首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The method presented describes the direct determination of lead in evaporated milk in which the milk ashing step prior to analysis is eliminated. Digital instrument readout units are microgram Pb/mL milk. Total analysis time after instrument calibration is less than 3 min per sample. Range of the method is 0.05-1.0 ppm lead in milk, and precision of the method expressed by relative standard deviation of duplicate pairs ranged from 30% at 0.1 micrograms/mL to 3% at 1.0 micrograms/mL of lead in milk. The method compares favorably with the AOAC official first action anodic stripping voltammetric method (25.074). In addition, the method appears to work equally well for skim evaporated milk, sweetened condensed milk, and nonfat powdered dry milk when the latter two are reconstituted with water according to product label instructions. Recovery and interference studies are presented.  相似文献   

2.
A galvanostatic stripping chronopotentiometric (GSCP) method for the simultaneous determination of cadmium, lead, and copper in commercial margarines and butters is described. Quantitative analyses of heavy metals in the mineralized fat samples, except standard addition method, were carried out automatically. The mean concentrations of Cd(II), Pb(II), and Cu(II) in different types of margarines and butters varied from 9.1 to 26.2, 9.2-14.2, 298.2-364.0 microg x kg(-)(1), respectively, that is below the legal requirements. The detection limits are 0.02, 0.02, and 0.06 microg x L(-)(1) for Cd(II), Pb(II) and Cu(II), while the reproducibilities are 3.3, 5.7, and 2.0%, respectively. The comparable precision (RSD = 0.76-4.5 and 0.87-4.9%) and recovery (96.7-102.2% and 96.1-103.2%) for the proposed GSCP and standard GFAAS methods, demonstrate the benefit of GSCP method in the routine analysis of heavy metal ions in fats.  相似文献   

3.
The aim of this work was to determine the selenium content in nut samples by cathodic stripping potentiometry. Dry-powdered nuts were digested by HNO(3) and dissolved with concentrated hydrochloric acid. To avoid the interference of natural oxygen, the potentiometric determination of selenium was carried out in an electrolyte solution consisting of 2 M CaCl(2) and 4 M HCl. The analysis was executed applying an electrolysis potential of -150 mV for 60 s and a constant current of -30 microA. Under these conditions, detection limits lower than 1.0 ng g(-)(1) were obtained for selenium analysis in nuts. The relative standard deviation of these measurements (expressed as rsd %) ranged from 0.44 to 0.88% while recoveries ranged from 90.2 to 95.3%. The results obtained with the proposed method were compared with those obtained via hydride vapor generation atomic absorption spectroscopy, a common method for determining selenium. The results of the two methods agreed within 5% for almond, hazelnut, and pistachio samples. The mean concentrations of selenium determined in Sicilian samples of almond, hazelnut, and pistachio were 531 +/- 1, 865 +/- 1, and 893 +/- 4 microg/kg, respectively.  相似文献   

4.
This paper aims to bring some novelty about the concentration of some heavy metals and selenium in biological citrus essential oils (CEO) produced in Sicily and Calabria in different crop years. Derivative stripping chronopotentiometry has been used as an accurate, sensitive, and rapid technique for the determination of Cd, Cu, Mn, Ni, Pb, Zn, and Se in hydrochloric acid extracts of CEO; in the optimized electrochemical conditions, detection limits of <1 microg kg(-1) were obtained for all of the studied metals. In particular, the concentrations of metals were determined in biological bergamot essential oils produced in Calabria in 1999 and 2000 and in biological CEO produced in Sicily in 2003 and 2004. The obtained results provided evidence that Mn was the most abundant metal in all of the studied CEO followed by Zn, Ni, Cu, Pb, and Se; Cd concentrations were always lower than the limit of detection (0.6 microg kg(-1)).  相似文献   

5.
6.
Citrus essential oils are widely used in the food, cosmetics, and pharmaceutical industries, so the determination of heavy metals content is of great importance to guarantee their quality. The present work deals with the quantification of Cd(II), Cu(II), Pb(II), and Zn(II) in different varieties of citrus essential oils, using derivative potentiometric stripping analysis. Two different metals extraction procedures, involving concentrated hydrochloric acid treatment and acid-alcoholic dissolution, are tested on lemon, mandarin, sweet orange, and bergamot essential oils, and they give very similar results. Cd(II), Cu(II), Pb(II), and Zn(II) recovery tests spanned from 95 to 100.50%, providing evidence that metals quantification remained unaffected by the cleanup steps of the two procedures. The repeatability of the hydrochloric acid extraction method, applied on different varieties of essential oils, is >95.00% for Cd(II), Cu(II), Pb(II), and Zn(II), whereas the repeatability of the acid-alcoholic dissolution method is >93.00% for Cu and Cd only in lemon oil. Detection limits obtained for the four analytes, using both procedures, ranged from 0.10 to 0.98 ng g(-)(1) in lemon, mandarin, sweet orange, and bergamot essential oils.  相似文献   

7.
Seed oils are consumed worldwide; moreover, they are used in the alimentary, cosmetic, pharmaceutical, and chemical industries. Due to their diffusion, it is interesting to investigate the presence of important micronutrients such as selenium in seed oils. The aim of this work was to develop a rapid, precise, and sensitive cathodic stripping potentiometry (CSP) method to determine the concentration of selenium in different types of seed oils. Selenium was extracted from the oily matrix by concentrated hydrochloric acid treatment at 90 degrees C. The analysis was executed by applying an electrolysis potential of -150 mV for 60 s and a constant current of -30 microA. Under these conditions, detection limits of <0.5 ng g(-1) were obtained. The method reproducibility (expressed as total RSD %) spanned from 0.2 to 0.8%. Recoveries ranged from 92.1 to 97.5%, providing evidence that selenium quantification remained unaffected by the extraction procedure described. The results obtained with the proposed method were compared with those obtained via graphite furnace atomic absorption spectroscopy (GFAAS), a common method for determining selenium. The results of the two methods agreed within 93.5-107.7%. The mean amounts of selenium found were 313.0 +/- 2.0, 458.3 +/- 1.3, 224.6 +/- 0.9, 99.5 +/- 0.8, 332.2 +/- 0.5, 144.0 +/- 0.7, and 295.5 +/- 1.2 ng g(-1), respectively, in peanut, soybean, sunflower, rice, corn, grapestone, and seed oils.  相似文献   

8.
A method is described for the simultaneous determination of several heavy metals in foods. The sample is predigested with nitric acid and decomposed completely by heating with a mixture of sodium and potassium nitrates. The resultant melt containing the metals is then dissolved in dilute nitric acid. After the pH is adjusted to an appropriate value, the metals, such as cadmium, copper, lead, and zinc, are determined by anodic stripping voltammetry. The average recoveries of these metals added to 5 commodities were 98, 98,96, and 104%, respectively. The relative standard deviations, based on data from analyses of a commodity containing measurable levels of copper, lead, and zinc, were 12.0, 13.0, and 9.7%, respectively.  相似文献   

9.
This work examined the removal of heavy metals in a system consisting of ultrafiltration (UF) or microfiltration (MF) membranes combined with sludge and minerals. The metals under examination were Ni(II), Cu(II), Pb(II), and Zn(II), while the system performance was investigated with respect to several operating parameters. Metal removal was achieved through various processes including chemical precipitation, biosorption, adsorption, ion exchange, and finally retention of the metals by the membranes. The pH had a profound effect on metal removal, as the alkaline environment favored the metal removal process. The use of sludge resulted in increased levels of metal uptake which was further enhanced with the addition of minerals. The metal removal mechanisms depended on the pH, the metal, and mineral type. The combined sludge?Cmineral?CUF system could effectively remove metal ions at an alkaline environment (pH?=?8), meeting the US EPA recommended long-term reuse limits of lead and copper and the short-term reuse limits of nickel and zinc for irrigation purposes, provided that specific mineral dosages were added.  相似文献   

10.
This paper deals with the use of derivative potentiometric stripping analysis (dPSA) as a rapid and precise method to determine Cd(II), Cu(II), Pb(II), and Zn(II) levels in red and white wine samples from Sicily, Campania, and Tuscany and to investigate the possible connection between the content of these metals and the pesticide treatments used in vine-growing to control plant diseases and pests. dPSA allowed direct quantitation of heavy metals in acidified wines without any sample pretreatment. Mean recoveries of Cd(II), Cu(II), Pb(II), and Zn(II) ranged from 95.5 to 99.2% for white wine samples and from 96.1 to 100.0% for red wine samples. The obtained results showed that Cd(II) was not found in any sample and that Cu(II), Pb(II), and Zn(II) levels were always lower than the toxicity limits in both fungicide- and water-treated wines. Nevertheless, the contents of metals were increased in samples from organic and inorganic pesticides treatment with respect to the water-treated samples. In particular, quinoxyfen, dinocap-penconazole, and dinocap applications considerably increased Cu(II) and Zn(II) contents in white and red wines. The levels of lead were significantly raised by azoxystrobin and sulfur treatments.  相似文献   

11.
The potential of heat and chemically treated rubber wood shavings (RWS) to remove Cu(II) and Ni(II) was evaluated at bench-scale by varying parameters such as initial Cu(II) and Ni(II) concentrations, contact time and adsorbent dosage. Maximum Cu(II) and Ni(II) uptake was achieved using NaOH-treated RWS after 5 h of contact time, pH 5.0 (Cu), 5.5 (Ni) and 6.0 (mixed-metal solution), initial Cu(II) and Ni(II) of 100 mg L?1 and RWS dosage of 0.3% (w/v). Point of zero charge (pHPZC) value of 4.35 suggests the appropriateness of pH range used. Higher Cu(II) and Ni(II) adsorption following NaOH treatment was due to smaller average pore diameter (34.63 Å), higher mesopore content and higher surface negativity charge. EDAX analysis confirmed the presence of Cu and Ni on the surface of the RWS. The importance of carboxyl and hydroxyl functional groups during Cu(II) and Ni(II) removal is supported by the FTIR analysis and good correlation (R 2 of 0.96–0.99) with the pseudo-second-order adsorption kinetic model. The results indicate the potential of using RWS as an alternative adsorbent to remove Cu(II) and Ni(II) from industrial wastewaters.  相似文献   

12.
The ability of wollastonite to adsorb Ni (II) from water has been carried out. A removal of 92% of Ni (II) with 20 g L?1 of adsorbent was observed at 50 mg L?1 adsorbate concentration, 6.5 pH and 30 °C. The process follows a first order rate kinetics with diffusion controlled nature and the data fits the Langmuir adsorption isotherm. Removal of Ni increases from 10 to 92% with the rise of pH from 3.0 to 8.0 and thereafter it remains almost unchanged. This change has been explained on the basis of aqueous-complex formation and the subsequent acid base dissociation at the solid-solution interface.  相似文献   

13.
Extraction of PAH from Oh-horizon material after dispersion of air-dried samples in water resulted in a 80% higher yield of 20 PAH species compared to extraction of air-dried, freeze-dried or ground samples. Concurrently, the free surface area (BET method) of the organic matter increased. It was assumed that dispersion resulted in a disaggregation and/or stretching of organic aggregates, which makes interior aggregate regions available to the extractant that were pre-viously not accessible for the extractant due to diffusion barriers.  相似文献   

14.
In this study, N-(2-aminoethyl)salicylaldimine bonded silica gel was synthesized and characterized using Fourier transform infrared and C, H, N elemental analysis. The analytical conditions such as the pH and volume of the solution, flow rates of the sample solution and the type of eluent to achieve the simultaneous preconcentration of Cu(II), Ni(II), Cd(II) and Zn(II) were optimised using the modified silica gel loaded column using a solid phase extraction technique. Samples (50?C500?ml) containing metal ions at optimal pH of 8 were passed through the column filled with the modified silica gel at 7?ml min?1 and then elution was achieved using 5?ml of 0.25?M HCl. The concentrations of metal ions in the eluates were determined using flame atomic absorption spectrometry (FAAS). The effects of matrix ions were also studied and none of the major ions interfered to the proposed method. The accuracy of the developed method was validated using a certified reference water sample (Ontario Lake water, NWTMDA-54.4). The method was successfully applied to the analysis of various natural water samples. The adsorption capacities of the modified silica gel for Cu(II), Ni(II), Cd(II) and Zn(II) ions were determined and found to be 0.332, 0.261, 0.130 and 0.375?mmol g?1, respectively.  相似文献   

15.
In this paper, the NMR technique was used, for the first time, to accurately determine the diffusion coefficient D of CO(2)-dissolved molecules in various carbonated beverages, including champagne and sparkling wines. This parameter plays an important role concerning the bubble growth during its rise through the liquid (see ref 3). The diffusion coefficient of CO(2)-dissolved molecules D was compared with that deduced from the well-known Stokes-Einstein equation and found to significantly deviate from the general trend expected from Stokes-Einstein theory, i.e, D(SE) proportional, variant 1/eta, where D(SE) is the Stokes-Einstein diffusion coefficient and eta the viscosity of the liquid medium.  相似文献   

16.
The mechanism of sediment formation during the storage of green tea beverage was investigated. Green tea extract was separated by Diaion HP-20 column chromatography, and a sediment-formation test was performed. Results showed that at least one compound of the substance causing flock sediment was contained in each of the HP-20 nonadsorbed and adsorbed fractions. From the following fractionations and structure analyses, the substance in the HP-20 adsorbed fraction was determined to be 1-O-galloyl-4,6-O-(S)-hexahydroxydiphenoyl-beta-D-glucose (strictinin), which is one of the ellagitannins. Strictinin was hydrolyzed to ellagic acid by heat-sterilization processes such as retort sterilization or the ultra-high temperature processing used during the manufacturing of tea beverages. Ellagic acid combined with proteins in the HP-20 nonadsorbed fraction to form an irreversible sediment of green tea beverage; ellagic acid and proteins were confirmed to be present in that sediment. The HP-20 adsorbed fraction contained little strictinin and formed hardly any sediment, suggesting that control of the strictinin content is significant in avoiding sediment formation during the manufacturing process of tea beverages.  相似文献   

17.
The competing ligand exchange method was used to investigate the competitive binding of Ni(II) by Al(III) and Fe(III) in model aqueous solutions and freshwaters. Graphite furnace atomic absorption spectrometry and adsorptive cathodic stripping voltammetry were used to monitor the rate of uptake of the Ni by Chelex 100 chelating resin and dimethylglyoxime as the competing ligands, respectively. The results have revealed that Ni(II)–humate complexes were more labile in presence of the mixture of Al(III) and Fe(III), compared to the lability of the Ni(II)–humate complexes when only one of the two, Al(III) or Fe(III), was present. The environmental significance of this work is that in model solutions simulating freshwater containing humic substances and the target trace metal Ni(II) and cations, Al(III) and Fe(III), the competitive binding of Ni(II), Al(III) and Fe(III) by humic substances makes Ni(II)–humate complexes labile, releasing free Ni2+–aqua complex, which reported to be toxic.  相似文献   

18.
Two methods for the determination of iron in olive oil by spectrophotometry and by adsorptive stripping square wave voltammetry (Ad-SSWV) have been developed. These two methods are based on the formation of a 5,5-dimethylcyclohexane-1,2,3-trione 1,2-dioxime 3-thiosemicarbazone (DCDT)-iron(II) complex in strongly acid media. In both, iron is extracted from the olive oil by using HCl. Spectrophotometric determination of iron with DCDT is based on the feature that the DCDT-Fe complex shows an absorbance maximum at 550 nm. A calibration graph has been constructed from 0 to 4000 ng mL(-)(1), and the detection limit was 115 ng mL(-)(1) (57 ng g(-)(1) in olive oil). On the other hand, the voltammetric determination of the metal is based on the appearance of a peak due to an adsorptive reductive process of the complex that it is observed when the Ad-SSWV technique is used. A calibration graph has been constructed from 0 to 30 ng mL(-)(1), and the detection limit was 0.55 ng mL(-)(1) (13.75 ng g(-)(1) in olive oil according to the proposed procedure).  相似文献   

19.
In this study, various organic compounds in commercial whole milk were quantified simultaneously by 1H 1D and 1H - 13C HSQC 2D NMR spectra without any pretreatment. 2D NMR spectroscopy was applied to quantification of milk compounds for the first time. Milk fat content was easily determined to be 3.6 +/- 0.1%, and the lactose content was 47.8 +/- 1.0 mg/mL by 1H NMR spectra. From 1H-13C HSQC spectra, the concentrations of citrate, N-acetylcarbohydrates, and trimethylamine were determined to be 3.2 +/- 0.2, 2.9 +/- 0.1, and 4.0 +/- 0.6 mM, respectively. The latter two compounds were quantified in milk for the first time. Butyric acid, total monounsaturated fatty acids, and total polyunsaturated fatty acids of triacylglycerols were 6.2 +/- 0.5, 9.1 +/- 0.9, and 2.9 +/- 0.3 mM, respectively. The fatty acid compositions (mol %) of triacylglycerols were then calculated and were observed to be in good agreement with reference values. The results indicated that 1H 1D and 1H-13C HSQC 2D NMR spectroscopy is useful for the rapid and nondestructive determination of various compounds in milk.  相似文献   

20.
The hydrogen-bonding properties of water-ethanol of alcoholic beverages and water-ethanol mixtures of the corresponding ethanol contents were examined on the basis of OH proton NMR chemical shifts and the Raman OH stretching spectra of water and ethanol. Japanese shochu, an unaged distilled spirit of 25% (v/v) alcoholic content made from various grains, was provided for the samples; it is a high-purity spirit as it contains only small amounts of dissolved components, like typical vodka, gin, and white rum. The hydrogen-bonding structure in shochu containing some acids was found to be different from that of the water-ethanol mixture with corresponding ethanol content. It was concluded that, by the presence of small amounts of organic acids, the water-ethanol hydrogen-bonding structure was strengthened, at the same time, the proton exchange between water and ethanol molecules was promoted in shochu, compared with the water-ethanol mixture. The NMR chemical shifts of fruit cocktail drinks suggested that the hydrogen bonding of water-ethanol in the solution was developed by organic acids and (poly)phenols from fruit juices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号