首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The statistical characteristics of the local magnetic field of Earth during paleosecular variation, excursions, and reversals are described on the basis of a database that gathers the cleaned mean direction and average remanent intensity of 2741 lava flows that have erupted over the last 20 million years. A model consisting of a normally distributed axial dipole component plus an independent isotropic set of vectors with a Maxwellian distribution that simulates secular variation fits the range of geomagnetic fluctuations, in terms of both direction and intensity. This result suggests that the magnitude of secular variation vectors is independent of the magnitude of Earth's axial dipole moment and that the amplitude of secular variation is unchanged during reversals.  相似文献   

2.
Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal.  相似文献   

3.
An Archean Geomagnetic Reversal in the Kaap Valley Pluton, South Africa   总被引:1,自引:0,他引:1  
The Kaap Valley pluton in South Africa is a tonalite intrusion associated with the Archean Barberton Greenstone Belt. Antipodal paleomagnetic directions determined from the central and marginal parts of the pluton record a geomagnetic reversal that occurred as the pluton cooled. The age of the reversal is constrained by an 40Ar/39Ar plateau age from hornblende at 3214 +/- 4 million years, making it the oldest known reversal. The data presented here suggest that Earth has had a reversing, perhaps dipolar, magnetic field since at least 3.2 billion years ago.  相似文献   

4.
A study of Earth's fluid core oscillations induced by lunar-solar tidal forces, together with tidal secular deceleration of Earth's axial rotation, shows that the rotational eigenfrequency of the fluid core and some solar tidal waves were in resonance around 3.0 x 10(9), 1.8 x 10(9), and 3 x 10(8) years ago. The associated viscomagnetic frictional power at the core boundaries may be converted into heat and would destabilize the D" thermal layer, leading to the generation of deep-mantle plumes, and would also increase the temperature at the fluid core boundaries, perturbing the core dynamo process. Such phenomena could account for large-scale episodes of continental crust formation, the generation of flood basalts, and abrupt changes in geomagnetic reversal frequency.  相似文献   

5.
Hoffman KA 《Science (New York, N.Y.)》1977,196(4296):1329-1332
The Parker-Levy approach to reversals of the geomagnetic field predicts meridional transitional paths of the virtual geomagnetic pole (VGP) which pass either through the site of observation or through its antipode, depending upon the site location and the sense of the polarity transition. Comparison with the most detailed transitional VGP path records presently available gives some indication of the above behavior as predicted by the Parker-Levy model. Discrepancies may be due to complexities in the distribution of cyclonic convection cells in the core not considered in the formal mathematical treatment. The predicted variation in transitional field intensity experienced at any given site also is compatible with several reported transition records.  相似文献   

6.
Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength.  相似文献   

7.
A deep-towed magnetometer profile made across the East Pacific Rise crest shows many anomalies with about 1000-gamma amplitudes and 500-meter wavelengths and has larger amplitude changes corresponding to magnetic field reversals. This profile across contacts between normal and reversely magnetized crustal blocks is interpreted to place an upper limit of 4700 years on the time required for field reversals and an upper limit of 280 meters on the width of the intrusion center at the rise crest. This intrusion center may occasionally shift several kilometers laterally with respect to the rise axis. The magnetometer records are compatible with the hypothesis that the magnetic field has undergone many fluctuations of short period and small intensity in the past 2 million years. Sediment accumulation increases from less than 2 meters at the rise crest axis to about 20 meters at the western end and 10 meters at the eastern end of the profile. This increase in accutmiulation appears to be the result of ocean-floor spreading.  相似文献   

8.
Late-Paleozoic red beds in the western United States indicate that Earth's magnetic field was reversed for a period of the order of 50 x 10(6) years. This finding agrees with similar results from igneous rocks in Australia, indicating, that the long period of reversal in the magnetic field was worldwide. The rocks on the two continents appear to be essentially equivalent in time, suggesting early magnetization of the red beds. The time spectrum of reversals is irregular in geologic time, but present evidence suggests reversals characterized by time scales of 10(4) or 10(5), 10(6), and 50 x 10(6) years. The 50 x 10(6) year period of steady reversed field is found in the late Paleozoic and is termed the Kiaman magnetic interval.  相似文献   

9.
Doell RR  Cox A 《Science (New York, N.Y.)》1971,171(3968):248-254
We have considered several different types of records of long-period geomagnetic secular variation: direct measurements made in geomagnetic observatories; paleomagnetic measurements on Hawaiian lava flows with accurately known ages in the interval 0 to 200 years; paleomagentic measurements on Hawaiian lava flows with loosely determined ages within the interval 200 to 10,000 years ago; and worldwide paleomagnetic measurements of the average geomagnetic angular dispersion recorded in lava flows that formed during the past 0.7 million years. All these magnetic records indicate that, during this time, the nondipole component of the earth's field was lower in the central Pacific than elsewhere, as it is today. This, in turn, indicates that there is some type of inhomogeneity in the lower mantle which is coupled to the earth's core in such a way as to suppress the generation of the nondipole field beneath the central Pacific. With the present incomplete state of knowledge about the processes that give rise to the earth's field, it is uncertain whether undulations in the core-mantle interface or lateral variations in the composition and physical state of the lower mantle are ultimately responsible for the pattern of secular variation seen at the earth's surface.  相似文献   

10.
Recent analyses of long time scale secular variations of sea level, based on tide gauge observations, have established that sea level is apparently rising at a globally averaged rate somewhat in excess of 1 millimeter per year. It has been suggested that the nonsteric component of this secular rate might be explicable in terms of ongoing mass loss from the small ice sheets and glaciers of the world. Satellite laser ranging and very long baseline interferometry data may be used to deliver strong constraints on this important scenario because of the information that these systems provide on variations of the length of day and of the position of the rotation pole with respect to the earth's surface geography. These data demonstrate that the hypothesis of mass loss is plausible if the Barents Sea was covered by a substantial ice sheet at the last maximum of the current ice age 18,000 years ago.  相似文献   

11.
Two independently dated, high-resolution paleomagnetic records, one lacustrine and one archeological, record the passage across western North America of the same nondipole feature of the geomagnetic field during the time interval from A.D. 750 to 1450. Although these sequences indicate that correlation between paleomagnetic and archeomagnetic records is feasible under certain conditions, differences between the records underscore the difficulty of dating accurately an archeological site by correlation of a single archeomagnetic direction with a secular variation curve.  相似文献   

12.
Spreading of the ocean floor: new evidence   总被引:3,自引:0,他引:3  
Vine FJ 《Science (New York, N.Y.)》1966,154(3755):1405-1415
It is suggested that the entire history of the ocean basins, in terms of oceanfloor spreading,is contained frozen in the oceanic crust. Variations in the intensity and polarity of Earth's magnetic field are considered to be recorded in the remanent magnetism of the igneous rocks as they solidified and cooled through the Curie temperature at the crest of an oceanic ridge, and subsequently spread away from it at a steady rate. The hypothesis is supported by the extreme linearity and continuity of oceanic magnetic anomalies and their symmetry about the axes of ridges. If the proposed reversal time scale for the last 4 million years is combined with the model, computed anomaly profiles show remarkably good agreement with those observed, and one can deduce rates of spreading for all active parts of the midoceanic ridge system for which magnetic profilesor surveys are available. The rates obtained are in exact agreement with those needed to account for continental drift. An exceptionally high rate of spreading (approximately 4.5 cm/year) in the South Pacific enables one to deduce by extrapolation considerable details of the reversal time scale back to 11.5 million years ago. Again, this scale can be applied to other parts of the ridge system. Thus one isled to the suggestion that the crest of the East Pacific Rise in the northeast Pacific has been overridden and modified by the westward drift of North America, with the production of the anomalous width and unique features of the American cordillera in the western United States. The oceanicmagnetic anomalies also indicate that there was a change in derection of crustal spreading in this region during Pliocene time from eastwest to southeast-northwest. A profile from the crest to the boundary of the East Pacific Rise, and the difference between axial-zone and flank anomalies over ridges, suggest increase in the frequency of reversal of Earth's magnetic field, together, possibly, with decrease in its intensity, approximately 25 million years ago. Within the framework of ocean-floor spreading, it is suggested that magnetic anomaliesmay indicate the nature of oceanic fracture zones and distinguish the parts of the ridge system that are actively spreading. Thus data derived during the past year lend remarkable support to thehypothesis that magnetic anomalies may reveal the history of the ocean basins.  相似文献   

13.
We demonstrate that a recent dike intrusion probably triggered a slow fault-slip event (SSE) on Kilauea volcano's mobile south flank. Our analysis combined models of Advanced Land Observing Satellite interferometric dike-intrusion displacement maps with continuous Global Positioning System (GPS) displacement vectors to show that deformation nearly identical to four previous SSEs at Kilauea occurred at far-field sites shortly after the intrusion. We model stress changes because of both secular deformation and the intrusion and find that both would increase the Coulomb failure stress on possible SSE slip surfaces by roughly the same amount. These results, in concert with the observation that none of the previous SSEs at Kilauea was directly preceded by intrusions but rather occurred during times of normal background deformation, suggest that both extrinsic (intrusion-triggering) and intrinsic (secular fault creep) fault processes can lead to SSEs.  相似文献   

14.
Magnetostratigraphic studies are widely used in conjunction with the geomagnetic polarity time scale (GPTS) to date events in the range 0 to 5 million years ago. A critical tie point on the GPTS is the potassium-argon age of the most recent (Brunhes-Matuyama) geomagnetic field reversal. Astronomical values for the forcing frequencies observed in the oxygen isotope record in Ocean Drilling Project site 677 suggest that the age of this last reversal is 780 ka (thousand years ago), whereas the potassium-argon-based estimate is 730 ka. Results from 4039; Ar incremental heating studies on a series of lavas from Maui that straddle the Brunhes-Matuyama reversal give an age of 783 + 11 ka, in agreement with the astronomically derived value. The astronomically based technique appears to be a viable tool for dating young sedimentary sequences.  相似文献   

15.
Analysis of the Mariner 9 radio-tracking data shows that the Martian gravity field is rougher than that of Earth or the moon, and that the accepted direction of Mars's rotation axis is in error by about 0.5 degrees . The new value for the pole direction for the epoch 1971.9, referred to the mean equatorial system of 1950.0, is right ascension alpha= 317.3 degrees +/- 0.3 degrees , declination delta = 52.6 degrees +/- 0.2 degrees . The values found for the coefficients of the low-order harmonics of Mars's gravity field are as follows: J(2)=(1.96+/-0.01)x10(-3), referred to an equatorial radius of 3394 kilometers; C(22) = -(5 +/- 1) x 10(-5); and S(22) = (3 +/- 1) x 10(-5). The value for J(2) is in excellent agreement with the result from, Wilkins' analysis of the observations of Phobos. The other two coefficients imply a value of (2.5 +/- 0.5) x 10(-4) for the fractional difference in the principal equatorial moments of inertia; the axis of the minimum moment passes near 105 degrees W.  相似文献   

16.
Paleomagnetic study of antarctic deep-sea cores   总被引:1,自引:0,他引:1  
The magnetic inclinations and inten sities of about 650 samples from seven deepsea cores taken in the Antarctic were measured on a spinner magnetometer. This series of measurements provided a magnetic stratigraphy, based on zones of normally or reversally polar ized specimens for each core, which was then correlated with the magnetic stra tigraphy of Cox et al. (1). One core (V16-134) gave a continuous record of the paleomagnetic field back to about 3.5 million years. When selected samples were subject ed to alternatingfield demagnetization, most were found to have an unstable component that was removed by fields of 150 oersteds; all samples from two cores were partially demagnetized in a field of 150 oersteds. The average inclination in these two cores was then in good agreement with the average inclination of the ambient field for the latitude of the core site. It was also found that the intensities of the samples decreased at the points of reversal; this finding is to be expected if, as has been postulated by the dynamo theory, the intensity of the dipole field decreases to zero and builds again with opposite polarity. We believe that the magnetiza tion of the cores results from the pres ence of detrital magnetite, although other magnetic minerals also may be present. Four faunal zones (, X, , and ) have been recognized in these Antarctic cores on the basis of upward sequential disappearance of Radiolaria. The faunal boundaries and reversals consistently have the same relations to one another, indicating that they are both timedependent phenomena. Using previously determined times of reversal, one may date the following events in the cores: 1) Radiolarian faunal boundaries:-X, 2 million years; X-, 0.7 million years; -, 0.4 to 0.5 million years. These dates are in good agreement with ages previously extrapolated from radio metric dates. 2) Initiation of Antarctic diatom ooze deposition, approximately 2.0 mil-lion years ago. 3) First occurrence of ice- rafted detritus, approximately 2.5 million years ago. One can also calculate rates of sedi mentation, which vary in the cores studied from 1.1 to about 8.0 millimeters per 1000 years. Sedimentation rates for the Indian Ocean cores are higher than for the Bellingshausen Sea cores. The near coincidence of faunal changes and reversals in the cores suggests but does not prove a causal relation. We conclude from this study that paleomagnetic stratigraphy is a unique method for correlating and dating deep sea cores, and that future work with such cores may provide a complete or nearly complete record of the history of the earth's magnetic field beyond 4 million years.  相似文献   

17.
Paleomagnetic measurements indicate that a core dynamo probably existed on the Moon 4.2 billion years ago. However, the subsequent history of the lunar core dynamo is unknown. Here we report paleomagnetic, petrologic, and (40)Ar/(39)Ar thermochronometry measurements on the 3.7-billion-year-old mare basalt sample 10020. This sample contains a high-coercivity magnetization acquired in a stable field of at least ~12 microteslas. These data extend the known lifetime of the lunar dynamo by 500 million years. Such a long-lived lunar dynamo probably required a power source other than thermochemical convection from secular cooling of the lunar interior. The inferred strong intensity of the lunar paleofield presents a challenge to current dynamo theory.  相似文献   

18.
针对水田株间除草装置伤苗率高、除草率低等问题,设计一种摆动型水田株间除草装置。阐述该装置的整体结构与工作原理,对其关键部件——偏心轮机构和除草弹齿进行理论分析与结构设计,结合弹齿往复开合运动与水稻种植农艺,分析除草弹齿运动过程与避苗系统工作机理。运用ADAMS软件,以机具前进速度和偏心轮转速为试验因素、覆盖率和入侵率为评价指标,采用2因素5水平二次回归正交旋转组合试验方法进行虚拟仿真试验。仿真结果表明:机具前进速度与偏心轮转速对覆盖率和入侵率有极显著(P<0.01)影响,机具前进速度为除草装置工作性能的主要影响因素,当机具前进速度为266.12 mm·s-1、偏心轮转速为3.97 r·s-1时,除草装置作业性能最优,覆盖率为85.70%,入侵率为5.62%。田间试验结果表明:当机具前进速度为270 mm·s-1、偏心轮转速为4 r·s-1时,除草装置的除草率为82.5%,伤苗率为5.1%,与仿真试验结果大体一致,所设计的除草装置能够满足水田株间除草农艺要求。  相似文献   

19.
森林空间数据的统计与仿真   总被引:5,自引:0,他引:5  
该文介绍一种简单有效的森林空间数据的仿真方法.假设森林中树高为正态分布,单株林木的高度与邻近木相关,与距离远的林木相关极小.利用一个协方差估计公式来描述这种相关性,并以一人工落叶松林样地为例,计算出估计公式中的特征参数a,在此基础上用CholeskyDecomposition方法建立树高空间分布的仿真模型,在与原样地相同的空间位置上产生出一组与样地数据无偏的虚拟树高数据.通过设定仿真程序的各种输入值,如平均值、方差、株距等,用此方法也可‘制造’出面积和分布各异的森林空间数据  相似文献   

20.
Geomagnetic Reversals during the Phanerozoic   总被引:1,自引:0,他引:1  
An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号