首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H2O-saturated solidus of a model mantle composition (Kilborne Hole peridotite nodule, KLB-1) was determined to be just above 1000°C from 5 to 11 gigapascals. Given reasonable H2O abundances in Earth's mantle, an H2O-rich fluid could exist only in a region defined by the wet solidus and thermal stability limits of hydrous minerals, at depths between 90 and 330 kilometers. The experimental partial melts monotonously became more mafic with increasing pressure from andesitic composition at 1 gigapascal to more mafic than the starting peridotite at 10 gigapascals. Because the chemistry of the experimental partial melts is similar to that of kimberlites, it is suggested that kimberlites may be derived by low-temperature melting of an H2O-rich mantle at depths of 150 to 300 kilometers.  相似文献   

2.
Simulation of subduction zone seismicity by dehydration of serpentine   总被引:1,自引:0,他引:1  
We measured acoustic emission energy during antigorite dehydration in a multianvil press from 1.5 to 8.5 gigapascals and 300 degrees to 900 degrees C. There was a strong acoustic emission signal on dehydration, and analysis of recovered samples revealed brittle deformation features associated with high pore-fluid pressures. These results demonstrate that intermediate depth (50 to 200 kilometers) seismicity can be generated by dehydration reactions in the subducting slab.  相似文献   

3.
The structure of liquid Na(2)Ge(2)O(5).H(2)O, a silicate melt analog, has been studied with Raman spectroscopy to pressures of 2.2 gigapascals. Upon compression, a peak near approximately 240 wavenumbers associated with octahedral GeO(6) groups grows relative to a peak near approximately 500 wavenumbers associated with tetrahedral GeO(4) groups. This change corresponds to an increase in octahedral germanium in the liquid from near 0% at ambient pressures to >50% at a pressure of 2.2 gigapascals. Silicate liquids plausibly undergo similar coordination changes at depth in the Earth. Such structural changes may generate decreases in the fusion slopes of silicates at high pressures as well as neutrally buoyant magmas within the transition zone of the Earth's mantle.  相似文献   

4.
The supposed low viscosity of serpentine may strongly influence subduction-zone dynamics at all time scales, but until now its role could not be quantified because measurements relevant to intermediate-depth settings were lacking. Deformation experiments on the serpentine antigorite at high pressures and temperatures (1 to 4 gigapascals, 200 degrees to 500 degrees C) showed that the viscosity of serpentine is much lower than that of the major mantle-forming minerals. Regardless of the temperature, low-viscosity serpentinized mantle at the slab surface can localize deformation, impede stress buildup, and limit the downdip propagation of large earthquakes at subduction zones. Antigorite enables viscous relaxation with characteristic times comparable to those of long-term postseismic deformations after large earthquakes and slow earthquakes. Antigorite viscosity is sufficiently low to make serpentinized faults in the oceanic lithosphere a site for subduction initiation.  相似文献   

5.
Rates of cation diffusion (magnesium, iron, and nickel) have been determined in olivine and its high-pressure polymorph, wadsleyite, at 9 to 15 gigapascals and 1100 degrees to 1400 degreesC for compositions that are relevant to Earth's mantle. Diffusion in olivine becomes strongly dependent on composition at high pressure. In wadsleyite, diffusion is one to two orders of magnitude faster than in olivine, depending on temperature. Homogenization of mantle heterogeneities (chemical mixing) and mineral transformations involving a magnesium-iron exchange will therefore occur considerably faster in the transition zone than at depths of less than 410 kilometers.  相似文献   

6.
Mineral properties in Earth's lower mantle are affected by iron electronic states, but representative pressures and temperatures have not yet been probed. Spin states of iron in lower-mantle ferropericlase have been measured up to 95 gigapascals and 2000 kelvin with x-ray emission in a laser-heated diamond cell. A gradual spin transition of iron occurs over a pressure-temperature range extending from about 1000 kilometers in depth and 1900 kelvin to 2200 kilometers and 2300 kelvin in the lower mantle. Because low-spin ferropericlase exhibits higher density and faster sound velocities relative to the high-spin ferropericlase, the observed increase in low-spin (Mg,Fe)O at mid-lower mantle conditions would manifest seismically as a lower-mantle spin transition zone characterized by a steeper-than-normal density gradient.  相似文献   

7.
Seismic evidence for deep-water transportation in the mantle   总被引:2,自引:0,他引:2  
We report seismic evidence for the transportation of water into the deep mantle in the subduction zone beneath northeastern Japan. Our data indicate that water is released from the hydrated oceanic crust at shallow depths (< approximately 100 kilometers) and then forms a channel of hydrated mantle material on top of the subducting plate that is the pathway for water into the deep mantle. Our result provides direct evidence that shows how water is transported from the ocean to the deep mantle in a cold subduction zone environment.  相似文献   

8.
Experiments show that diamond floats in a primitive mantle melt at around 20 gigapascals and 2360 degrees C and in a melt formed by partial melting of the transition zone at about 16 gigapascals and 2270 degrees C. These observations constrain magma densities at high pressure. Diamond precipitated or trapped in a silicate melt at the base of the transition zone or the lower mantle floats and has been accumulating in the transition zone since early in Earth's history. Thus, the transition zone could be a reservoir of diamond.  相似文献   

9.
The C-region of the upper mantle has two transition regions 75 to 90 kilometers thick. In western North America these start at depths of 365 kilometers and 620 kilometers and involve velocity increases of about 9 to 10 percent. The locations of these transition regions, their general shape, and their thicknesses are consistent with, first, the transformation of magnesium-rich olivine to a spinel structure and, then, a further collapse of a material having approximately the properties of the component oxides. The velocity increases associated with each transition region are slightly less than predicted for the appropriate phase change. This can be interpreted in terms of an increasing fayalite content with depth. The location of the transition regions and the seismic velocities in their vicinity supply new information regarding the composition and temperature of the upper mantle. The depths of the transition regions are consistent with temperatures near 1500 degrees C at 365 kilometers and 1900 degrees C at 620 kilometers.  相似文献   

10.
The independent elastic constants of an upper mantle mineral, San Carlos olivine [(Mg(1.8)Fe(0.2))SiO(4)], were measured from 0 to 12.5 gigapascals. Evidence is offered in support of the proposition that the explicit temperature dependence of the bulk modulus is small over the range of temperatures and pressures thought to prevail above the 400-kilometer discontinuity, and thus the data can be extrapolated to estimate the properties of olivine under mantle conditions at a depth of 400 kilometers. In the absence of high-temperature data at high pressures, estimates are made of the properties of olivine under mantle conditions to a depth of 400 kilometers. In contrast with low-pressure laboratory data, the predicted covariance of shear and compressional velocities as a function of temperature nearly matches the seismically estimated value for the lower mantle.  相似文献   

11.
A high-pressure phase of titanium dioxide (TiO(2)) with an alpha-PbO(2)-type structure has been identified in garnet of diamondiferous quartzofeldspathic rocks from the Saxonian Erzgebirge, Germany. Analytical electron microscopy indicates that this alpha-PbO(2)-type TiO(2) occurred as an epitaxial nanometer-thick slab between twinned rutile bicrystals. Given a V-shaped curve for the equilibrium phase boundary of alpha-PbO(2)-type TiO(2) to rutile, the stabilization pressure of alpha-PbO(2)-type TiO(2) should be 4 to 5 gigapascals at 900 degrees to 1000 degrees C. This suggests a burial of continental crustal rocks to depths of at least 130 kilometers. The alpha-PbO(2)-type TiO(2) may be a useful pressure and temperature indicator in the diamond stability field.  相似文献   

12.
The lower mantle of the Earth is believed to be largely composed of (Mg,Fe)O (magnesiowustite) and (Mg,Fe)SiO3 (perovskite). Radiative temperatures of single-crystal olivine [(Mg0.9,Fe0.1)2SiO4] decreased abruptly from 7040 +/- 315 to 4300 +/- 270 kelvin upon shock compression above 80 gigapascals. The data indicate that an upper bound to the solidus of the magnesiowustite and perovskite assemblage at 4300 +/- 270 kelvin is 130 +/- 3 gigapascals. These conditions correspond to those for partial melting at the base of the mantle, as has been suggested occurs within the ultralow-velocity zone beneath the central Pacific.  相似文献   

13.
Measurements of the electrical conductivity of silicate perovskite at 25 gigapascals and 1400 degrees to 1600 degreesC show that the conductivity of (Mg,Fe)SiO3 perovskite containing 2.89 weight percent Al2O3 is about 3.5 times greater than that of aluminum-free (Mg0.915Fe0.085)SiO3 perovskite. The conduction mechanism in perovskite between 1400 degrees and 1600 degreesC is most likely by polarons, because Mossbauer studies show that the aluminum-bearing perovskite has about 3.5 times the amount of Fe3+ as the aluminum-free sample. A conductivity-depth profile from 660 to 2900 kilometers based on aluminum-bearing perovskite is consistent with geophysical models.  相似文献   

14.
The stability of Mg(2)SiO(4), a major constituent in the Earth's mantle, has been investigated experimentally by in situ observation with synchrotron radiation. A cubic-type high-pressure apparatus equipped with sintered diamond anvils has been used over pressures of 11 to 15 gigapascals and temperatures of 800 degrees to 1600 degrees C. The phase stability of alpha-Mg(2)SiO(4) and beta-Mg(2)SiO(4) was determined by taking account of the kinetic behavior of transition. The phase boundary between alpha-Mg(2)SiO(4) and beta-Mg(2)SiO(4) is approximated by the linear expression P = (9.3 +/- 0.1) + (0.0036 +/- 0.0002)T where P is pressure in gigapascals and T is temperature in degrees Celsius.  相似文献   

15.
Protonated and deuterated ices (H2O and D2O) compressed to a maximum pressure of 210 gigapascals at 85 to 300 kelvin exhibit a phase transition at 60 gigapascals in H2O ice (70 gigapascals in D2O ice) on the basis of their infrared reflectance spectra determined with synchrotron radiation. The transition is characterized by soft-mode behavior of the nu3 O-H or O-D stretch below the transition, followed by a hardening (positive pressure shift) above it. This behavior is interpreted as the transformation of ice phase VII to a structure with symmetric hydrogen bonds. The spectroscopic features of the phase persisted to the maximum pressures (210 gigapascals) of the measurements, although changes in vibrational mode coupling were observed at 150 to 160 gigapascals.  相似文献   

16.
In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)SiO3-perovskite, the major component of the lower mantle, remained stable and did not decompose to its component oxides (Mg, Fe)O and SiO2. Perovskite was formed from these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. Both MgSiO3 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence measurements on chromium-doped samples synthesized at these conditions gave no indication of the presence of MgO.  相似文献   

17.
Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.  相似文献   

18.
Shim SH  Duffy TS  Shen G 《Science (New York, N.Y.)》2001,293(5539):2437-2440
Unexplained features have been observed seismically near the middle (approximately 1700-kilometer depth) and bottom of the Earth's lower mantle, and these could have important implications for the dynamics and evolution of the planet. (Mg,Fe)SiO3 perovskite is expected to be the dominant mineral in the deep mantle, but experimental results are discrepant regarding its stability and structure. Here we report in situ x-ray diffraction observations of (Mg,Fe)SiO3 perovskite at conditions (50 to 106 gigapascals, 1600 to 2400 kelvin) close to a mantle geotherm from three different starting materials, (Mg0.9Fe0.1)SiO enstatite, MgSiO3 glass, and an MgO+SiO2 mixture. Our results confirm the stability of (Mg,Fe)SiO3 perovskite to at least 2300-kilometer depth in the mantle. However, diffraction patterns above 83 gigapascals and 1700 kelvin (1900-kilometer depth) cannot presently rule out a possible transformation from Pbnm perovskite to one of three other possible perovskite structures with space group P2(1)/m, Pmmn, or P4(2)/nmc.  相似文献   

19.
Data from western United States short-period seismic networks reveal a conversion from an S to a P wave within a low seismic velocity layer (greater than or equal to the 4 percent velocity difference compared to the surrounding mantle) in the mid-lower mantle (1400 to 1600 kilometers deep) east of the Mariana and Izu-Bonin subduction zones. The low-velocity layer (about 8 kilometers thick) dips 30 degrees to 40 degrees southward and is at least 500 kilometers by 300 kilometers. Its steep dip, large velocity contrast, and sharpness imply a chemical rather than a thermal origin. Ancient oceanic crust subducted into the lower mantle is a plausible candidate for the low-velocity layer because of its broad thin extent.  相似文献   

20.
H Thybo  E Perchuc 《Science (New York, N.Y.)》1997,275(5306):1626-1629
Strong, scattered reflections beyond 8 degrees (8degrees) offset are characteristic features of all high-resolution seismic sections from the continents. The reflections identify a low-velocity zone below approximately 100 kilometers depth beneath generally stratified mantle. This zone may be caused by partial melting, globally initiated at equal depth in the continental mantle. Solid state is again attained at the Lehmann discontinuity in cold, stable areas, whereas the zone extends to near the 400-kilometer discontinuity in hot, tectonically active areas. Thus, the depth to the Lehmann discontinuity may be an indicator of the thermal state of the continental mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号