首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
针对农田环境信息获取时存在的信息对象多、地域广、分布杂散、数据通讯条件落后等诸多不利因素,设计了采用基于无线传感器网络技术和可编程片上系统(SOPC)技术的便携式农田环境监测系统.该系统通过温度、湿度、光照度等传感器实时采集农田环境数据;以CC2430模块为终端测量节点的核心,建立无线传感器网络实现监测数据的无线传输和汇集:采用具有NiosⅡ嵌入式软核处理器的现场可编程门阵列(FPGA)控制系统实现对整个系统的管理.田间试验结果表明该系统能够有效地采集环境数据,并具有组网灵活、可扩展性强、携带方便等优点.  相似文献   

2.
针对当前温室环境监测中存在的信号遮挡物多、监测范围大、管理不便等问题,设计一种基于无线传感器网络的温室环境信息远程监测系统。无线传感器网络采用433MHz射频进行信息传输,无线传感器节点和汇聚节点分别采用MSP430F149和LPC2478作为微控制器,实现温室环境信息的实时采集、信息汇聚和数据融合。系统采用星型网络拓扑结构,通过定时休眠、传感器掉电控制等方法来减少能量消耗,并通过基于CSMA/CA算法的无线传输协议,避免了节点间信息传输冲突,保证了传输成功率。无线传感器节点通信性能测试结果表明:使用10dBm射频功率时,距地表1.5m节点的有效通信距离为192m;在无太阳能充电且节点工作周期为30min18s的情况下,无线传感器节点生命周期理论值为98d。温室环境信息远程监测应用结果表明,该系统具有低功耗、高稳定性等优点,节点平均丢包率仅为1.1%。  相似文献   

3.
基于WSN与嵌入式组态软件的智能灌溉系统   总被引:1,自引:0,他引:1  
设计了一个基于nRF905、STC89C52和MCGS触摸屏的无线传感器网络智能灌溉系统;并初步实现了对光照、湿温度、土壤水分等传感器的数据采集和传输;介绍系统使用的拓扑结构。  相似文献   

4.
为了实现稻田环境信息的实时监测,设计了一种基于定向天线无线传感器网络的稻田环境信息监测系 统,并对其网关进行设计。网关节点设计以MSP430F149 为核心,外围以nRF905 射频芯片和节点通信,节点采用土 壤水分传感器TDR-3 和空气温湿度传感器DHT22 对稻田环境信息进行实时采集与处理,选用MC55 作为GPRS 通 信模块,实现了稻田环境信息的远程传输与监控等功能。在该硬件平台编写硬件驱动程序和通信协议、异常短信报 警程序和时间同步协议。测试了网关节点的通信距离、功耗、存储速率,对网关的实用性进行实地试验,网关节点通 信距离可达331.18 m,1 h工作周期下可持续工作32 d,数据存储速率达849.7 kbps,组网试验结果表明,内网平均丢 包率为0.686%,外网平均丢包率为0.712%,传感器节点采集数据稳定,能够满足稻田环境信息监测的需求。  相似文献   

5.
为了提高农业管理的网络化和智能化水平,降低农田管理工作量,完成了基于ZigBee无线传感器网络的农田信息采集传输系统的设计,着重讲解了系统总体结构、硬件设计和部分软件设计。该系统能够快速、可靠地对农田信息进行远程采集和传输,对精细农业的发展具有重要意义。  相似文献   

6.
基于定向天线WSN射频信号传播试验   总被引:1,自引:0,他引:1  
为解决水稻田中无线传感器网络(WSN)的规划与部署问题,基于无线射频信号的传播特性,研究了水稻田间WSN射频信号与影响因素间的关系,并对全向天线和定向天线在水稻田的通信性能进行了对比分析.试验选取WSN的载波频率为915MHz,分析WSN射频信号受天线高度、天线类型和通信距离等因素联合作用下在水稻田的衰减情况,建立了915 MHz无线射频信号接收强度与环境传播因子及通信距离间的线性模型,并进行数据拟合,拟合曲线的R2最低为0.882、最高为0.934,验证了WSN射频信号衰减程度与通信距离的一致性,为WSN在水稻田的节点部署和天线类型选择提供指导和依据.  相似文献   

7.
基于WSN的水产养殖监测信息发布系统的设计   总被引:1,自引:0,他引:1  
无线传感器网络适用于水产养殖环境监测,而监测数据的信息显示和发布是整个系统的重要组成部分。结合水产养殖监测的特点,设计了一种基于WSN的水产养殖监测信息发布系统,其中无线传感器网络部分采用MSP430芯片为控制核心,将各节点的数据采集到汇聚节点;信息显示部分采用LED显示屏,工作人员可直接观察到监测数据。试验结果表明,该系统具有传输速率快、功耗低、可视性好、稳定可靠等优点,对水产养殖的实时监测具有一定的参考价值。  相似文献   

8.
针对目前温室大棚环境监测系统存在布线困难、灵活性低和成本高等问题,构建了基于无线传感器网络(WSN)的温室大棚环境监测系统,并重点对传感节点和网关节点进行了设计。该系统的传感器节点负责对环境参数进行采集,并通过无线传感器网络将数据发送到网关节点,网关节点再向远程监测平台传输数据。节点硬件的微处理器模块采用MSP430F149单片机进行数据处理和控制;无线通信模块由nRF905射频芯片及其外围电路组成,负责对数据进行传输和接收;传感器模块采用AM2301传感器进行数据测量;电源模块以LT1129-3.3、LT1129-5和Max660组成的电路提供3.3和±5.0 V电源。节点的无线路由协议和时间同步算法均采用C语言开发,实现节点数据采集与处理、规则转发和远程传输等功能。远程监测软件采用NET.ASP、HTML和C#开发,为用户提供形象直观的Web模式远程数据管理平台。该系统在青海省西宁市温室大棚进行了组网测试,结果表明系统运行稳定可靠,网络平均丢包率为2.4%,有效解决了温室环境监测系统中存在的问题,满足温室大棚栽培环境监测的应用要求。  相似文献   

9.
基于ZigBee无线传感器网络的森林环境监测系统   总被引:2,自引:0,他引:2  
设计了一种基于ZigBee无线传感器网络的森林环境监测系统;描述了该系统的构成原理与整体结构,以及基于CC2430芯片的传感器节点和网关的硬件设计和系统软件工作流程.采用的星—簇首—路由的拓扑结构,具有低成本、易于部署、使用寿命长等优点.  相似文献   

10.
针对林区局地环境监测实时性差、长期监测困难等不足,设计并实现了一种基于ZigBee无线传感器网络的林区局地环境监测系统。系统运用无线网络协议ZigBee搭建无线传感器网络,结合GPRS通讯技术将获取的数据发送至监控中心,实现数据的实时显示、存储、分析与可视化。系统主要由传感节点、路由器、网关与监控中心组成,结构简单实用,节点放置位置灵活,不受地理环境限制,能够较好的监测空气中温湿度、大气压强、光照强度、二氧化碳浓度、土壤含水率等林区关键环境因子。通过太阳能供电系统,采用CC2530和CC2591无线通信模块,并将多传感器集成到传感节点,较好解决了无线传感器网络在林区应用过程中的节点能量不足、通信距离短以及监测参数不全等问题,实现了对林区局地环境的实时监测。试验表明,节点在空旷地方有效通信距离最大可达510.6 m,在树林中有效通信距离最大可达177.5 m;在太阳能与锂电池共同供电下,节点能量能够自给自足;在组网测试中,整个网络收包率为96.7%,能够满足林区环境监测要求。  相似文献   

11.
【目的】针对现有农业环境监测网关设备开发成本高、系统功耗大、操作复杂等不足,设计开发一种用于农业环境监测的无线传感器网络网关节点。【方法】网关节点以低功耗芯片CC2530为核心处理单元,通过外围状态指示电路、电源管理模块等,完成ZigBee网络组网和监测节点数据收集及处理功能;同时通过串口方式连接SIM900A模块,采用GPRS方式将监测数据上传至中心服务器。最后在农田进行了监测数据误包率与信号接收强度测试,并通过实地部署试验验证了系统的稳定性及可靠性。【结果】所设计的网关节点能实现4种农业环境数据的采集,节点间距小于120m时数据传输误包率低于1%,监测数据在30d农田试验期内连续变化,可长时间上传至服务器,且稳定性、可靠性良好。【结论】所设计开发的基于CC2530的网关节点具有丢包率低、运行稳定可靠的特点,能够满足多种农田环境因子的监测需求,具有良好的应用前景。  相似文献   

12.
基于无线传感器网络的温室环境监测系统研究   总被引:2,自引:0,他引:2  
温室环境监删采用基于ZigBee技术的无线传感器网络有着明显的优势.ZigBee网络容量大、功耗低、易于扩充并且支持自组织组网.设计了一种基于ZigBee的温室环境监测系统,简述了ZigBee的特点及温室环境监测系统的特点,包括网络协调器节点和传感器节点的硬件和软件设计.该设计可构架一个较大范围的无线传感器网络,对温室...  相似文献   

13.
基于TinyOS无线传感器网络的农业环境监测系统设计   总被引:1,自引:0,他引:1  
针对传统农业环境监测系统的局限性,设计了一种基于无线传感器网络的农业环境监测系统,给出了农业环境监测系统的体系结构,重点设计了使用MSP4300和CC2420芯片的传感器节点硬件结构和基于TinyOS操作系统构架的软件流程,系统可以对目标监测区内的温度、湿度、光照度等农业环境信息进行实时监测、可靠传输.解决了传统农业环境监测中存在的问题,为无线传感器网络应用于农业环境监测做出探索性研究.  相似文献   

14.
针对农田环境状况复杂、监测难度大等问题,设计了基于WIA-PA标准无线传感器网络。该系统利用无线传感器节点对农田环境参数进行采集,并将获得的数据通过WIA-PA网络发送至远程服务器。远程服务器对参数进行分析和存储,对于超出阈值的数据会及时告知管理者。管理者通过远程服务器发送控制命令到传感器节点调节相关参数,从而实现远程测量与控制。试验表明该系统运行效果良好,功耗小,具有很好的应用价值。  相似文献   

15.
无线传感器网络十分适用于茶园环境的监测,而无线传感器网络中网关负责传输数据的出口,是监测系统的重要组成部分。结合茶园监测的特点,设计了一种与WCDMA网络相结合的无线传感器网络网关,采用LPC2148 ARM7芯片为控制核心,编写专用的通信协议及路由算法,以尽可能地降低能耗和延长网关生命周期。试验结果表明:网关具有传输速率快、功耗低、丢包率低、稳定可靠等优点,对茶园环境的实时监测具有一定的参考价值。  相似文献   

16.
基于无线传感器网的茶园环境监测系统设计与实现   总被引:1,自引:0,他引:1  
为方便茶园管理和辅助科学试验袁设计了一套基于无线传感器网的茶园环境监测系统袁实现了茶园光照度尧空气温湿度尧土壤温湿度的自动采集遥无线数据采集节点通过Zigbee网络向网关传输数据袁网关通过GPRS网络远程传输数据遥实现了可自由增加节点和太阳能供电袁有利于扩大监测范围和克服茶园布设电线成本高尧维护难等问题遥  相似文献   

17.
针对现阶段果园无线节水灌溉系统成本高、传感器节点寿命有限、不能长期可靠工作等问题,介绍了一种基于无线传感器网络节点的果园自动灌溉系统设计方案。该系统由主节点、传感器节点、水泵节点3种节点组成,通过选取合适功率的太阳能电池板和太阳能电池充电芯片对锂电池进行充电,有效延长了传感器节点寿命,实现系统连续稳定工作。在空旷地带,系统的有效通信距离208 m,节点额定电压5 V,工作时电流125 m A,待机时电流1.6 m A,太阳能平均充电电流为20 m A。传感器节点在不充电的情况下,以每天唤醒24次,每次工作20 s的频率,可连续工作约60 d。在连接太阳能电池板的情况下,可保证充电电量大于耗电电量。在桃园的试验表明:传感器节点在采集土壤湿度信息时耗电量最大,连接太阳能电池板,电池电压在额定电压附近小范围内波动,随机改变灌区内被测土壤湿度,系统可以按照设定的土壤湿度上限、下限,自主控制水泵和电池阀工作状态,实现自动按需灌溉。  相似文献   

18.
提出了一个基于太阳能供电,利用Zigbee和Labview技术的温室无线传感器网络精量监测系统,在充分利用自然资源的基础上,通过改变温度、湿度、光照度、CO2浓度等温室环境因素参数来获得农作物生长的最佳条件,从而克服传统温室监测系统的不足,达到增加农作物的产量、改善其品质和提高其经济效益的目的.  相似文献   

19.
为解决传统传感器网络随机部署分布不均的问题,提出采用布谷鸟搜索算法(CS)进行节点部署优化。为改善CS算法的全局优化性能以提升传感器节点部署优化能力,受动量梯度下降法、均方根算法和Adam优化算法的启发,提出Momentum-CS、RMSprop-CS与Adam-CS三种改进算法,对CS算法中的步长控制量和淘汰概率进行优化调整。以网络覆盖率为优化目标,将3种算法用于长宽为100 m水域的水质监测无线传感器节点部署进行优化。仿真结果表明,Adam-CS算法能够在较少迭代次数获取更高的网络覆盖率,达到90.35%,对于指导水环境监测中无线传感器节点部署具有现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号