首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Influence of long‐term sodic‐water (SW) irrigation with or without gypsum and organic amendments [green manure (GM), farmyard manure (FYM), and rice straw (RS)] on soil properties and nitrogen (N) mineralization kinetics was studied after 12 years of rice–wheat cropping in a sandy loam soil in northwest India. Long‐term SW irrigation increased soil pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) and decreased organic carbon (OC) and total N content. On the other hand, application of gypsum and organic amendments resulted in significant improvement in all these soil properties. Mineralization of soil N ranged from 54 to 111 mg N kg?1 soil in different treatments. Irrigation with SW depressed N mineralization. In SW‐irrigated plots, two flushes of N mineralization were observed; the first during 0 to 7 d and the second after 28 d. Amending SW irrigated plots with GM and FYM enhanced mineralization of soil N. Gypsum application along with SW irrigation reduced cumulative N mineralization at 56 days in RS‐amended plots but increased it under GM‐treated, FYM‐treated, or unamended plots. Nitrogen mineralization potential (No) ranged from 62 to 543 mg N kg?1 soil. In the first‐order zero‐order model (FOZO), the easily decomposable fraction ranged from 5.4 to 42 mg N kg?1 soil. Compared to the first‐order single compartment model, the FOZO model could better explain the variations in N mineralization in different treatments. Variations in No were influenced more by changes in pH, SAR, and ESP induced by long‐term SW irrigations and amendments rather than by soil OC.  相似文献   

2.
土壤水分和植物残体对紫色水稻土有机碳矿化的影响   总被引:11,自引:3,他引:11  
采用为期62.d的实验室恒温(281)℃培养方法,研究了土壤水分和植物残体对紫色水稻土有机碳矿化的影响。结果表明,紫色水稻土有机碳矿化速率在培养30.d后基本达到稳定,好气条件下土壤有机碳累积矿化量高于淹水条件,且差异达到极显著水平。用一级动力学方程对植物残体的矿化速率进行拟合表明,好气条件下,植物残体的分解速率常数(k值)大小顺序为蚕豆秸秆玉米秸秆水稻秸秆,而淹水条件则为水稻秸秆蚕豆秸秆玉米秸秆。水分状况和植物残体化学组分的差异影响紫色水稻土中有机碳的动态变化,最终导致碳累积矿化量差异。  相似文献   

3.
Experiments were conducted in an attempt to study the impact of using different organic residues as fertilizers on grain yield, magnitude of nitrous oxide (N2O) emissions, and soil characteristics. Five fertilizer treatments including conventional nitrogen (N) fertilizer, cow manure, rice straw, poultry manure, and sugarcane bagasse were applied in the rice field in 2012. The maximum reduction in seasonal N2O emissions (10–27%) was observed under the influence of rice straw application over conventional N fertilizer. The experiment was repeated for a second season in 2013 with the same treatments for further confirmation of the results obtained during the first year of experimentation. The application of rice straw also showed a slight advantage by increasing grain yield (4.38 t ha?1) compared to control. Important soil properties and plant growth parameters were studied and their relationships with N2O emission were worked out. The incorporation of organic residues helped in restoring and improving the soil health and effectively enhancing grain yield with reduced N2O emission from rice fields.  相似文献   

4.
Agricultural activities are responsible for greenhouse gases (GHGs) emission in the environment. Strategies are required to enhance the soil organic carbon (SOC) and nitrogen (N) sequestration to adapt and mitigate the climate change. We investigated GHGs emission, SOC and N enhancement under conventional tillage (CT) and zero tillage (ZT) with N management in wheat (Triticum aestivum L.). Seasonal carbon dioxide (CO2) emission and global warming potential (GWP) reduced for ZT treatments over CT without residues and 100% of required N with a blanket split application (CT – R + 100N). The ZT with 5 t ha?1 maize (Zea mays L.) residues retention and 75% of required N and GreenSeekerTM (GS)-aided N management (ZT + R + 75N + GS) reduced yield-scaled GHGs emission and increased total organic carbon (C) stock over CT – R + 100N. However, nitrous oxide (N2O) emission was lower in CT. The GS-based N management saved 26–35 kg N ha?1 in different tillage systems in both years over blanket application with higher N uptake and associated reduction in N2O emission. The study recommends that ZT with residues retention and GS-based N management can minimize the GHGs emission and improve the SOC.  相似文献   

5.
The increase in two controversial global environmental issues, climate warming and nitrogen (N) deposition, may have distinct effects on the processes and functioning of terrestrial ecosystems. Nutrient resorption is an important determinant of plant community nutrient dynamics, especially in nutrient-limited ecosystems, but information about N and phosphorus (P) resorption in alpine ecosystems is still lacking. A long-term simulated warming and exogenous N addition experiment initiated in July 2010 was conducted in an alpine meadow in Damxung County in northern Tibet. The experiment consisted of conditions of warming and no warming crossed with three N addition levels: 0 (CK), 20 (N20), and 40 (N40) kg N · ha?1 · year?1. With increasing N addition levels, the N content and the N/P ratio in plant leaves gradually increased, while the P limitation of plant growth was aggravated by N addition. The moderate N addition level (N20) increased plant N resorption efficiency (NRE), while the high N addition level (N40) had no effect on the NRE of Kobresia pygmaea or Anaphalis xylorhiza. N addition significantly increased the P resorption efficiency (PRE) in Stipa capillacea leaves. However, N addition did not change the community NRE or the community PRE. The soil N content decreased under the warming treatment. At the community level, warming significantly increased the NRE by 12% and 16%, and the PRE by 26% and 24% under the CK and N40 treatments, respectively. The NRE and PRE were higher in S. capillacea than in K. pygmaea and A. xylorhiza, especially at the high N addition level (38% and 45% higher NRE and 36% and 15% higher PRE compared to K. pygmaea and A. xylorhiza, respectively). Correlation analysis showed that the NRE and PRE in plant leaves were mainly mediated by soil inorganic N availability, and tended to decrease with increase of soil N availability, suggesting that N loss due to warming could induce changes in nutrient resorption in alpine ecosystems. The species-specific responses to N addition and the stronger competitive advantage of S. capillacea may change the community structure and subsequently affect the decomposition process in this alpine meadow under future global climate change scenarios.  相似文献   

6.
Field incubations have been pointed out as the more realistic method to provide estimates of nitrogen (N) mineralization. The aim of this study is to evaluate the quality of the results obtained in a field incubation using an open reactor to estimate net N mineralization and N leaching. The incubation experiment was initiated with 24 reactors. At each date, the reactors were destructed and mineral N in the soil and adsorbed on the exchange resins was determined. Net N mineralization and N leaching were estimated as 23.3 and 18.0 mg/kg, respectively. The results revealed an acceptable repeatability, with coefficient of variation (CV) of 9.0%, a significant adjustment (r2 = 0.991), and a low root mean square error (Syx = 4.2) for the regression model used. The use of this type of reactor may be considered as a reliable alternative to assess N mineralization kinetics from native organic matter and probably for organic residues applied to soils in field studies.  相似文献   

7.
ABSTRACT

We studied soil nitrogen (N) management in a farmer’s organic rice farming in Japan, where the farmer applied no external N but incorporated gramineous fallow weeds and rice residues as in situ N sources. We focused on the effect of fallow weed incorporation on N-supplying capacity of the paddy soil by tracking decomposition of 15N-labeled fallow weeds after incorporation. The result fits well to the first order kinetics with the decomposition rate of 34.3% a year. A model of soil N accumulation and mineralization based on the first order kinetics showed that soil organic N originated from the incorporated weed would become saturated at the level 1.92 folds the annual input of weed N after several consecutive years of the incorporation. Mineralizable soil N (Min-N) of the weed origin would also become saturated after several years accounting for 21.2% of the total Min-N which includes the indigenous soil N from plow layer. We suspended weed incorporation (SWI) in a sub-plot of the fields for two consecutive years to compare Min-N therein with that in another subplot in the same fields subjected to continued weed incorporation (CWI). After 2 years of the suspension treatment, Min-N in SWI decreased to a similar extent as estimated with the soil-N model based on the first-order kinetics, with which we estimated that 16.9% of annual N uptake by the rice plants originated from the weed including 5.9% from the weed incorporated in the same year and 11.0% from that in the past years. N inflow to soil organic N from the weed was very close to N outflow attaining the steady state. The rice yield could thus be sustained by maintaining the soil N-supplying capacity via the internal cycling of fallow weed N.  相似文献   

8.
The objective of this work was to provide evidence on the effects of faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) on the dynamics of soil N availability and yield parameters of wheat (Triticum turgidum L. var. durum) in a legume–wheat rotation in comparison with the effects of the more extensively studied common vetch (Vicia sativa L.). Soil samples were taken from field plots just before wheat sowing and incubated in the laboratory to assess N mineralization potential, soil respiration and N immobilization after incorporation of legume residues. Soil after vetch cultivation showed the highest residual N and mineralization potential (120 mg N kg?1 soil), the greatest CO2 release and the smallest N immobilization. Smaller mineral N release (80 mg N kg?1 soil) was shown by soil after faba bean cultivation, which, however, would be capable to support an average wheat production without fertilization. Soil after chickpea and wheat cultivation manifested no differences in residual N and mineralization or immobilization potential. Laboratory results were well correlated with grain yield and N uptake during the second season of rotation in the field. All legumes resulted in significant yield surpluses and provided N credit to the following unfertilized wheat.  相似文献   

9.
Nitrogen-use efficiency can be enhanced through an understanding of the nitrogen (N) mineralization behavior of organic sources. An incubation study was conducted to assess the impact of organic manures on N mineralization. The manures, farmyard manure (FYM), Leucaena leucocephala, and poultry manure, were applied to the soil alone or along with urea. There was a rapid increase in the amount of mineral N released with a peak appearing either at 14 days (+urea treatments) or 21 days (manure only) of aerobic incubation. Thereafter the net N mineralized decreased gradually and levelled off beyond day 56. Overall the cumulative net N mineralized after 98 days of incubation was in the order urea > Leucaena + urea > poultry manure + urea > FYM + urea > Leucaena > poultry manure > FYM > zero N. The potentially mineralizable N (N0) was lower in treatments where urea was not applied.  相似文献   

10.
Predicting nitrogen (N) mineralization has been one of the greatest challenges to improving N management in agriculture. A laboratory incubation experiment was conducted to study the N mineralization of soil amended with rock phosphate (RP)-enriched composts. The RP-enriched rice straw compost amended soil mineralized highest N as compared to compost prepared from mustard stover and tree leaves. The first-order model was found to be the most suitable for N because it provided the best fit to the experimental data and for its simplicity. The model predicted that potentially mineralized N (N0) was varied from 4.0 to 52.1 mg kg?1 and the mineralization rate k varied from 0.015 to 0.066 day?1. The rice straw compost amended soil had higher N0 value than mustard stover and tree leaves compost amended soil. This study demonstrated the importance of application of rock phosphate-enriched composts in improving N supplying capacity of soil.  相似文献   

11.
Abstract

The rate and timing of manure application when used as nitrogen (N) fertilizer depend on N‐releasing capacity (mineralization) of manures. A soil incubation study was undertaken to establish relative potential rates of mineralization of three organic manures to estimate the value of manure as N fertilizer. Surface soil samples of 0–15 cm were collected and amended with cattle manure (CM), sheep manure (SM), and poultry manure (PM) at a rate equivalent to 200 mg N kg?1 soil. Soil without any amendment was used as a check (control). Nitrogen‐release potential of organic manures was determined by measuring changes in total mineral N [ammonium‐N+nitrate‐N (NH4 +–N+NO3 ?–N)], NH4 +–N, and accumulation of NO3 ?–N periodically over 120 days. Results indicated that the control soil (without any amendment) released a maximum of 33 mg N kg?1soil at day 90, a fourfold increase (significant) over initial concentration, indicating that soil had substantial potential for mineralization. Soil with CM, SM, and PM released a maximum of 50, 40, and 52 mg N kg?1 soil, respectively. Addition of organic manures (i.e., CM, SM, and PM) increased net N released by 42, 25, and 43% over the control (average). No significant differences were observed among manures. Net mineralization of organic N was observed for all manures, and the net rates varied between 0.01 and 0.74 mg N kg?1 soil day?1. Net N released, as percent of organic N added, was 9, 10, and 8% for CM, SM, and PM. Four phases of mineralization were observed; initial rapid release phase in 10–20 days followed by slow phase in 30–40 days, a maximum mineralization in 55–90 days, and finally a declined phase in 120 days. Accumulation of NO3 ?–N was 13.2, 10.6, and 14.6 mg kg?1 soil relative to 7.4 mg NO3 ?–N kg?1 in the control soil, indicating that manures accumulated NO3 ?–N almost double than the control. The proportion of total mineral N to NO3 ?–N revealed that a total of 44–61% of mineral N is converted into NO3 ?–N, indicating that nitrifiers were unable to completely oxidize the available NH4 +. The net rates of mineralization were highest during the initial 10–20 days, showing that application of manures 1–2 months before sowing generally practiced in the field may cause a substantial loss of mineralized N. The rates of mineralization and nitrification in the present study indicated that release of inorganic N from the organic pool of manures was very low; therefore, manures have a low N fertilizer effect in our conditions.  相似文献   

12.
Abstract

A greenhouse experiment was conducted to determine the effect of rice straw residue on growth and uptake of added 15N‐labeled ammonium nitrogen (NH4‐N) (3% 15N abundance at the rate of 150 kg N ha?) by rice in Crowley silt loam soil (Typic Albaqualfs). Higher rates of rice straw addition had an adverse affect on plant growth from the first to sixth week. After 6 weeks, the high rice straw treatment had a positive effect on plant growth (P<0.05). The 15N‐labeled ammonium or fertilizer nitrogen (N) uptake by rice was significantly lower (P<0.05) in the high rice straw treatment as compared to lower rice straw treatments. Greater plant growth was recorded under alternate flooding and draining condition as compared to continuously flooded treatment (P<0.01).  相似文献   

13.
Field observations indicate a long‐term decrease in crop uptake of N derived from soil organic matter under continuous production of irrigated lowland rice (Oryza sativa L.). Decreased availability has been associated with an accumulation of phenolic lignin residues in soil organic matter, which can chemically bind N. To evaluate the hypothesis that the decrease in N availability results primarily from anaerobic decomposition of incorporated crop residues, 15N‐labelled fertilizer was applied three times during one growing season in a field study that compared anaerobic decomposition with aerobic decomposition for annual rotations of rice (Oryza sativa L.)–rice and rice–maize (Zea mays L.). Contents of 15N and total N during the growing season were measured in humic fractions and total soil organic matter. Results indicated an inhibition of N mineralization for the rice–rice rotation with anaerobic decomposition of crop residues, both for 15N that was immobilized after application and for total N. The inhibition was strongest for 15N that was applied at planting. It became more evident as the season progressed and reached significant levels during mid‐season stages of plant growth when crop demand for N peaks. These results were clearest for a young, phenolic‐rich humic fraction that was active in 15N immobilization and remineralization. Comparable but less significant trends were evident for a more recalcitrant humic fraction and for soil organic matter. Trends in crop‐N uptake associated the combination of rice–rice rotation and anaerobic decomposition with inhibited uptake of soil organic N but uninhibited uptake of fertilizer N. Increased aeration of rice soils through aerobic decomposition of crop residues or crop rotation is a promising management technique for improving soil N supply in lowland rice cropping.  相似文献   

14.
Rice is one of the essential foods of the human diet and advances in agronomic crop management, such as nitrogen (N) rate management, can improve productivity and profitability and reduce adverse environmental impacts. Nitrogen fertilization rates in Chile are generally based on crop yield without considering the soil's capacity to supply it. Five rice soils of the Inceptisol, Alfisol, and Vertisol orders in central Chile were incubated at 20°C for 21 d in the 2011–2012 season, and their N mineralization capacity was determined before sowing the rice crop. These soils were cropped in field conditions with rice fertilized with 0, 80, and 160 kg N ha?1; grain yield, harvest index, and grain sterility were determined. Mineralized N was associated with some chemical properties of each soil, and with the response to N rates in grain yield and grain sterility. Results indicated that the N rates to be used in rice must consider soil N mineralization capacity and crop yield potential. Finally, the best response to the N rates used in this study and the effect on both harvest index and grain sterility was achieved with 80 kg N ha?1.  相似文献   

15.
ABSTRACT

Understanding how plants use of various nitrogen (N) sources is important for improving plant N use efficiency in organic farming systems. This study investigated the effects of farming management practices (organic and conventional) on pakchoi short-term uptake of glycine (Gly), nitrate (NO3 ?) and ammonium (NH4 +) under two N level conditions. Results showed that plant N uptake rates and N contributions from the three N forms in the low N (0.15 μg N g?1 dry soil) treatment did not significantly differ between the organic and conventional soils, except the significantly greater Gly contribution in organic soil at 24 h after tracer addition. Under high N (15 μg N g?1 dry soil) conditions, the N uptake rates, uptake efficiencies, and N contributions of Gly and NH4 +-N were significantly greater in pakchoi cultivated in the organic soil compared to conventional soil, whereas the N uptake rates and N contributions from NO3 -N decreased in pakchoi cultivated in the organic soil. The greater Gly-N uptake in plants grown in high-N treated organic soil may be related to the greater gross N transformation, Gly turnover rate and the increased expression of an amino acid transporter gene BcLHT1. Intact Gly contributed at most 6% to Gly-derived N at 24 h after tracer additions, which accounting for about 1.24% of the total N uptake in organic soil. Our study suggested that Gly-N and other organic source N might serve as a more important compensatory N source for plants in organic farming.  相似文献   

16.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

17.
We studied the changes in composition of the soil solution following mineralization of N at different temperatures, with a view to using TDR to calculate temperature coefficients for the mineralization of N. Mineralization from soil organic nitrogen was measured during aerobic incubation under controlled conditions at six temperatures ranging from 5.5 to 30°C, and at constant water content in a loamy sand soil. We also monitored during the incubation the concentrations of SO42–, Cl, HCO3, Ca2+, K+, Mg2+ and Na+, and the pH and the electrical conductivity in 1:2 soil:water extracts. Zero‐order N mineralization rates ranged between 0.164 at 5.5°C and 0.865 mg N kg?1 soil day?1 at 30°C. There was a significant decrease in soil pH during incubation, of up to 0.6 pH units at the end of the incubation at 30°C. The electrical conductivity of the soil extracts increased significantly at all temperatures (the increase between the start and the end of the incubation was 4‐fold at 30°C) and was strongly correlated with N mineralization. The ratio of bivalent to monovalent cations increased markedly during mineralization (from 2.2 to 5.9 at 30°C), and this increase influenced the evolution of the electrical conductivity of the soil solution through the differences in molar‐limiting ion conductivity between mainly Ca2+ and K+. Zero‐order mineralization rate constants, k, for NO3 concentrations calculated from TDR varied between 0.070 (at 5.5°C) and 0.734 mg N kg?1 soil day?1 (at 30°C), which were slightly smaller, but in the same range, as the measured rates. Underestimation of the measured N mineralization rates was due, at least in part, to differences in cation composition of the soil solution between calibration and mineralization experiments. A temperature‐dependence model for N mineralization from soil organic matter was fitted to both the measured and the TDR‐calculated mineralization rates, k and kTDR, respectively. There were no significant differences between the model parameters from the two. Our results are promising for further use of TDR to monitor soil organic N mineralization. However, the influence of changing cation ratios will also have to be taken into account when trying to predict N mineralization from measured electrical conductivities.  相似文献   

18.
Increasing use of N fertilizer for crop production necessitates more rapid estimates on N provided by the soil in order to prevent under‐ or overfertilization and their adverse effect on plant nutrition and environmental quality. A study was conducted to investigate the responses of arginine ammonification (AA), L‐glutaminase activity (LG), soil N–mineralization indices, corn (Zea mays L.) crop–yield estimation, and corn N uptake to application of organic amendments. The relationships between corn N uptake and the microbial and enzymatic processes which are basically related to N mineralization in soil were also studied. The soil samples were collected from 0–15 cm depth of a calcareous soil that was annually treated with 0, 25, or 100 Mg ha–1 (dry‐weight basis) of sewage sludge and cow manure for 7 consecutive years. Soil total N (TN), potentially mineralizable N (N0), and initial potential rates of N mineralization (kN0) were significantly greater in sewage sludge–treated than in cow manure–treated soils. However, the amendment type did not influence soil organic C (SOC), AA, LG, and anaerobic index of N mineralization (Nana). The application rates proportionally increased N‐availability indices in soil. Corn N concentration and uptake were correlated with indices of mineralizable N. A multiple stepwise model using AA and Nana as parameters provided the best predictor of corn N concentration (R = 0.86, p < 0.001). Another model using only LG provided the best predictor of corn N uptake (R = 0.78, p < 0.001). This results showed that sewage‐sludge and cow‐manure application is readily reflected in certain soil biological properties and that the biological tests may be useful in predicting N mineralization and availability in soil.  相似文献   

19.
Use of the nitrogen balance sheet method as a fertilization strategy in the semi-arid Pampas of Argentina is restricted because of a lack of available information regarding nitrogen mineralization in its coarse soils. Our objective was to determine nitrogen mineralization during corn (Zea mays L.) and following wheat (Triticum aestivum L.) growing cycles under contrasting tillage systems in a representative soil of the region. Mineralized nitrogen from decomposing residues was estimated using the litter bag method and mineralization from soil organic matter using a mass balance approach. Soil water content was higher under no-till during the corn growing season and no differences were detected for wheat during this period. Soil temperature was practically not affected by tillage system. Biomass and nitrogen absorption were higher under no-till than under disk till in corn (p ≤ 0.05), as were nitrogen mineralization from residues and organic matter (p ≤ 0.05). In wheat, no differences in biomass, nitrogen absorption and mineralization were detected between treatments. Mineralization during crop growing cycles accounted for 44.8–67.5% of the absorbed nitrogen. Differences in nitrogen mineralization between tillage systems resulted from the greater water availability under no-till than under disk till during the summer.  相似文献   

20.
长期施肥对土壤氮矿化的影响   总被引:14,自引:1,他引:14  
Two field experiments were conducted in Jiashan and Yuhang towns of Zhejiang Province, China, to study the feasibility of predicting N status of rice using canopy spectral reflectance. The canopy spectral reflectance of rice grown with different levels of N inputs was determined at several important growth stages. Statistical analyses showed that as a result of the different levels of N supply, there were significant differences in the N concentrations of canopy leaves at different growth stages. Since spectral reflectance measurements showed that the N status of rice was related to reflectance in the visible and NIR (near-infrared) ranges, observations for rice in 1 nm bandwidths were then converted to bandwidths in the visible and NIR spectral regions with IKONOS (space imaging) bandwidths and vegetation indices being used to predict the N status of rice. The results indicated that canopy reflectance measurements converted to ratio vegetation index (RVI) and normalized difference vegetation index (NDVI) for simulated IKONOS bands provided a better prediction of rice N status than the reflectance measurements in the simulated IKONOS bands themselves. The precision of the developed regression models using RVI and NDVI proved to be very high with R2 ranging from 0.82 to 0.94, and when validated with experimental data from a different site, the results were satisfactory with R2 ranging from 0.55 to 0.70. Thus, the results showed that theoretically it should be possible to monitor N status using remotely sensed data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号