration of the main polycarboxylic organic acids in roots, shoots, and plant exudates. Plant species with different P‐acquisition efficiency (low: maize; medium: chickpea; high: lupin) were grown in hydroponics with three different P fertilizers: The water‐insoluble P fraction of RCF (RCF); Phospal, a slow‐release source of phosphate composed of calcium and aluminum phosphates (PH); monopotassiumphosphate (KP), and a control treatment without P (P–). RCF was as efficient as KP in supplying P to plants in the case of chickpea and lupin, and slightly less efficient than KP in maize. However, P from PH was not available for maize and less available compared to KP and RCF in chickpea and lupin. This variation reflects the different efficiencies in P acquisition for the three plant species. Except in the case of maize, plants receiving KP presented the lowest concentration of organic acids in roots and exudates, while those plants suffering severe P deficiency (P– and PH) showed the highest organic acid concentration. However, RCF had a high concentration of organic acids in roots and exudates, as well as a high P concentration in the shoot indicating that P uptake from RCF is enhanced due to root release and action of specific organic acids.  相似文献   

12.
Root exudates play a major role in the mobilization of sparingly soluble nutrients in the rhizosphere. Since the amount and composition of major metabolites in root exudates from one plant species have not yet been systematically compared under different nutrient deficiencies, relations between exudation patterns and the type of nutrient being deficient remain poorly understood. Comparing root exudates from axenically grown maize plants exposed to N, K, P, or Fe deficiency showed a higher release of glutamate, glucose, ribitol, and citrate from Fe‐deficient plants, while P deficiency stimulated the release of γ‐aminobutyric acid and carbohydrates. Potassium‐starved plants released less sugars, in particular glycerol, ribitol, fructose, and maltose, while under N deficiency lower amounts of amino acids were found in root exudates. Principal‐component analysis revealed a clear separation in the variation of the root‐exudate composition between Fe or P deficiency versus N or K deficiency in the first principal component, which explained 46% of the variation in the data. In addition, a negative correlation was found between the amounts of sugars, organic and amino acids released under deficiency of a certain nutrient and the diffusion coefficient of the respective nutrient in soils. We thus hypothesize that the release of dominant root exudates such as sugars, amino acids, and organic acids by roots may reflect an ancient strategy to cope with limiting nutrient supply.  相似文献   

13.
Intercropping has been shown to increase total yield and nutrient uptake compared to monocropping. However, depending on crop combinations, one crop may dominate and decrease the growth of the other. Interactions in the soil, especially in the rhizosphere, may be important in the interactions between intercropped plant genotypes. To assess the role of the rhizosphere interactions, we intercropped a P-inefficient wheat genotype (Janz) with either the P-efficient wheat genotype (Goldmark) or chickpea in a soil with low P availability amended with 100 mg P kg−1 as FePO4 (FeP) or phytate. The plants were grown for 10 weeks in pots where the roots of the genotypes could intermingle (no barrier, NB), were separated by a 30 μm mesh (mesh barrier, MB), preventing direct root contact but allowing exchange of diffusible compounds and microorganisms, or were completely separated by a solid barrier (SB). When supplied with FeP, Janz intercropped with chickpea had higher shoot and grain dry weight (dw) and greater plant P uptake in NB and MB than in SB. Contact with roots of Janz increased shoot, grain and root dw, root length, shoot P concentration and shoot P uptake of chickpea compared to SB. Root contact between the two wheat genotypes, Janz and Goldmark, had no effect on growth and P uptake of Janz. Shoot and total P uptake by Goldmark were significantly increased in NB compared to MB or SB. In both crop combinations, root contact significantly increased total plant dw and P uptake per pot. Plant growth and P uptake were lower with phytate and not significantly affected by barrier treatment. Differences in microbial P, available P and phosphatase activity in the rhizosphere among genotypes and barrier treatments were generally small. Root contact changed microbial community structure (assessed by fatty acid methyl ester (FAME) analysis) and all crops had similar rhizosphere microbial community structure when their roots intermingled.  相似文献   

14.
Abstract

The distribution of secretory acid phosphatase and organic acids enhanced by phosphorus deficiency in lupin rhizosphere was investigated using a rhizobox system which separated the rhizosphere soil into 0.5 mm fractions. In the soil fraction closest to the root surface, the lupin exudates displayed an acid phosphatase activity of 0.73 u g?1 dry soil and citrate concentration of 85.2 μmol g?1 dry soil, respectively. The increase of the acid phosphatase activity-induced an appreciable depletion of organic P in the rhizosphere, indicating that lupin efficiently utilized the organic P from soil through the enzyme activitye The sterile treatments demonstrated that the acid phosphatase in the rhizosphere was mainly derived from lupin root secretions. The secretory organic acids enhanced considerably the solubility of the inorganic P in three types of soil and a sludge. However, the secretory acid phosphatase and organic acids from lupin roots were only detected in a considerable amount in 0-2.5 mm soil fractions from root surface.  相似文献   

15.
Soil and rhizosphere microbial communities in agroecosystems may be affected by soil, climate, plant species, and management. The management and environmental factors controlling microbial biomass and community structure were identified in a three-year field experiment. The experiment consisted of a tomato production agroecosystem with the following nine treatments: bare soil, black polyethylene mulch, white polyethylene mulch, vetch cover crop, vetch roots only, vetch shoots only, rye cover crop, rye roots only, and rye shoots only. The following hypotheses were tested: (1) Temperature and moisture differences between polyethylene-covered and cover-cropped treatments are partly responsible for treatment effects on soil microbial community composition, and (2) Different species of cover crops have unique root and shoot effects on soil microbial community composition. Microbial biomass and community composition were measured by phospholipid fatty acid analysis. Microbial biomass was increased by all cover crop treatments, including root only and shoot only. Cover cropping increased the absolute amount of all microbial groups, but Gram-positive bacteria decreased in proportion under cover crops. We attribute this decrease to increased readily available carbon under cover-cropped treatments, which favored other groups over Gram-positive bacteria. Higher soil temperatures under certain treatments also increased the proportion of Gram-positive bacteria. Vetch shoots increased the amount and proportion of Gram-negative bacteria, fungi, and arbuscular mycorrhizal fungi in the rhizosphere of tomato plants. The imposed treatments were much more significant than soil temperature, moisture, pH, and texture in controlling microbial biomass and community structure.  相似文献   

16.
The stimulation of rhizosphere microorganisms by exudates released from roots is important for nutrient cycling and differs between plant species. The reasons for this between-species variability are poorly understood. We studied correlations between shoot biomass, soluble and non-soluble root C concentrations and rhizosphere bacterial abundance (CFU: colony forming units) and an index of microbial activity (in vitro utilization of [U-14C]glucose by soil microorganisms). We studied Briza media and Rumex acetosella (nutrient-poor habitats), Epilobium hirsutum, Eupatorium cannabinum, Rumex obtusifolius and Urtica dioica (nutrient rich habitats) cultivated in a greenhouse for 5 weeks in a forest soil. We found significant differences among species for the bacterial abundance and microbial activity in the rhizosphere. These differences poorly reflected the nutrient richness of the common habitats for these species, possibly because the soil conditions were not optimal. Nevertheless, microbial activity was positively correlated with root soluble C concentration and shoot biomass and negatively correlated with the concentration of non-soluble C in roots. These preliminary results suggest that the carbon economy could be an important control of the between-species variability of microbial activity in the rhizosphere.  相似文献   

17.
  【目的】   发挥微生物固氮功能可降低农田化学氮肥的投入,对于缓解土壤酸化具有重要意义。固氮微生物广泛存在于植物体的各个部位,了解酸性土壤上作物不同部位固氮微生物群落特征,为挖掘其功能潜力提供数据支撑和理论基础。   【方法】   选择性状差异较大的耐铝玉米品种先玉335和铝敏感品种Mo17为试验材料,在酸性红壤上种植1个月后,收集玉米地上部、根部和根际土壤样品,分析玉米生物量、养分含量和根际土壤基本理化性质;采用实时荧光定量PCR和高通量测序技术,以nifH基因为标靶,分析不同玉米品种、不同取样部位 (叶部、根部和根际土壤) 固氮微生物群落的丰度、多样性和结构组成。   【结果】   先玉335地上和地下生物量显著高于Mo17,但是植株氮、磷浓度和根际土壤pH、铵态氮和速效钾含量却低于Mo17。实时荧光定量PCR结果显示,nifH基因丰度在玉米不同部位间的差异程度明显大于玉米品种间的差异,其中根部丰度显著高于根际土壤和叶部,而且先玉335根部nifH基因丰度要高于Mo17。高通量测序分析显示,变形菌门 (Proteobacteria) 和蓝藻门 (Cyanobacteria) 是固氮微生物的优势门,根际土壤和根部的优势菌属是慢生根瘤菌属 (Bradyrhizobium),而叶部优势菌属是细鞘丝藻属 (Leptolyngbya),多数优势菌属相对丰度在玉米不同部位间呈现显著差异。取样部位显著影响固氮微生物群落多样性指数 (Shannon指数和OTU数量),但同一部位品种间没有明显差异,其中根际多样性指数显著高于根部,两者均高于叶部。非度量多维尺度 (NMDS) 和PERMANOVA分析显示,取样部位对固氮微生物群落结构组成的影响程度显著高于品种的影响,根际土壤、根部和叶部三者之间的群落组成差异达到显著水平,而品种间仅仅根际土壤样品差异显著。   【结论】   酸性红壤上,玉米不同部位间的固氮微生物群落丰度、多样性和结构组成差异程度显著高于品种间的差异。根部固氮微生物丰度最高,暗示固氮潜力更大。叶部固氮微生物群落组成显著不同于根际土壤和根部,且有最低的丰度和多样性,这与叶片苛刻的环境条件密切相关。  相似文献   

18.
Iron and phosphorus availability is low in many soils; hence, microorganisms and plants have evolved mechanisms to acquire these nutrients by altering the chemical conditions that affect their solubility. In plants, this includes exudation of organic acid anions and acidification of the rhizosphere by release of protons in response to iron and phosphorus deficiency. Grasses (family Poaceae) and microorganisms further respond to Fe deficiency by production and release of specific chelators (phytosiderophores and siderophores, respectively) that complex Fe to enhance its diffusion to the cell surface. In the rhizosphere, the mutual demand for Fe and P results in competition between plants and microorganisms with the latter being more competitive due to their ability to decompose plant-derived chelators and their proximity to the root surface; however microbial competitiveness is strongly affected by carbon availability. On the other hand, plants are able to avoid direct competition with microorganisms due to the spatial and temporal variability in the amount and composition of exudates they release into the rhizosphere. In this review, we present a model of the interactions that occur between microorganisms and roots along the root axis, and discuss advantages and limitations of methods that can be used to study these interactions at nanometre to centimetre scales. Our analysis suggests mechanisms such as increasing turnover of microbial biomass or enhanced nutrient uptake capacity of mature root zones that may enhance plant competitiveness could be used to develop plant genotypes with enhanced efficiency in nutrient acquisition. Our model of interactions between plants and microorganisms in the rhizosphere will be useful for understanding the biogeochemistry of P and Fe and for enhancing the effectiveness of fertilization.  相似文献   

19.
Little information is available on phosphorus (P) uptake and rhizosphere processes in maize (Zea mays L.), faba bean (Vicia faba L.), and white lupin (Lupinus albus L.) when intercropped or grown alone in acidic soil. We studied P uptake and soil pH, carboxylate concentration, and microbial community structure in the rhizosphere of maize, faba bean, and white lupin in an acidic soil with 0–250 mg P (kg−1 soil) as KH2PO4 (KP) or FePO4 (FeP) with species grown alone or intercropped. All plant species increased the pH compared to unplanted control, particularly faba bean. High KP supply (>100 mg P kg−1) significantly increased carboxylate concentration in the rhizosphere of maize. The carboxylate composition of the rhizosphere soil of maize and white lupin was significantly affected by P form (KP or FeP), whereas, this was not the case for faba bean. In maize, the carboxylate composition of the rhizosphere soil differed significantly between intercropping and monocropping. Yield and P uptake were similar in monocropping and intercropping. Monocropped faba bean had a greater concentration of phospholipid fatty acids in the rhizosphere than that in intercropping. Intercropping changed the microbial community structure in faba bean but not in the other corps. The results show that P supply and P form, as well as intercropping can affect carboxylate concentration and microbial community composition in the rhizosphere, but that the effect is plant species-specific. In contrast to previous studies in alkaline soils, intercropping of maize with legumes did not result in increased maize growth suggesting that the legumes did not increase P availability to maize in this acidic soil.  相似文献   

20.
Poor iron (Fe) availability in soil represents one of the most important limiting factors of agricultural production and is closely linked to physical, chemical and biological processes within the rhizosphere as a result of soil–microorganism–plant interactions. Iron shortage induces several mechanisms in soil organisms, resulting in an enhanced release of inorganic (such as protons) and organic (organic acids, carbohydrates, amino acids, phytosiderophores, siderophores, phenolics and enzymes) compounds to increase the solubility of poorly available Fe pools. However, rhizospheric organic compounds (ROCs) have short half‐lives because of the large microbial activity at the soil–root interface, which might limit their effects on Fe mobility and acquisition. In addition, ROCs also have a selective effect on the microbial community present in the rhizosphere. This review aims therefore to unravel these complex dynamics with the objective of providing an overview of the rhizosphere processes involved in Fe acquisition by soil organisms (plants and microorganisms). In particular, the review provides information on (i) Fe availability in soils, including mineral weathering and Fe mobilization from soil minerals, ligand and element competition and plant‐microbe competition; (ii) microbe–plant interactions, focusing on beneficial microbial communities and their association with plants, which in turn influences plant mineral nutrition; (iii) plant–soil interactions involving the metabolic changes triggered by Fe deficiency and the processes involved in exudate release from roots; and (iv) the influence of agrochemicals commonly used in agricultural production systems on rhizosphere processes related to Fe availability and acquisition by crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号