首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The overall objective of the studies reported here was to evaluate the growth and nutrient utilization responses of pigs to dietary supplementation of phytate- or nonstarch polysaccharide-degrading enzymes. In Exp. 1, growth performance and nutrient digestibility responses of forty-eight 10-kg pigs to dietary supplementation of phytase or a cocktail of xylanase, amylase, and protease (XAP) alone or in combination were evaluated. The growth response of one hundred fifty 23-kg pigs to dietary supplementation of phytase or xylanase individually or in combination was studied in Exp. 2 in a 6-wk growth trial, whereas Exp. 3 investigated the nutrient digestibility and nutrient retention responses of thirty 24-kg pigs to dietary supplementation of the same enzymes used in Exp. 2. In Exp. 1, the pigs were used in a 28-d feeding trial. They were blocked by BW and sex and allocated to 6 dietary treatments. The treatments were a positive control (PC) diet; a negative control (NC) diet marginally deficient in P and DE; NC with phytase added at 500 or 1,000 phytase units (FTU)/kg; NC with xylanase at 2,500 units (U)/kg, amylase at 400 U/kg, and protease at 4,000 U/kg; and NC with a combination of phytase added at 500 FTU/kg and XAP as above. In Exp. 2 and 3, the 5 dietary treatments were positive control (PC), negative control (NC), NC plus 500 FTU of phytase/kg, NC plus 4,000 U of xylanase/kg, and NC plus phytase and xylanase. In Exp. 1, low levels of nonphytate P and DE in the NC diet depressed (P < 0.05) ADG of the pigs by 16%, but phytase linearly increased (P < 0.05) ADG by up to 24% compared with NC. The cocktail of XAP alone had no effect on ADG of pigs, but the combination of XAP and phytase increased (P < 0.05) ADG by 17% compared with the NC treatment. There was a linear increase (P < 0.01) in Ca and P digestibility in response to phytase. In Exp. 2, ADG was 7% greater in PC than NC (P < 0.05); there were no effects of enzyme addition on any response. In Exp. 3, addition of phytase alone or in combination with xylanase improved (P < 0.05) P digestibility. Phosphorus excretion was greatest (P < 0.01) in the PC and lowest (P < 0.05) in the diet with the combination of phytase and xylanase. The combination of phytase and xylanase improved P retention (P < 0.01) above the NC diet to a level similar to the PC diet. In conclusion, a combination of phytase and carbohydrases improved ADG in 10-kg but not 23-kg pigs, but was efficient in improving P digestibility in pigs of all ages.  相似文献   

2.
Four experiments were conducted with weanling pigs fitted with a simple T-cannula at the distal ileum, to determine the effect of phytase supplementation to four diets on the apparent ileal digestibilities (AID) of CP and AA, and the apparent total-tract digestibilities (ATTD) of CP and DE. Phytase (Natuphos, DSM Food Specialties, Delft, The Netherlands) was supplemented at rates of 0, 500 or 1,000 FTU/kg to the four diets. A 20% CP (as-fed basis) corn-soybean meal diet was used in Exp. 1; a 20% CP wheat-soybean meal diet in Exp. 2; a 20% CP wheat-soybean meal-canola meal diet in Exp. 3; and a 19% CP barley-peas-canola meal diet in Exp. 4. In each experiment, six barrows, fitted with a simple T-cannula at the distal ileum, were fed the basal plus phytase-supplemented diets according to a repeated 3 x 3 Latin square design. Each experimental period comprised 14 d. The piglets were at fed 0800 and 2000 daily, equal amounts for each meal, at a daily rate of at least 2.4 times the maintenance requirement for ME. Feces were collected from 0800 on d 8 until 0800 on d 12 of each experimental period. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Chromic oxide was used as the digestibility marker. The average initial and final BW (average of all experiments) were 7.9 and 16.5 kg, respectively. Phytase supplementation did not improve the AID of CP and AA in Exp. 1, 2, and 4; however, there were improvements (P < 0.05) or tendencies (P < 0.10) toward improvements in the AID of CP and AA or the ATTD of CP and the content of DE with phytase supplementation in Exp. 3. These results suggest that the AA response factor to microbial phytase supplementation depends on diet composition.  相似文献   

3.
An experiment was conducted to evaluate increasing or decreasing concentrations of dietary phytase on growth performance and processing yields of male broilers from 1 to 35 d of age. Treatments consisted of a positive control, a negative control (NC; less 0.14% Ca, 0.13% nonphytate P, and 0.03% Na), and 6 additional treatments based on the NC supplemented with phytase. Treatments 3 through 5 consisted of the NC diet supplemented with 500 phytase units (FTU)/kg of phytase in the starter phase that was either continued throughout the remainder of the study (treatment 3) or increased to 1,500 FTU/kg beginning in the finisher (treatment 4) or grower (treatment 5) phases. Treatment 6 had 1,500 FTU/kg of phytase throughout the study. Treatments 7 and 8 had 1,500 FTU/kg in the starter and decreased to 500 FTU/kg in the finisher or grower phases, respectively. At 35 d of age, broilers fed diets containing 1,500 FTU/kg of phytase had increased BW gain compared with birds fed diets formulated to contain 500 FTU/kg of phytase. Increasing phytase concentration between the starter and grower phases or decreasing phytase concentration between the grower and finisher phases negatively affected FCR from 1 to 35 d of age. Phytase supplementation did not affect weight and yield of carcass characteristics. Therefore, dietary phytase concentration should not be varied throughout production for optimum growth performance.  相似文献   

4.
The effect of phytase and xylanase supplementation of a wheat-based pig diet on the ileal and total tract apparent digestibility of dietary components and minerals were studied in eight growing pigs fitted with a PVTC cannula in a randomized block design experiment. The diets (A and B) were similar in major ingredient composition and in nutrient content. In diet A, part of the limestone was replaced with di-calcium phosphate to increase the content of available phosphorus (P). Diet B was fed without or with supplementation with phytase (500 FTU/kg; diet BP), xylanase (4000 XU/kg; diet BX) and phytase + xylanase (500 FTU and 4000 XU/kg; diet BPX). There were no differences (P > 0.05) between diets in the ileal or total tract digestibility of organic matter (OM), NDF and crude protein (CP). The ileal and total tract digestibility for P and Ca differed (P < 0.05) between diets, while there were no treatment effects for Zn. The ileal and total tract digestibility for P and Ca was higher (P < 0.05) on diets BP and BPX than on the other diets. In conclusion, phytase improved the utilization of dietary P and Ca in a wheat-based diet, while xylanase had no additional benefits in terms of OM and CP digestibility or mineral utilization. Phytase had no effect on the digestibility of OM, CP or NDF.  相似文献   

5.
Two experiments were conducted to investigate the concept that the addition of corn expressing an Escherichia coli-derived gene (corn-based phytase; CBP) to a P-deficient diet would improve growth performance and P utilization in pigs. An E. coli-derived microbial phytase (expressed in Pichia pastoris) sprayed onto a wheat carrier (Quantum) was included for comparison. In Exp. 1, forty-eight 10-kg pigs were blocked by BW into 6 blocks and allotted to 8 dietary treatments such that the BW among dietary treatments was similar and given free access to feed for 28 d. The dietary treatments were a negative control (NC) with no inorganic P supplementation; NC + 2, 4, or 6 g of monosodium phosphate/kg; NC + 16,500, 33,000, or 49,500 phytase units (FTU) of CBP/kg; and NC + 16,500 FTU of Quantum/kg. In Exp. 2, twenty-four 13-kg barrows were assigned to the NC, NC + 16,500 or 33,000 FTU of CBP/kg, or NC + 16,500 FTU of Quantum/kg, in a nutrient- and energy-balance study consisting of 5 d of adjustment and 5-d collection periods. The total collection method was used to determine nutrient and energy balance. Addition of CBP to the low-P NC diet linearly increased (P < 0.01) ADG, G:F, and plasma P concentration of pigs during the 28-d study. There was no difference in ADG, G:F, or plasma P concentration between pigs fed the CBP or Quantum phytase at 16,500 FTU/kg. Weight gain, G:F, and plasma P concentration of pigs increased (P < 0.01) with monosodium phosphate supplementation, confirming P deficiency of the NC diet. Linear improvements (P < 0.05) in DM digestibility and energy retention were observed with CBP supplementation of the NC diet. Although there were linear (P < 0.01) and quadratic (P < 0.05) increases in N digestibility, N retention was unaffected by CBP supplementation of the NC diet in growing pigs. Phosphorus and Ca digestibilities and retentions improved linearly and quadratically (P < 0.01) with the addition of CBP to the NC diet. There was no difference in digestive utilization of P or Ca between pigs fed CBP and Quantum phytase at 16,500 FTU/kg. The data showed that the addition of a corn expressing an E. coli-derived gene to a P-deficient diet improved growth performance and indices of P utilization in pigs, and corn expressing phytase was as efficacious as Quantum phytase when supplemented in P-deficient diets for weanling pigs.  相似文献   

6.
Phytase supplementation beyond the standard doses used for phosphorus release has been reported to result in extraphosphoric effects by enhancing nutrient digestibility resulting in improved performance of broilers. A study was conducted to examine the effects of the progressive addition of an enhancedEscherichia Coli phytase (400–1,600 phytase units; FTU) on growth performance and carcass characteristics from 1 to 42 d of age in male broilers. One thousand four hundred Hubbard × Cobb 500 1-d-old chicks were randomly distributed into 56 floor pens (0.08 m2/bird). Seven dietary treatments were provided in a 3-phase feeding program consisting of (1) a positive control (adequate Ca and nonphytate P; PC); (2) 1 negative control (Ca and nonphytate P reduced by 0.14% and 0.13%; NC); (3 to 6) the NC diet with 4 increasing supplemental phytase concentrations (NC + 400 FTU, NC + 800 FTU, NC + 1,200 FTU, and NC + 1,600 FTU, respectively); and (7) a low-energy NC diet without phytase and xylanase (reduced 66 kcal of AMEn/kg). Body weight gain, feed conversion, mortality, weight and yield of whole carcass, abdominal fat, and pectoralis major and minor muscles were evaluated. Progressive supplementation of phytase decreased cumulative FCR linearly. Broilers fed diets containing 1,600 FTU had heavier total breast meat by 49 g compared with birds receiving the PC diets. Broilers consuming the NC + 400 FTU or the low-energy NC diet had similar growth performance and meat yield compared with birds provided PC diet. These data indicated that phytase supplementation beyond the need for phosphorus enhances growth performance and carcass characteristics.  相似文献   

7.
Two experiments were conducted to determine the effect of supplementation of xylanase to a wheat-based diet on the apparent ileal digestibility (AID) of AA and the performance of growing pigs fed diets limiting in AA. In Exp. 1, eight pigs (average initial BW = 20.5+/-1.2 kg) fitted with a simple T-cannula at the distal ileum, were fed four diets according to a repeated 4 x 4 Latin square design. Diet 1 was a basal diet that contained 97.6% wheat. Diets 2, 3, and 4 were the basal diet supplemented with xylanase at rates of 5,500, 11,000, and 16,500 units of xylanase activity (XU), respectively (as-fed basis). There were linear and quadratic effects (0.062 < P < 0.001) of xylanase supplementation on the AID of CP and most of the AA. The largest increases in AID of CP and AA were obtained when xylanase was supplemented at a rate of 11,000 XU; no further increases were observed with xylanase supplementation at a rate of 16,500 XU. In Exp. 2, 30 pigs (average initial BW 21.4+/-1.8 kg) were randomly allotted to six dietary treatments. Diets 1 to 4 were similar to those used in Exp. 1. Diet 5 was the same as Diet 1, but supplemented with 0.53% lysine, 0.12% threonine, and 0.05% methionine. Diet 6 (positive control diet) was a wheat-soybean meal diet that contained 18.2% CP (as-fed basis). The total contents of lysine, threonine, and methionine were similar for Diets 5 and 6. There was a linear effect of xylanase supplementation on ADG (P = 0.093) and feed:gain ratio (P = 0.089), and a quadratic effect on ADG (P = 0.067) and feed:gain ratio (P = 0.074). But, the greatest response was obtained with the supplementation of 11,000 XU. The supplementation of lysine, threonine, and methionine to Diet 1 increased (P = 0.001) ADG and ADFI and improved (P = 0.01) feed:gain ratio. There was no difference (P = 0.508) in the performance of pigs fed the AA-supplemented or control diet. In conclusion, the supplementation of xylanase to a diet in which wheat provided the sole source of protein and energy improved the AID of AA, ADG, and feed:gain ratio; however, this improvement was very small compared with that obtained with the supplementation of synthetic amino acids.  相似文献   

8.
In 2 experiments, 48 weanling (initial BW: 13.5 ± 2.4 kg, Exp. 1) and 24 growing pigs (initial BW: 36.2 ± 4.0 kg, Exp. 2) were used to determine effects of a novel bacterial 6-phytase expressed in Aspergillus oryzae on the apparent total tract digestibility (ATTD) of phosphorus and calcium in corn-soybean meal diets fed to weanling and growing pigs. In Exp. 1 and 2, pigs were randomly allotted to 6 dietary treatments using a randomized complete block design and a balanced 2 period changeover design, respectively. In both experiments, 6 diets were formulated. The positive control diet was a corn-soybean meal diet with added inorganic phosphorus (Exp. 1: 0.42 and 0.86% standardized total tract digestible phosphorus and total calcium, respectively; Exp. 2: 0.32 and 0.79% standardized total tract digestible phosphorus and total calcium, respectively). A negative control diet and 4 diets with the novel phytase (Ronozyme HiPhos, DSM Nutritional Products Inc., Parsippany, NJ) added to the negative control diet at levels of 500, 1,000, 2,000, and 4,000 phytase units (FYT)/kg were also formulated. In Exp. 1, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (60.5%) than for the negative control diet (40.5%), but increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (40.5% vs. 61.6%, 65.1%, 68.7%, and 68.0%). The breakpoint for the ATTD of phosphorus (68.4%) was reached at a phytase inclusion level of 1,016 FYT/kg. In Exp. 2, the ATTD of phosphorus was greater (P < 0.01) for the positive control diet (59.4%) than for the negative control diet (39.8%) and increased (linear and quadratic, P < 0.01) as phytase was added to the negative control diet (39.8% vs. 58.1%, 65.4%, 69.1%, and 72.8%). The breakpoint for the ATTD of phosphorus (69.1%) was reached at a phytase inclusion level of 801 FYT/kg. In conclusion, the novel bacterial 6-phytase improved the ATTD of phosphorus and calcium in both weanling and growing pigs. The optimum level of inclusion for this phytase is 800 to 1,000 FYT/kg of complete feed to maximize ATTD of phosphorus and calcium in weanling and growing pigs.  相似文献   

9.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

10.
To determine the influence of incubation time, diet, and particle size on Ca and P solubility in vitro, experimental diets were formulated to contain 0.89% Ca and 0.40% available P (positive control; PC) or 0.76% Ca and 0.27% available P (negative control; NC). The PC was supplemented with 0 or 1,000 phytase units (FTU) of microbial phytase/kg and the NC with 0, 1,000, or 5,000 FTU/kg diet of microbial phytase for a total of 5 experimental diets. In Exp. 1, diets were exposed to simulated gastric digestion containing HCl and pepsin for 42 min, or a small intestinal digestion phase containing NaHCO(3) and pancreatin for 60 min. In Exp. 2, diets were ground to pass a 1- or 2-mm screen and exposed to gastric digestion for 5, 10, or 20 min. Phosphorus and Ca solubility were similarly influenced by diet and digestion phase (Exp. 1), and there was no interaction. Phytase supplementation improved (P < 0.001) Ca and P solubility in both the PC and NC diets (Exp. 1) and increased P (P < 0.001) and Ca (P < 0.001) solubility in the gastric phase of the in vitro digestion model (Exp. 2). Phytase continued to release P in the gastric test over time, which resulted in a diet × time interaction (P < 0.05). Calcium solubility reached an asymptote at 5 min and both Ca and P solubility was reduced (P < 0.05) in diets ground to pass a 2 mm screen compared with diets ground to pass a 1-mm screen. In addition, P and Ca solubility did not change over time in diets not supplemented with phytase. In conclusion, phytase or particle size altered the kinetics of Ca and P release in a non-parallel fashion, which may be associated with the precipitation of Ca with phytate and the sequential dephosphorylation of phytate by a microbial 6-phytase. In the presence of phytase, considerable Ca and P hydrolysis occurred within 5 min of a simulated gastric digestion. However, the solubility of Ca and P reached a plateau in the gastric phase of digestion and no further improvements in solubility are apparent in the small intestine. Therefore, absorption of Ca and P may be complicated by conditions within the gastrointestinal tract, particle size, precipitation with anti-nutrients, and differential rates of delivery to the small intestine.  相似文献   

11.
Supplementation of microbial phytase usually improves the digestibility and utilization of phosphorus in feedstuffs of plant origin. The effect of phytase supplementation on the digestibilities of AA also has been examined, but the results have been inconsistent. This study was carried out to determine the effect of phytase (Natuphos) supplementation, at a rate of 2,000 phytase units/kg, to two basal diets on the apparent ileal digestibilities (AID) of GE, CP, and AA, and on the apparent total-tract digestibilities (ATTD) of CP and GE. The basal diets contained 18% CP and were formulated (as-fed basis) to contain either a low (0.22%) or high content (0.48%) of phytate P. The high-phytate diet contained 20% rice bran, which is a rich source of phytate and has low intrinsic phytase activity. Eight barrows (average initial BW = 40.6 kg), fitted with a simple T-cannula at the distal ileum, were fed the four diets according to a replicated 4 x 4 Latin square design. The pigs were fed twice daily at 0800 and 2000, equal amounts each meal, at a rate of 2.4 times the daily maintenance requirement for ME. Each experimental period comprised 14 d. Ileal digesta were collected from 0800 to 2000 on d 12, 13, and 14. Feces were collected from 0800 on d 8 until 0800 on d 12. Chromic oxide was used as the digestibility marker. The AID of GE, CP, and AA and the ATTD of CP and GE were less in the high- than in the low-phytate diet (P < 0.01). With the exception of glutamic acid, phytase supplementation did not affect (P > 0.10) the AID of CP and AA. There was no effect (P > 0.05) of phytase on the ATTD of CP and GE. These results show that if a response occurs to phytase supplementation, it is independent of the dietary phytate content.  相似文献   

12.
Two experiments were conducted to determine the effect of phytase on energy availability in pigs. In Exp. 1, barrows (initial and final BW of 26 and 52 kg) were allotted to four treatments in a 2 x 2 factorial arrangement. Corn-soybean meal (C-SBM) diets were fed at two energy levels (2.9 and 3.2 x maintenance [M]) with and without the addition of 500 phytase units/kg of diet. The diets contained 115% of the requirement for Ca, available P (aP), and total lysine, and Ca and aP were decreased by 0.10% in diets with added phytase. Pigs were penned individually and fed daily at 0600 and 1700, and water was available constantly. Eight pigs were killed and ground to determine initial body composition. At the end of Exp. 1, all 48 pigs were killed for determination of carcass traits and protein and fat content by total-body electrical conductivity (TOBEC) analysis. Six pigs per treatment were ground for chemical composition. In Exp. 2, 64 barrows and gilts (initial and final BW of 23 and 47 kg) were allotted to two treatments (C-SBM with 10% defatted rice bran or that diet with reduced Ca and aP and 500 phytase units/kg of diet), with five replicate pens of barrows and three replicate pens of gilts (four pigs per pen). In Exp. 1, ADG was increased (P < 0.01) in pigs fed at 3.2 x M. Based on chemical analyses, fat deposition, kilograms of fat, retained energy (RE) in the carcass and in the carcass + viscera, fat deposition in the organs, and kilograms of protein in the carcass were increased (P < 0.10) in pigs fed the diets at 3.2 vs. 2.9 x M. Based on TOBEC analysis, fat deposition, percentage of fat increase, and RE were increased (P < 0.09) in pigs fed at 3.2 x M. Plasma urea N concentrations were increased in pigs fed at 3.2 x M with no added phytase but were not affected when phytase was added to the diet (phytase x energy, P < 0.06). Fasting plasma glucose measured on d 28, ultrasound longissimus muscle area (LMA), and 10th-rib fat depth were increased (P < 0.08) in pigs fed phytase, but many other response variables were numerically affected by phytase addition. In Exp. 2, phytase had no effect (P > 0.10) on ADG, ADFI, gain:feed, LMA, or 10th-rib fat depth. These results suggest that phytase had small, mostly nonsignificant effects on energy availability in diets for growing pigs; however, given that phytase increased most of the response variables measured, further research on its possible effects on energy availability seems warranted.  相似文献   

13.
Two experiments were conducted to determine the effect of phytase on plasma metabolites and AA and energy digestibility in swine. In Exp. 1, eight barrows (surgery BW = 52 kg) were fitted with steered ileocecal cannulas. The experiment was a Latin rectangle and the treatments were 1) corn-soybean meal diet adequate in Ca and P (0.5% Ca, 0.19% available P [aP]), 2) corn-soybean meal diet with reduced Ca and P (0.4% Ca, 0.09% aP), 3) Diet 1 with 500 phytase units/kg, or 4) Diet 2 with 500 phytase units/kg. Pigs were fed twice daily to a total daily energy intake of 2.6 x maintenance (106 kcal of ME/kg of BW(0.75)). For each ileal digesta sample, digesta samples were collected for two 24-h periods and combined for each pig. The combination of supplementing with phytase and decreasing the concentration of dietary Ca and P increased average ileal AA (P < 0.02), starch (P < 0.02), GE (P < 0.04), and DM (P < 0.03) digestibilities. In Exp. 2, a feeding challenge was conducted with barrows (eight per treatment; average BW of 53 kg). The treatments consisted of a corn-soybean meal diet or corn-soybean meal diet + 500 phytase units per kilogram of diet. In the diet with no phytase, Ca and aP were at 0.50% and 0.19%, respectively, and, in the diet with phytase, Ca and aP were each decreased by 0.12%. A catheter was surgically inserted into the anterior vena cava of each pig 6 d before the start of the feeding challenge. The barrows were penned individually, and the diets were fed for 3 d before the challenge. The pigs were held without feed for 16 h, and blood samples were obtained at -60, -30, and 0 min before the pigs were fed (2% of BW). Blood samples were then collected at 10, 20, 30, 40, 50, 60, 75, 90, 105, 120, 150, 180, 210, 240, 270, and 300 min after feeding. Glucose area under the response curve and plasma glucose, insulin, urea N, and total alpha-amino N concentrations were increased (P < 0.05) in pigs fed the diet with reduced Ca and P and the phytase addition. Area under the response curve for insulin, urea N, and total alpha-amino N; insulin:glucose; and plasma NEFA concentration, clearance, and half-life were not affected by diet. In conclusion, the combination of Ca and P reduction and phytase addition increased nutrient and energy digestibility in diets for pigs and increased plasma concentrations of glucose, insulin, urea N, and alpha-amino N.  相似文献   

14.
Two experiments were conducted to evaluate the efficacy of low doses of Aspergillus niger (AN) phytase for growing and finishing pigs fed corn-soybean meal (SBM) diets with narrow Ca:P ratios that were about 0.9 g/kg deficient in available P and Ca. Experiment 1 utilized 120 pigs with an early finisher period from 51.5 +/- 0.2 to 89.7 +/- 0.9 kg of BW and a late finisher period that ended at 122.5 +/- 2.0 kg of BW. During each period, treatments were the low-P diets with 0, 150, 300, or 450 units (U) of AN phytase added/kg of diet, and a positive control (PC) diet. There were linear increases (P < or = 0.001) in bone strength and ash weight, the absorption of P (g/d and %) and Ca (%), and overall ADG (P = 0.01) with increasing concentration of AN phytase. Pigs fed the diets with 150, 300, or 450 U of AN phytase/kg did not differ from pigs fed the PC diet in growth performance overall, and pigs fed the diets with 300 or 450 U of AN phytase did not differ in P and Ca absorption (g/d) or bone ash weight from pigs fed the PC diet. However, only pigs fed the diet with 450 U of AN phytase/kg had bone strength similar to that of pigs fed the PC diet. Experiment 2 utilized 120 pigs in a grower phase from 25.3 +/- 0.1 to 57.8 +/- 0.8 kg of BW and a finisher phase that ended at 107.6 +/- 1.0 kg of BW. Treatments were the low-P diet with AN phytase added at 300, 500, or 700 U/kg of grower diet, and 150, 250, or 350 U/kg of finisher diet, respectively, resulting in treatments AN300/150, AN500/250, and AN700/350. Growth performance and the absorption (g/d) of P and Ca for the grower and finisher phases were not different for pigs fed the diets containing AN phytase and pigs fed the PC diets. However, pigs fed the PC diets excreted more fecal P (g/d, P < or = 0.01) during the grower and more P and Ca (g/d, P < 0.001) during the finisher phases than the pigs fed the diets with phytase. There were linear increases (P < or = 0.05) in bone strength and bone ash weight with increasing concentration of AN phytase. However, pigs fed the PC diets had a greater bone strength and bone ash weight than pigs fed diets AN300/150, AN500/250 (P < or = 0.02), or AN700/350 (P < or = 0.08). There were no treatment responses for N or DM digestibility in either experiment. Phytase supplementation reduced fecal P excretion from 16 to 38% and fecal Ca excretion from 21 to 42% in these experiments. In conclusion, 450 U of AN phytase/kg was effective in replacing 0.9 g of the inorganic P/kg of corn-SBM diet for finishing swine based on bone strength, whereas 300 or 150 U of AN phytase/kg of diet maintained growth performance of grower or finisher pigs, respectively.  相似文献   

15.
One‐hundred and fifty male chickens were used to evaluate the effects of different activities (0, 250, 500, 12 500 FTU/kg) of phytase on their performance and antioxidant concentration in the liver. The chicks were housed in 30 cages and were allocated to six replicates of five dietary treatments. All diets were formulated to be adequate in energy and protein (12.90 MJ/kg metabolizable energy, 214 g/kg crude protein), however, the negative control (NC) was lower in available P compared with the positive control (PC) (2.5 vs. 4.5 g/kg diet). The other three diets were the NC supplemented with phytase at 250, 500 and 12 500 FTU/kg (NC + 250, NC + 500 and NC + 12 500 FTU respectively). The concentration of antioxidants in the liver of the birds was determined using HPLC at 21 days of age. Low P diets (NC) reduced weight gain, however, supplementation with phytase improved weight gain to the extent that it was better than the PC at the 12 500 FTU treatment (p < 0.05). Feed conversion ratio was also improved by the high level of phytase supplement more than other treatments (p < 0.05). Feed consumption was not affected either by dietary phosphorus concentration or by different phytase supplementation. The antioxidant data showed that the unsupplemented diet with low phosphorus (NC) decreased the concentration of coenzyme Q10 and retinol‐linoleate in the liver compared with that of birds on the adequate phosphorus treatment (PC). Phytase supplementation, especially at the higher doses (500 and 12 500 FTU) increased the level of coenzyme Q10 to the same level as the PC treatment. In addition, the highest dose (12 500 FTU) of phytase increased retinol concentration in the liver of chickens compared with those on the NC treatment. The highest inclusion level of phytase increased the α‐tocopherol level in the liver compared with the lower levels of phytase (NC + 250 and NC + 500 FTU).  相似文献   

16.
The efficacy of an Escherichia coli-derived phytase preparation   总被引:1,自引:0,他引:1  
Five experiments were conducted to evaluate the effect of an Escherichia coli-derived phytase on phytate-P use and growth performance by young pigs. The first experiment involved time course, pH dependence, and phytase activity studies to investigate the in vitro release of P from corn, soybean meal, and an inorganic P-unsupplemented corn-soybean meal negative control diet. In Exp. 2, which was designed to determine the efficacy of the E. coli-derived vs. fungal phytase-added diets at 0, 250, 500, 750, 1,000, or 1,250 FTU/kg (as-fed basis; one phytase unit or FTU is defined as the quantity of enzyme required to liberate 1 micromol of inorganic P/min, at pH 5.5, from an excess of 15 microM sodium phytate at 37 approximately C) and a positive control diet, eight individually penned 10-kg pigs per diet (12 diets, 96 pigs) were used in a 28-d growth study. The third experiment was a 10-d nutrient balance study involving six 13-kg pigs per diet (four diets, 24 pigs) in individual metabolism crates. In Exp. 4, eight pens (four pigs per pen) of 19-kg pigs per treatment were used in a 42-d growth performance study to examine the effect of adding the E. coli-derived phytase to corn-soybean diets at 0, 500, or 1,000 FTU/kg (as-fed basis) and a positive control (four diets, 128 pigs). In Exp. 5, six 19-kg pigs per treatment were used in a 10-d nutrient balance study to investigate the effects of the E. coli-derived phytase added to diets at 0, 250, 500, 750, or 1,000 FTU/kg (as-fed basis) and a positive control diet (six diets, 36 pigs). The in vitro study showed that the E. coli-derived phytase has an optimal activity and pH range of 2 to 4.5. Inorganic phosphate release was greatest for soybean meal, least for corn, and intermediate for the negative control diet. Dietary supplementation with graded amounts of E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain, feed efficiency, and plasma Ca and P concentrations in 10-kg pigs in Exp. 2. Phytase also increased P digestibility and retention in the 13-kg pigs in Exp. 3. In Exp. 4, dietary supplementation with E. coli-derived phytase resulted in linear increases (P < 0.05) in weight gain and feed efficiency of 19-kg pigs. Supplementation of the diets of 19-kg pigs with the E. coli-derived phytase also improved Ca and P digestibility and retention in Exp. 5. In the current study, the new E. coli-derived phytase was efficacious in hydrolyzing phytate-P, both in vitro and in vivo, in young pigs.  相似文献   

17.
The objective of this study was to determine the functional location and disappearance of activity of a supplemental Escherichia coli AppA2 phytase and its impact on digesta P and Ca concentrations in the gastrointestinal tract of pigs. In Exp. 1, 18 pigs (8.3 +/- 0.2 kg of BW) were allotted to 3 groups (n = 6 each) and fed a low-P (0.4%) corn-soybean meal, basal diet (BD), BD + phytase [500 units (U)/kg of feed], or BD + inorganic P (iP, 0.1%) for 4 wk. In Exp. 2, 30 pigs (14.5 +/- 0.2 kg of BW) were allotted to 3 groups (n = 10 each) and fed BD, BD + 500 U of phytase/kg of feed, or BD + 2,000 U of phytase/kg of feed for 2 wk. Five or six pigs from each treatment group were killed at the end of both experiments to assay for digesta phytase activity and soluble P concentration in 6 segments of the digestive tract and digesta total P and Ca concentrations in stomach and colon. Compared with pigs fed BD, pigs fed BD + 500 U of phytase/kg of feed in Exp. 1 and BD + 2,000 U of phytase/kg of feed in Exp. 2 had greater (P < 0.05) phytase activities in the digesta of the stomach and upper jejunum (2 m aborally from the duodenum). No phytase activity was detected in the digesta of the lower jejunum (2.12 m cranial to the ileocecal junction) or ileum from any of the treatment groups in either trial. Concentrations of digesta-soluble P peaked in the upper jejunum of pigs fed BD in Exp. 1 and 2, but showed gradual decreases between the stomach and the upper jejunum of pigs fed BD + phytase or BD + iP. In both experiments, pigs fed only BD had greater (P < 0.05) colonic digesta phytase activity and soluble P concentrations than those fed phytase. In Exp. 2, total colonic digesta P or Ca concentrations, or both, of pigs displayed a phytase-dose-dependent reduction (P < 0.05). In conclusion, supplemental dietary AppA2 mainly functioned in the stomach and was associated with a reduced phytase activity in colonic digesta of weanling pigs.  相似文献   

18.
The capacity of a novel consensus bacterial 6-phytase variant (PhyG) to entirely replace dietary inorganic phosphorus (Pi) source in grower pigs fed diets with reduction of calcium (Ca), net energy (NE), and digestible amino acids (AA) was evaluated, using growth performance and apparent total tract digestibility (ATTD) of nutrients as outcome measures. A total of 352 mixed-sex pigs (initial BW 23.4 kg) were randomized to 4 treatments, 8 pigs/pen, and 11 pens/treatment. Diets were corn-soybean meal-based and formulated by phase (grower 1, 25 to 50 and grower 2, 50 to 75 kg BW). The positive control diet (PC) provided adequate nutrients and a negative control diet (NC) was formulated without Pi (1.2 g/kg ATTD P) and reduced in Ca (-0.12 to -0.13 percentage points), NE (-32 kcal/kg), and digestible essential AA (-0.004 to -0.026 percentage points) vs. PC. Two further treatments comprised the NC plus 500 or 1,000 FTU/kg of PhyG. Data were analyzed by ANOVA, mean contrasts and orthogonal polynomial regression. Nutrient reductions in the NC reduced (P < 0.05) average daily gain (ADG) during grower 1 and overall (73 to 136 d of age), increased (P < 0.05) feed conversion ratio (FCR) during grower 1 and overall and tended to reduce (P < 0.1) average daily feed intake (ADFI) during grower 2 and overall, vs. PC. Phytase supplementation improved (P < 0.05) FCR during grower 1, ADG during grower 2 and overall, ATTD of DM and P, and tended to improve DE (P = 0.053) in a linear dose-dependent manner. PhyG at 1,000 FTU/kg resulted in growth performance (all measures, all phases) equivalent to PC. The findings demonstrate that PhyG at 1,000 FTU/kg totally replaced Pi in complex grower pig diets containing industrial co-products, compensated a full nutrient matrix reduction and maintained performance.  相似文献   

19.
Two experiments were completed to determine the potential for using distillers dried grains with solubles (DDGS) in diets with or without phytase to provide available P, energy, and protein to highly productive lactating sows without increasing their fecal P. In Exp. 1, the dietary treatments were as follows: (1) corn and soybean meal with 5% beet pulp (BP) or (2) corn and soybean meal with 15% DDGS (DDGS). Besides containing similar amounts of fiber, diets were isonitrogenous (21% CP, 1.2% Lys) and isophosphorus (0.8% P). Sixty-one sows were allotted to dietary treatments at approximately 110 d of gestation (when they were placed in farrowing crates) based on genetics, parity, and date of farrowing. Sows were gradually transitioned to their lactation diet. On d 2 of lactation, litters were cross-fostered to achieve 11 pigs/litter. Sows and litters were weighed on d 2 and 18. Fecal grab samples were collected on d 7, 14, and 18 of lactation. Dietary treatment did not affect the number of pigs weaned (10.9 vs. 10.8) or litter weaning weight. On d 14, DDGS sows had less fecal P concentration than BP sows (28.3 vs. 32.8 mg/g; P = 0.04). Fecal Ca of sows fed DDGS decreased for d 7, 14, and 18 (55.6, 51.4, and 47.1 mg/g of DM, respectively; P = 0.05) but not for BP sows. In Exp. 2, the dietary treatments were as follows: (1) corn and soybean meal (CON), (2) CON + 500 phytase units of Natuphos/kg diet, as fed (CON + PHY), (3) corn and soybean meal with 15% DDGS and no phytase (DDGS), or (4) DDGS + 500 FTU of Natuphos/kg of diet, as fed (DDGS + PHY). Sows (n = 87) were managed as described for Exp 1. Litter BW gain (46.0, 46.3, 42.1, and 42.2 kg; P = 0.25) and sow BW loss (8.1, 7.2, 7.4, and 6.3 kg for CON, CON + PHY, DDGS, and DDGS + PHY, respectively; P = 0.97) were not affected by dietary treatment. Fecal P concentration did not differ among dietary treatments but was reduced at d 14 and 18 compared with d 7 (P = 0.001). However, fecal phytate P concentration was decreased by the addition of DDGS when DDGS and DDGS + PHY were compared with the CON sows except on d 7 (P < 0.05). Sows fed CON diet had greater fecal phytate P than sows fed DDGS, and sows fed DDGS + PHY had less fecal phytate P than sows fed DDGS with no phytase (P = 0.001). Although these experiments were only carried out for 1 lactation, these results indicate that highly productive sows can sustain lactation performance with reduced fecal phytate P when fed DDGS and phytase in lactation diets.  相似文献   

20.
A 20-d experiment was conducted to test the hypothesis that phytase increases nutrient digestibility, bone ash, and growth performance of pigs fed diets containing 0.23%, 0.29%, or 0.35% phytate-bound P. Within each level of phytate, five diets were formulated to contain 0, 500, 1,000, 2,000, or 4,000 phytase units (FTU)/kg of a novel phytase (PhyG). Three reference diets were formulated by adding a commercial Buttiauxella phytase (PhyB) at 1,000 FTU/kg to diets containing 0.23%, 0.29%, or 0.35% phytate-bound P. A randomized complete block design with 144 individually housed pigs (12.70 ± 4.01 kg), 18 diets, and 8 replicate pigs per diet was used. Pigs were adapted to diets for 15 d followed by 4 d of fecal collection. Femurs were collected on the last day of the experiment. Results indicated that diets containing 0.35% phytate-bound P had reduced (P < 0.01) digestibility of Ca, P, Mg, and K compared with diets containing less phytate-bound P. Due to increased concentration of total P in diets with high phytate, apparent total tract digestible P and bone ash were increased by PhyG to a greater extent in diets with 0.29% or 0.35% phytate-bound P than in diets with 0.23% phytate-bound P (interaction, P < 0.05). At 1,000 FTU/kg, PhyG increased P digestibility and bone P more (P < 0.05) than PhyB. The PhyG increased (P < 0.01) pig growth performance, and pigs fed diets containing 0.35% or 0.29% phytate-bound P performed better (P < 0.01) than pigs fed the 0.23% phytate-bound P diets. In conclusion, the novel phytase (i.e., PhyG) is effective in increasing bone ash, mineral digestibility, and growth performance of pigs regardless of dietary phytate level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号