首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The El Ni?o-Southern Oscillation (ENSO) is the most potent source of interannual climate variability. Uncertainty surrounding the impact of greenhouse warming on ENSO strength and frequency has stimulated efforts to develop a better understanding of the sensitivity of ENSO to climate change. Here we use annually banded corals from Papua New Guinea to show that ENSO has existed for the past 130,000 years, operating even during "glacial" times of substantially reduced regional and global temperature and changed solar forcing. However, we also find that during the 20th century ENSO has been strong compared with ENSO of previous cool (glacial) and warm (interglacial) times. The observed pattern of change in amplitude may be due to the combined effects of ENSO dampening during cool glacial conditions and ENSO forcing by precessional orbital variations.  相似文献   

2.
Analysis of a monthly 18-year cholera time series from Bangladesh shows that the temporal variability of cholera exhibits an interannual component at the dominant frequency of El Ni?o-Southern Oscillation (ENSO). Results from nonlinear time series analysis support a role for both ENSO and previous disease levels in the dynamics of cholera. Cholera patterns are linked to the previously described changes in the atmospheric circulation of south Asia and, consistent with these changes, to regional temperature anomalies.  相似文献   

3.
Interannual rainfall variations in equatorial East Africa are tightly linked to the El Ni?o Southern Oscillation (ENSO), with more rain and flooding during El Ni?o and droughts in La Ni?a years, both having severe impacts on human habitation and food security. Here we report evidence from an annually laminated lake sediment record from southeastern Kenya for interannual to centennial-scale changes in ENSO-related rainfall variability during the last three millennia and for reductions in both the mean rate and the variability of rainfall in East Africa during the Last Glacial period. Climate model simulations support forward extrapolation from these lake sediment data that future warming will intensify the interannual variability of East Africa's rainfall.  相似文献   

4.
Cores of coral reef frameworks along an upwelling gradient in Panamá show that reef ecosystems in the tropical eastern Pacific collapsed for 2500 years, representing as much as 40% of their history, beginning about 4000 years ago. The principal cause of this millennial-scale hiatus in reef growth was increased variability of the El Ni?o-Southern Oscillation (ENSO) and its coupling with the Intertropical Convergence Zone. The hiatus was a Pacific-wide phenomenon with an underlying climatology similar to probable scenarios for the next century. Global climate change is probably driving eastern Pacific reefs toward another regional collapse.  相似文献   

5.
We present a high-resolution magnesium/calcium proxy record of Holocene sea surface temperature (SST) from off the west coast of Baja California Sur, Mexico, a region where interannual SST variability is dominated today by the influence of the El Ni?o-Southern Oscillation (ENSO). Temperatures were lowest during the early to middle Holocene, consistent with documented eastern equatorial Pacific cooling and numerical model simulations of orbital forcing into a La Ni?a-like state at that time. The early Holocene SSTs were also characterized by millennial-scale fluctuations that correlate with cosmogenic nuclide proxies of solar variability, with inferred solar minima corresponding to El Ni?o-like (warm) conditions, in apparent agreement with the theoretical "ocean dynamical thermostat" response of ENSO to exogenous radiative forcing.  相似文献   

6.
A 194-year annual record of skeletal delta(18)O from a coral growing at Malindi, Kenya, preserves a history of sea surface temperature (SST) change that is coherent with instrumental and proxy records of tropical Pacific climate variability over interannual to decadal periods. This variability is superimposed on a warming of as much as 1.3 degrees C since the early 1800s. These results suggest that the tropical Pacific imparts substantial decadal climate variability to the western Indian Ocean and, by implication, may force decadal variability in other regions with strong El Nino-Southern Oscillation teleconnections.  相似文献   

7.
The evolution of climate over the last millennium   总被引:9,自引:0,他引:9  
Knowledge of past climate variability is crucial for understanding and modeling current and future climate trends. This article reviews present knowledge of changes in temperatures and two major circulation features-El Ni?o-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO)-over much of the last 1000 years, mainly on the basis of high-resolution paleoclimate records. Average temperatures during the last three decades were likely the warmest of the last millennium, about 0.2 degrees C warmer than during warm periods in the 11th and 12th centuries. The 20th century experienced the strongest warming trend of the millennium (about 0.6 degrees C per century). Some recent changes in ENSO may have been unique since 1800, whereas the recent trend to more positive NAO values may have occurred several times since 1500. Uncertainties will only be reduced through more extensive spatial sampling of diverse proxy climatic records.  相似文献   

8.
Eocene El Niño: evidence for robust tropical dynamics in the "hothouse"   总被引:2,自引:0,他引:2  
Much uncertainty surrounds the interactions between the El Ni?o-Southern Oscillation (ENSO) and long-term global change. Past periods of extreme global warmth, exemplified by the Eocene (55 to 35 million years ago), provide a good testing ground for theories for this interaction. Here, we compare Eocene coupled climate model simulations with annually resolved variability records preserved in lake sediments. The simulations show Pacific deep-ocean and high-latitude surface warming of approximately 10 degrees C but little change in the tropical thermocline structure, atmosphere-ocean dynamics, and ENSO, in agreement with proxies. This result contrasts with theories linking past and future "hothouse" climates with a shift toward a permanent El Ni?o-like state.  相似文献   

9.
ENSO as an integrating concept in earth science   总被引:1,自引:0,他引:1  
The El Ni?o-Southern Oscillation (ENSO) cycle of alternating warm El Ni?o and cold La Ni?a events is the dominant year-to-year climate signal on Earth. ENSO originates in the tropical Pacific through interactions between the ocean and the atmosphere, but its environmental and socioeconomic impacts are felt worldwide. Spurred on by the powerful 1997-1998 El Ni?o, efforts to understand the causes and consequences of ENSO have greatly expanded in the past few years. These efforts reveal the breadth of ENSO's influence on the Earth system and the potential to exploit its predictability for societal benefit. However, many intertwined issues regarding ENSO dynamics, impacts, forecasting, and applications remain unresolved. Research to address these issues will not only lead to progress across a broad range of scientific disciplines but also provide an opportunity to educate the public and policy makers about the importance of climate variability and change in the modern world.  相似文献   

10.
Biospheric primary production during an ENSO transition   总被引:3,自引:0,他引:3  
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides global monthly measurements of both oceanic phytoplankton chlorophyll biomass and light harvesting by land plants. These measurements allowed the comparison of simultaneous ocean and land net primary production (NPP) responses to a major El Ni?o to La Ni?a transition. Between September 1997 and August 2000, biospheric NPP varied by 6 petagrams of carbon per year (from 111 to 117 petagrams of carbon per year). Increases in ocean NPP were pronounced in tropical regions where El Ni?o-Southern Oscillation (ENSO) impacts on upwelling and nutrient availability were greatest. Globally, land NPP did not exhibit a clear ENSO response, although regional changes were substantial.  相似文献   

11.
A glacial varve chronology from New England spanning the 4000-year period from 17,500 to 13,500 calendar years before the present was analyzed for evidence of climate variability during the late Pleistocene. The chronology shows a distinct interannual (3 to 5 years) band of enhanced variability suggestive of El Nino-Southern Oscillation (ENSO) teleconnections into North America during the late Pleistocene, when the Laurentide ice sheet was near its maximum extent and climatic boundary conditions were different than those of today. This interannual variability largely disappears by the young end of the 4000-year chronology, with only the highest frequency components (roughly 3-year period) persisting. This record provides evidence of ENSO-like climate variability during near-peak glacial conditions.  相似文献   

12.
The effect of eurasian snow cover on global climate   总被引:7,自引:0,他引:7  
Numerical simulations with a global atmospheric circulation model suggest that largescale variations in the amount of snowfall over Eurasia in the springtime are linked to the subsequent strength of the Asian summer monsoon. Large-scale changes in Eurasian snow cover are coupled to larger scale changes in the global climate system. There is a large, strong teleconnection to the atmospheric field over North America. The model results also show snow cover effects to subsequently alter other climatic fields known to be intimately associated with the El Ni?o-Southern Oscillation (ENSO) phenomenon. Thus the model results seem to challenge the current dogma that the ENSO phenomenon is solely the result of close coupling between the atmosphere and ocean by suggesting that processes over continental land masses may also have to be considered.  相似文献   

13.
Snow accumulation measured during 1982-1983 on the Quelccaya ice cap, Peru, was 70 percent of the average from 1975 through 1983. Inspection of 19 years (1964 through 1983) of accumulation measured near the summit of Quelccaya reveals a substantial decrease ( approximately 30 percent) in association with the last five El Ni?o-Southern Oscillation (ENSO) occurrences in the equatorial Pacific. The ENSO phenomenon is now recognized as a global event arising from large-scale interactions between the ocean and the atmosphere. Understanding this extreme event, with the goal of prediction, requires a record of past occurrences. The Quelccaya ice cap, which contains 1500 years of annually accumulated ice layers, may provide a long and detailed record of the most extreme ENSO events.  相似文献   

14.
Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Ni?o Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.  相似文献   

15.
Chao BF 《Science (New York, N.Y.)》1989,243(4893):923-925
Two prominent interannual atmospheric fluctuations, the El Ni?o-Southern Oscillation in the troposphere-ocean system and the Quasi-Biennial Oscillation in the equatorial stratosphere, account for most of the observed interannual length-of-day (LOD) variation from 1964 through 1987, with a relative contribution of about 2 to 1. Thus the atmosphere-LOD connection extends from seasonal and shorter periods to interannual periods up to about 10 years.  相似文献   

16.
We present a 271-year record of Sr/Ca variability in a coral from Rarotonga in the South Pacific gyre. Calibration with monthly sea surface temperature (SST) from satellite and ship measurements made in a grid measuring 1 degrees by 1 degrees over the period from 1981 to 1997 indicates that this Sr/Ca record is an excellent proxy for SST. Comparison with SST from ship measurements made since 1950 in a grid measuring 5 degrees by 5 degrees also shows that the Sr/Ca data accurately record decadal changes in SST. The entire Sr/Ca record back to 1726 shows a distinct pattern of decadal variability, with repeated decadal and interdecadal SST regime shifts greater than 0. 75 degrees C. Comparison with decadal climate variability in the North Pacific, as represented by the Pacific Decadal Oscillation index (1900-1997), indicates that several of the largest decadal-scale SST variations at Rarotonga are coherent with SST regime shifts in the North Pacific. This hemispheric symmetry suggests that tropical forcing may be an important factor in at least some of the decadal variability observed in the Pacific Ocean.  相似文献   

17.
Super ENSO and global climate oscillations at millennial time scales   总被引:1,自引:0,他引:1  
The late Pleistocene history of seawater temperature and salinity variability in the western tropical Pacific warm pool is reconstructed from oxygen isotope (delta18O) and magnesium/calcium composition of planktonic foraminifera. Differentiating the calcite delta18O record into components of temperature and local water delta18O reveals a dominant salinity signal that varied in accord with Dansgaard/Oeschger cycles over Greenland. Salinities were higher at times of high-latitude cooling and were lower during interstadials. The pattern and magnitude of the salinity variations imply shifts in the tropical Pacific ocean/atmosphere system analogous to modern El Ni?o-Southern Oscillation (ENSO). El Ni?o conditions correlate with stadials at high latitudes, whereas La Ni?a conditions correlate with interstadials. Millennial-scale shifts in atmospheric convection away from the western tropical Pacific may explain many paleo-observations, including lower atmospheric CO2, N2O, and CH4 during stadials and patterns of extratropical ocean variability that have tropical source functions that are negatively correlated with El Ni?o.  相似文献   

18.
The role of El Ni?o-Southern Oscillation (ENSO) in greenhouse warming and climate change remains controversial. During the warmth of the early-mid Pliocene, we find evidence for enhanced thermocline tilt and cold upwelling in the equatorial Pacific, consistent with the prevalence of a La Ni?a-like state, rather than the proposed persistent warm El Ni?o-like conditions. Our Pliocene paleothermometer supports the idea of a dynamic "ocean thermostat" in which heating of the tropical Pacific leads to a cooling of the east equatorial Pacific and a La Ni?a-like state, analogous to observations of a transient increasing east-west sea surface temperature gradient in the 20th-century tropical Pacific.  相似文献   

19.
The breeding chronology and reproductive attempts of the seabird community on Christmas Island in the central Pacific Ocean (2 degrees N, 157 degrees W) were interrupted by the 1982-1983 El Ni?o Southern Oscillation. The resultant reproductive failure and disappearance of the entire seabird community of this equatorial atoll represents the most dramatic interruption on record of a seabird community located distant from coastal upwelling. Our data indicate the effect that the abiotic and biotic aspects of a global atmospheric-oceanic anomaly have on marine birds. The 1982-1983 El Ni?o Southern Oscillation provides an example of selective pressures and a natural experiment in the study of vertebrate population dynamics.  相似文献   

20.
The El Ni?o-Southern Oscillation (ENSO) cycle is modeled as a low-order chaotic process driven by the seasonal cycle. A simple model suggests that the equatorial Pacific ocean-atmosphere oscillator can go into nonlinear resonance with the seasonal cycle and that with strong enough coupling between the ocean and the atmosphere, the system may become chaotic as a result of irregular jumping of the ocean-atmosphere system among different nonlinear resonances. An analysis of a time series from an ENSO prediction model is consistent with the low-order chaos mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号