首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared populations of a forest damselfly —Calopteryx maculata — in two kinds of landscapes. In fragmented landscapes, forested foraging patches were separated from streams (where oviposition and mating occur) by up to 500 m of pasture. In non-fragmented landscapes, there was continuous forest cover adjacent to streams. The prevalence and intensity of midgut infections of a gregarine parasite were significantly lower in the fragmented landscapes than in the non-fragmented landscapes. We have shown elsewhere that in the fragmented landscapes, damselflies move over greater areas to forage than in the non-fragmented landscapes. We postulate that these movements lower the rate of encounter between damselflies and oocysts, thus lowering the prevalence and intensity of infection. The differences suggest that actual habitat fragmentation events would alter the relationship between host and parasite, but that populations of both species would persist after fragmentation. Prevalence of parasitism is related to age but we found no residual effects of size on parasitism.  相似文献   

2.
Maintaining and restoring connectivity among high-quality habitat patches is recognized as an important goal for the conservation of animal populations. To provide an efficient measure of potential connectivity pathways in heterogeneous landscapes, least-cost route analysis has been combined with graph-theoretical techniques. In this study we use spatially explicit least-cost habitat graphs to examine how matrix quality and spatial configuration influence assessments of habitat connectivity. We generated artificial landscapes comprised of three landcover types ranked consistently from low to high quality: inhospitable matrix, hospitable matrix, and habitat. We controlled the area and degree of fragmentation of each landcover in a factorial experiment for a total of 20 combinations replicated 100 times. In each landscape we compared eight sets of relative landcover qualities (cost values of 1 for habitat, between 1.5 and 150 for hospitable matrix, and 3–10,000 for inhospitable matrix). We found that the spatial location of least-cost routes was sensitive to differences in relative cost values assigned to landcover types and that the degree of sensitivity depended on the spatial structure of the landscape. Highest sensitivity was found in landscapes with fragmented habitat and between 20 and 50% hospitable matrix; sensitivity decreased as habitat fragmentation decreased and the amount of hospitable matrix increased. As a means of coping with this sensitivity, we propose identifying multiple low-cost routes between pairs of habitat patches that collectively delineate probable movement zones. These probable movement zones account for uncertainty in least-cost routes and may be more robust to variation in landcover cost values.  相似文献   

3.
Applied ecology could benefit from new tools that identify potential movement pathways of invasive species, particularly where data are sparse. Cost surface analysis (CSA) estimates the permeability (friction) across a landscape and can be applied to dispersal modelling. Increasingly used in a diversity of applications, several fundamental assumptions that might influence the outputs of CSA (cost surfaces and least-cost pathways) have yet to be systematically examined. Thus, we explore two issues: the presumed relationship between habitat preferences and dispersal behaviour as well as the degree of landscape fragmentation through which an organism moves by modelling a total of 18 sensitivity and dispersal scenarios. We explored the effect of fragmentation by altering the friction values (generally assigned using expert opinion) associated with patch and linear features. We compared these sensitivity scenarios in two sites that differed in fragmentation. We also used eastern grey squirrels (Sciurus carolinensis) as an example invading species and compared diffusion models and two contrasting cost surface dispersal scenarios. The diffusion model underestimated spread because squirrels did not move randomly through the landscape. Despite contrasting assumptions regarding dispersal behaviour, the two cost surfaces were strikingly similar while the least-cost paths differed. Furthermore, while the cost surfaces were insensitive to changes in friction values for linear features, they were sensitive to assumptions made for patch features. Our results suggest that movement in fragmented landscapes may be more sensitive to assumptions regarding friction values than contiguous landscapes. Thus, the reliability of CSA may depend not only on the range of friction values used for patches but also the degree of contiguity in the landscape.  相似文献   

4.
We extend the recently proposed graph-theoretical landscape perspective by applying some network-centric methods mainly developed in the social sciences. The methods we propose are suitable to (1) identify individual habitat patches that are disproportionally high in importance in preserving the ability of organisms to traverse the fragmented landscape, and (2) find internally well-connected compartments of habitat patches that contribute to a spatial compartmentalization of species populations. We demonstrate the utility of these methods using an agricultural landscape with scattered dry-forest patches in southern Madagascar, inhabited by the ring-tailed lemur, Lemur catta. We suggest that these methods are particularly suitable in landscapes where species’ traversability is not fully inhibited by fragmentation, but merely limited. These methods are potentially highly relevant in studying spatial aspects of resilience and in the design of natural reserves.  相似文献   

5.
The effects of habitat area and fragmentation are confounded in many studies. Since a reduction in habitat area alone reduces patch size and increases patch isolation, many studies reporting fragmentation effects may really be documenting habitat-area effects. We designed an experimental landscape system in the field, founded on fractal neutral landscape models, to study arthropod community responses to clover habitat in which we adjusted the level of fragmentation independently of habitat area. Overall, habitat area had a greater and more consistent effect on morphospecies richness than fragmentation. Morphospecies richness doubled between 10 and 80% habitat, with the greatest increase occurring up to 40% habitat. Fragmentation had a more subtle and transient effect, exhibiting an interaction at intermediate levels of habitat only at the start of the study or in the early-season (June) survey. In these early surveys, morphospecies richness was higher in clumped 40–50% landscapes but higher in fragmented landscapes at 60–80% habitat. Rare or uncommon species are expected to be most sensitive to fragmentation effects, and we found a significant interaction with fragmentation at intermediate levels of habitat for these types of morphospecies in early surveys. Although the effects of fragmentation are expected to amplify at higher trophic levels, all trophic levels exhibited a significant fragmentation effect at intermediate levels of habitat in these early surveys. Predators/parasitoids were more sensitive to habitat area than herbivores, however. Thus, our results confirm that habitat area is more important than fragmentation for predicting arthropod community responses, at least in this agricultural system.  相似文献   

6.
We studied the effects of landscape structure, habitat loss and fragmentation on genetic differentiation of Moor frog populations in two landscapes in The Netherlands (Drenthe and Noord-Brabant). Microsatellite data of eight loci showed small to moderate genetic differentiation among populations in both landscapes (F ST values 0.022 and 0.060, respectively). Both heterozygosity and population differentiation indicate a lower level of gene flow among populations in Noord-Brabant, where populations were further apart and have experienced a higher degree of fragmentation for a longer period of time as compared to populations in Drenthe. A significant isolation-by-distance pattern was found in Drenthe, indicating a limitation in dispersal among populations due to geographic distance. In Noord-Brabant a similar positive correlation was obtained only after the exclusion of a single long-time isolated population. After randomised exclusion of populations a significant additional negative effect of roads was found but not of other landscape elements. These results are discussed in view of improving methodology of assessing the effects of landscape elements on connectivity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Studies dealing with community similarity are necessary to understand large scale ecological processes causing biodiversity loss and to improve landscape and regional planning. Here, we study landscape variables influencing patterns of community similarity in fragmented and continuous forest landscapes in the Atlantic forest of South America, isolating the effects of forest loss, fragmentation and patterns of land use. Using a grid design, we surveyed birds in 41 square cells of 100 km2 using the point count method. We used multivariate, regression analyses and lagged predictor autoregressive models to examine the relative influence of landscape variables on community similarity. Forest cover was the primary variable explaining patterns of bird community similarity. Similarity showed a sudden decline between 20 and 40% of forest cover. Patterns of land use had a second order effect; native bird communities were less affected by forest loss in landscapes dominated by tree plantations (the most suitable habitat for native species) than in landscapes dominated by annual crops or cattle pastures. The effects of fragmentation were inconclusive. The trade-off between local extinctions and the invasion of extra-regional species using recently created habitats is probably the mechanism generating the observed patterns of community similarity. Limiting forest loss to 30–40% of the landscape cover and improving the suitability of human-modified habitats will contribute to maintain the structure and composition of the native forest bird community in the Atlantic forest.  相似文献   

8.
Tradable biodiversity credit systems provide flexible means to resolve conflicts between development and conservation land-use options for habitats occupied by threatened or endangered species. We describe an approach to incorporate the influence of habitat fragmentation into the conservation value of tradable credits. Habitat fragmentation decreases gene flow, increases rates of genetic drift and inbreeding, and increases probabilities of patch extinction. Importantly, tradable credit systems will change the level of fragmentation over time for small and/or declining populations. We apply landscape equivalency analysis (LEA), a generalizable, landscape-scale accounting system that assigns conservation value to habitat patches based on patch contributions to abundance and genetic variance at landscape scales. By evaluating habitat trades using two models that vary the relationship between dispersal behaviors and landscape patterns, we show that LEA provides a novel method for limiting access to habitat at the landscape-scale, recognizing that the appropriate amount of migration needed to supplement patch recruitment and to offset drift and inbreeding will vary as landscape pattern changes over time. We also found that decisions based on probabilities of persistence alone would ignore changes in migration, genetic drift, and patch extinction that result from habitat trades. The general principle of LEA is that habitat patches traded should make at least equivalent contributions to rates of recruitment and migration estimated at a landscape scale. Traditional approaches for assessing the “take” and “jeopardy” standards under the Endangered Species Act based on changes in abundance and probability of persistence may be inadequate to prevent trades that increase fragmentation.  相似文献   

9.
Inter-patch connectivity can be strongly influenced by topography and matrix heterogeneity, particularly when dealing with species with high cognitive abilities. To estimate dispersal in such systems, simulation models need to incorporate a behavioral component of matrix effects to result in more realistic connectivity measures. Inter-patch dispersal is important for the persistence of capercaillie (Tetrao urogallus) in central Europe, where this endangered grouse species lives in patchy populations embedded in a mountainous landscape. We simulated capercaillie movements with an individual-based, spatially explicit dispersal model (IBM) and compared the resulting connectivity measure with distance and an expert estimation. We used a landscape comprising discrete habitat patches, temporary habitat, non-habitat forests, and non-habitat open land. First, we assumed that dispersing individuals have perfect knowledge of habitat cells within the perceptual range (null model). Then, we included constraints to perception and accessibility, i.e., mountain chains, open area and valleys (three sub-models). In a full model, all sub-models were included at once. Correlations between the different connectivity measures were high (Spearman’s ρ > 0.7) and connectivity based on the full IBM was closer to expert estimation than distance. For selected cases, simple distance differed strongly from the full IBM measure and the expert estimation. Connectivity based on the IBM was strongly sensitive to the size of perceptual range with higher sensitivity for the null model compared to the full model that included context dependent perceptual ranges. Our heuristic approach is adequate for simulating movements of species with high cognitive abilities in strongly structured landscapes that influence perception and permeability.  相似文献   

10.
A probabilistic spatial model was created based on empirical data to examine the influence of different fire regimes on stand structure of lodgepole pine (Pinus contorta var. latifolia) forests across a >500,000-ha landscape in Yellowstone National Park, Wyoming, USA. We asked how variation in the frequency of large fire events affects (1) the mean and annual variability of age and tree density (defined by postfire sapling density and subsequent stand density) of lodgepole pine stands and (2) the spatial pattern of stand age and density across the landscape. The model incorporates spatial and temporal variation in fire and serotiny in predicting postfire sapling densities of lodgepole pine. Empirical self-thinning and in-filling curves alter initital postfire sapling densities over decades to centuries. In response to a six-fold increase in the probability of large fires (0.003 to 0.018 year−1), mean stand age declined from 291 to 121 years. Mean stand density did not increase appreciably at high elevations (1,029 to 1,249 stems ha−1) where serotiny was low and postfire sapling density was relatively low (1,252 to 2,203 stems ha−1). At low elevations, where prefire serotiny and postfire lodgepole pine density are high, mean stand densities increased from 2,807 to 7,664 stems ha−1. Spatially, the patterns of stand age became more simplified across the landscape, yet patterns of stand density became more complex. In response to more frequent stand replacing fires, very high annual variability in postfire sapling density is expected, with higher means and greater variation in stand density across lodgepole pine landscapes, especially in the few decades following large fires.  相似文献   

11.
This study examined the effects of habitat fragmentation on meadow vole (Microtus pennsylvanicus) population dynamics in experimental landscape patches. The study was conducted from May–November 1993 at the Miami University Ecology Research Center. Eight 0.1-ha small mammal enclosures were used. Four enclosures contained a 160 m2 nonfragmented patch and four enclosures contained four 40 m2 fragmented patches. Thus, each treatment was replicated 4 times in a systematic research design. The patches in both treatments contained high-quality habitat surrounded by low-quality matrix. Six pairs of adult meadow voles were released in each enclosure on 27 May 1993. Populations were monitored by live-trapping and radio-telemetry methods. Significantly greater densities of female voles were found during October in the fragmented treatment compared to the nonfragmented treatment. Also, significantly more females than males were found in the fragmented treatment compared to the nonfragmented treatment for the total study period. Significantly more subadult and juvenile males were found in the matrix versus the patch of the nonfragmented treatment compared to the fragmented treatment. Males in the fragmented treatment had significantly greater mean home range size than males or females in the nonfragmented treatment. There appears to exist a relationship between patch fragmentation and the social structure of meadow vole populations; this relationship appears to function as a population regulatory mechanism.  相似文献   

12.
Studies on the distribution of mammalian carnivores in fragmented landscapes have focused mainly on structural aspects such as patch and landscape features; similarly, habitat connectivity is usually associated with landscape structure. The influence of food resources on carnivore patch use and the important effect on habitat connectivity have been overlooked. The aim of this study is to evaluate the relative importance of food resources on patch use patterns and to test if food availability can overcome structural constraints on patch use. We carried out a patch-use survey of two carnivores: the beech marten (Martes foina) and the badger (Meles meles) in a sample of 39 woodland patches in a fragmented landscape in central Italy. We used the logistic model to investigate the relative effects on carnivore distribution of patch, patch neighbourhood and landscape scale variables as well as the relative abundance of food resources. Our results show how carnivore movements in fragmented landscapes are determined not only by patch/landscape structure but also by the relative abundance of food resources. The important take-home message of our research is that, within certain structural limits (e.g. within certain limits of patch isolation), by modifying the relative amount of resources and their distribution, it is possible to increase suitability in smaller/relatively isolated patches. Conversely, however, there are certain thresholds above which an increase in resources will not achieve high probability of presence. Our findings have important and generalizable consequences for highly fragmented landscapes in areas where it may not be possible to increase patch sizes and/or reduce isolation so, for instance, forest regimes that will increase resource availability could be implemented. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Changes in forest landscape structure have been suggested as a likely contributing factor behind the long-term decline in the numbers of cyclic grey-sided voles (Clethrionomys rufocanus) in northern Fennoscandian lowland regions in contrast to mountain regions due to the absence of forest management in the mountains. This study, for the first time, formally explored landscape structure in 29 lowland (LF) and 14 mountain forest (MF) landscapes (each 2.5 × 2.5 km) in northern Sweden, and related the results to the cumulated spring trapping index of the grey-sided vole in 2002–2006. The grey-sided vole showed striking contrasts in dynamics close in space and time. The MF landscapes were characterized by larger patches and less fragmentation of preferred forest types. The grey-sided vole was trapped in all of 14 analyzed MF landscapes but only in three out of 29 of the LF landscapes. MF and LF landscapes with grey-sided vole occurrence were characterized by similar focal forest patch size (mean 357 ha, minimum 82 ha and mean 360 ha, minimum 79 ha, respectively). In contrast, these MF compared to the LF landscapes were characterized by larger patches of preferred forest types and less fragmented preferred forest types and by a lower proportion of clear-cut areas. The present results suggest that landscape structure is important for the abundance of grey-sided voles in both regions. However, in the mountains the change from more or less seasonal dynamics to high-amplitude cycles between the mid 1990s and 2000s cannot be explained by changes in landscape structure.  相似文献   

14.
Landscape connectivity is considered important for species persistence, but linkages among landscape populations (metalandscape connectivity) may be necessary to ensure the long-term viability of some migratory songbirds at a broader regional scale. Because of regional source-sink dynamics, these species can maintain steady populations within extensively fragmented landscapes (landscape sinks) owing to high levels of immigration from source landscapes. We undertook a modeling study to identify the conditions under which immigration, an index of metalandscape connectivity, could rescue declining populations of songbirds in heavily disturbed landscapes. In general, low to moderate levels of immigration (m = 0–20%) were sufficient to rescue species with low edge-sensitivity in landscapes where<70% habitat had been destroyed. At the other extreme, moderate to high levels of immigration (m = 11–40%) were usually required to rescue highly edge-sensitive species in these same landscapes. Very high levels of immigration (m>40%) were required to rescue highly edge-sensitive species in extensively fragmented landscapes that had lost >50% habitat, or when any landscape lost ≥50% habitat gradually over a period of 100 or more years (r = 0.5% habitat lost/year). Paradoxically higher levels of immigration were thus necessary to offset population declines when habitat was lost gradually than when it was lost quickly, where population response lagged behind landscape change. This implies that the importance of metalandscape connectivity for population viability may not be fully appreciated in landscapes undergoing rapid rates of change. Natural immigration rates for migratory songbirds match the very high levels (>40%) we found necessary to sustain populations in heavily disturbed landscapes, which underscores the importance of metalandscape connectivity for the continued persistence of many migratory songbirds in the face of widespread habitat loss and fragmentation.  相似文献   

15.
Land-use change is forcing many animal populations to inhabit forest patches in which different processes can threaten their survival. Some threatening processes are mainly related to forest patch characteristics, but others depend principally on the landscape spatial context. Thus, the impact of both patch and landscape spatial attributes needs to be assessed to have a better understanding of the habitat spatial attributes that constraint the maintenance of populations in fragmented landscapes. Here, we evaluated the relative effect of three patch-scale (i.e., patch size, shape, and isolation) and five landscape-scale metrics (i.e., forest cover, fragmentation, edge density, mean inter-patch isolation distance, and matrix permeability) on population composition and structure of black howler monkeys (Alouatta pigra) in the Lacandona rainforest, Mexico. We measured the landscape-scale metrics at two spatial scales: within 100 and 500 ha landscapes. Our findings revealed that howler monkeys were more strongly affected by local-scale metrics. Smaller and more isolated forest patches showed a lower number of individuals but at higher densities. Population density also tended to be positively associated to matrices with higher proportion of secondary forests and arboreal crops (i.e. with greater permeability), most probably because these matrices can offer supplementary foods. The immature-to-female ratio also increased with matrix permeability, shape complexity, and edge density; habitat characteristics that can increase landscape connectivity and sources availability. The prevention of habitat loss and isolation, and the increment of matrix permeability are therefore needed for the conservation of this endangered Neotropical mammal.  相似文献   

16.
Metapopulation models are frequently used for analysing species–landscape interactions and their effect on structure and dynamic of populations in fragmented landscapes. They especially support a better understanding of the viability of metapopulations. In such models, the processes determining metapopulation viability are often modelled in a simple way. Animals’ dispersal between habitat fragments is mostly taken into account by using a simple dispersal function that assumes the underlying process of dispersal to be random movement. Species-specific dispersal behaviour such as a systematic search for habitat patches is likely to influence the viability of a metapopulation. Using a model for metapopulation viability analysis, we investigate whether such specific dispersal behaviour affects the predictions of ranking orders among alternative landscape configurations rated regarding their ability to carry viable metapopulations. To incorporate dispersal behaviour in the model, we use a submodel for the colonisation rates which allows different movement patterns to be considered (uncorrelated random walk, correlated random walk with various degrees of correlation, and loops). For each movement pattern, the landscape order is determined by comparing the resulting mean metapopulation lifetime Tm of different landscape configurations. Results show that landscape orders can change considerably between different movement patterns. We analyse whether and under what circumstances dispersal behaviour influences the ranking orders of landscapes. We find that the ‘competition between patches for migrants’ – i.e. the fact that dispersers immigrating into one patch are not longer available as colonisers for other patches – is an important factor driving the change in landscape ranks. The implications of our results for metapopulation modelling, planning and conservation are discussed.  相似文献   

17.
Understanding species-diversity patterns in heterogeneous landscapes invites comprehensive research on how scale-dependent processes interact across scales. We used two common beetle families (Tenebrionidae, detrivores; Carabidae, predators) to conduct such a study in the heterogeneous semi-arid landscape of the Southern Judean Lowland (SJL) of Israel, currently undergoing intensive fragmentation. Beetles were censused in 25 different-sized patches (500–40,000 m2). We used Fisher’s α and non-parametric extrapolators to estimate species diversity from 11,125 individuals belonging to 56 species. Patch characteristics (plant species diversity and cover, soil cover and degree of stoniness) were measured by field transects. Spatial variables (patch size, shape, physiognomy and connectivity) and landscape characteristics were analyzed by GIS and remote-sensing applications. Both patch-scale and landscape-scale variables affected beetle species diversity. Path-analysis models showed that landscape-scale variables had the strongest effect on carabid diversity in all patches. The tenebrionids responded differently: both patch-scale and landscape-scale variables affected species diversity in small patches, while mainly patch-scale variables affected species diversity in large patches. Most of the paths affected species diversity both directly and indirectly, combining the effects of both patch-scale and landscape-scale variables. These results match the biology of the two beetle families: Tenebrionidae, the less mobile and more site-attached family, responded to the environment in a fine-grained manner, while the highly dispersed Carabidae responded to the environment in a coarse-grained manner. We suggest that understanding abiotic and biotic variable interactions across scales has important consequences for our knowledge of community structure and species diversity patterns at large spatial scales.  相似文献   

18.
Animal response to landscape heterogeneity directs dispersal and affects connectivity between populations. Topographical heterogeneity is a major source of landscape heterogeneity, which is rarely studied in the contexts of movement, dispersal, or connectivity. The current study aims at characterizing and quantifying the impacts of topography on landscape connectivity. We focus on ‘hilltopping’ behavior in butterflies, a dispersal-like behavior where males and virgin females ascend to mountain summits and mate there. Our approach integrates three elements: an individual-based model for simulating animal movements across topographically heterogeneous landscapes; a formula for the accessibility of patches in homogenous landscapes; and a graphical analysis of the plots of the simulation-based vs. the formula-based accessibility values. We characterize the functional relationship between accessibility values and landscape structure (referred to as ‘accessibility patterns’) and analyze the influence of two factors: the intensity of the individuals’ response to topography, and the level of topographical noise. We show that, despite the diversity of topographical landscapes, animal response to topography results in the formation of two, quantifiable accessibility patterns. We term them ‘effectively homogeneous’ and ‘effectively channeled’. The latter, in which individuals move toward a single summit, prevails over a wide range of behavioral and spatial parameters. Therefore, ‘channeled’ accessibilities may occur in a variety of landscapes and contexts. Our work provides novel tools for understanding and predicting accessibility patterns in heterogeneous landscapes. These tools are essential for linking movement behavior, movement patterns and connectivity. We also present new insights into the practical value of ecologically scaled landscape indices.  相似文献   

19.
Predicting the vulnerability of landscapes to both the initial colonisation and the subsequent spread of invasive species remains a major challenge. The aim of this study was to assess the relative importance of sub-patch level factors and landscape factors for the invasion of the megaforb Heracleum mantegazzianum. In particular, we tested which factors affect the presence in suitable habitat patches and the cover-percentage within invaded patches. For this purpose, we used standard (logistic) regression modelling techniques. The regression analyses were based on inventories of suitable habitat patches in 20 study areas (each 1 km2) in cultural landscapes of Germany. The cover percentage in invaded patches was independent from landscape factors, except for patch shape, and even unsatisfactorily explained by sub-patch level factors included in the analysis (R 2 = 0.19). In contrast, presence of H. mantegazzianum was affected by both local and landscape factors. Woody habitat structure decreased the occurrence probability, whereas vicinity to transport corridors (rivers, roads), high habitat connectivity, patch size and perimeter-area ratio of habitat patches had positive effects. The significance of corridors and habitat connectivity shows that dispersal of H. mantegazzianum through the landscape matrix is limited. We conclude that cultural landscapes of Germany function as patch-corridor-matrix mosaics for the spread of H. mantegazzianum. Our results highlight the importance of landscape structure and habitat configuration for invasive spread. Furthermore, this study shows that both local and landscape factors should be incorporated into spatially explicit models to predict spatiotemporal dynamics and equilibrium stages of plant invasions.  相似文献   

20.
We tested the effects of increased landscape corridor width and corridor presence on the population dynamics and home range use of the meadow vole (Microtus pennsylvanicus) within a small-scale fragmented landscape. Our objective was to observe how populations behaved in patchy landscapes where the animals home range exceeded or equaled patch size. We used a small-scale replicated experiment consisting of three sets of two patches each, unconnected or interconnected by 1-m or 5-m wide-corridors, established in an old-field community (S.W. Ohio). Control (0-m) treatments supported significantly lower vole densities than either corridor treatment. Females were the dominant resident sex establishing smaller home ranges (<150m2) than males (>450m2). Significantly more male voles dispersed between patches with corridors than between patches without corridors. However, no difference was observed regarding the number of male voles dispersing between patches connected by corridors when compared to the number dispersing across treatments. Dispersal between connected patches was restricted to corridors based on tracking tube data. Corridor presence was more important than corridor width regarding the movement of male voles within their home range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号