首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 kilometers within Triton's equatorial region. The largest of these features contains a central, irregularly shaped area of comparatively low albedo about 380 kilometers in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha > 90 degrees ) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 degrees ) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.  相似文献   

2.
The Voyager photopolarimeter successfully accomplished its objectives for the Neptune encounter, performing measurements on the planet, several of its satellites, and its ring system. A photometric map of Neptune at 0.26 micrometer (microm) shows the planet to be bland, with no obvious contrast features. No polar haze was observed. At 0.75 microm, contrast features are observed, with the Great Dark Spot appearing as a low-albedo region and the bright companion as being substantially brighter than its surroundings, implying it to be at a higher altitude than the Great Dark Spot. Triton's linear phase coefficients of 0.011 magnitudes per degree at 0.26 microm and 0.013 magnitudes per degree at 0.75 microm are consistent with a solid-surface object possessing high reflectivity. Preliminary geometric albedos for Triton, Nereid, and 1989N2 were obtained at 0.26 and 0.75 microm. Triton's rotational phase curve shows evidence of two major compositional units on its surface. A single stellar occultation of the Neptune ring system elucidated an internal structure in 1989N1R, in the approximately 50-kilometer region of modest optical depth. 1989N2R may have been detected. The deficiency of material in the Neptune ring system, when compared to Uranus', may imply the lack of a "recent" moon-shattering event.  相似文献   

3.
During the passage of Voyager 2 through the Saturn system, infrared spectral and radiometric data were obtained for Saturn, Titan, Enceladus, Tethys, Iapetus, and the rings. Combined Voyager 1 and Voyager 2 observations of temperatures in the upper troposphere of Saturn indicate a seasonal asymmetry between the northern and southern hemispheres, with superposed small-scale meridional gradients. Comparison of high spatial resolution data from the two hemispheres poleward of 60 degrees latitude suggests an approximate symmetry in the small-scale structure, consistent with the extension of a symmetric system of zonal jets into the polar regions. Longitudinal variations of 1 to 2 K are observed. Disk- averaged infrared spectra of Titan show little change over the 9-month interval between Voyager encounters. By combining Voyager 2 temperature measurements with ground-based geometric albedo determinations, phase integrals of 0.91 +/- 0.13 and 0.89 +/- 0.09 were derived for Tethys and Enceladus, respectively. The subsolar point temperature of dark material on Iapetus must exceed 110 K. Temperatures (and infrared optical depths) for the A and C rings and for the Cassini division are 69 +/- 1 K (0.40 +/- 0.05), 85 +/- 1 K (0.10 +/- 0.03), and 85 +/- 2 K (0.07 +/- 0.04), respectively.  相似文献   

4.
During a detailed examination of imaging data taken by the Voyager 1 spacecraft within 4.5 hours of its closest approach to Jupiter, a shadow-like image was observed on the bright disk of the planet in two consecutive wide-angle frames. Analysis of the motion of the image on the Jovian disk proved that it was not an atmospheric feature, showed that it could not have been a shadow of any satellite known at the time, and allowed prediction of its reappearance in other Voyager 1 frames. The satellite subsequently has been observed in transit in both Voyager 1 and Voyager 2 frames; its period is 16 hours 11 minutes 21.25 seconds +/- 0.5 second and its semimajor axis is 3.1054 Jupiter radii (Jupiter radius = 7.14 x 10(4) kilometers). The profile observed when the satellite is in transit is roughly circular with a diameter of 80 kilometers. It appears to have an albedo of approximately 0.05, similar to Amalthea's.  相似文献   

5.
Triton's polar caps are modeled as permanent nitrogen deposits hundreds of meters thick. Complex temperature variations on Triton's surface induce reversible transitions between the cubic and hexagonal phases of solid nitrogen, often with two coexisting propagating transition fronts. Subsurface temperature distributions are calculated using a two-dimensional thermal model with phase changes. The phase changes fracture the upper nitrogen layer, increasing its reflectivity and thus offering an explanation for the surprisingly high southern polar cap albedo (approximately 0.8) seen during the Voyager 2 flyby. The model has other implications for the phase transition phenomena on Triton, such as a plausible mechanism for the origin of geyser-like plume vent areas and a mechanism of energy transport toward them.  相似文献   

6.
During a detailed search of Voyager 1 frames for additional observations of the satellite 1979J1, two small dark spots were observed in transit in several consecutive wide-angle frames of the Jovian atmosphere. The size, spacing, and motion of these pairs of dark spots indicated that they were the images of 1979J1 and its shadow. Subsequent analysis of images spanning 6 days, however, proved that the satellite observed in these Voyager 1 frames would have been occulted by Jupiter at the times of the Voyager 2 images of 1979J1 and was, therefore, a new satellite. It was subsequently found in transit on Voyager 2 images within 13 degrees of the Voyager 1 prediction. Its period is 7 hours 4 minutes 30 seconds +/- 3 seconds, and its mean distance is 1.793 Jupiter radii (Jupiter radius = 71,400 kilometers). The observable profile appears to be roughly circular with a diameter of 40 kilometers, and the albedo is approximately 0.05, similar to Amalthea's.  相似文献   

7.
Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 percent of the insolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance. These additional energy inputs can raise Triton's surface temperature between approximately 0.5 and 1.5 K above that possible with absorbed sunlight alone, resulting in an increase of about a factor of approximately 1.5 to 2.5 in Triton's basal atmospheric pressure. If Triton's internal heat flow is concentrated in some areas, as is likely, local effects such as enhanced sublimation with subsequent modification of albedo could be quite large. Furthermore, indications of recent global albedo change on Triton suggest that Triton's surface temperature and pressure may not now be in steady state, further suggesting that atmospheric pressure on Triton was as much as ten times higher in the recent past.  相似文献   

8.
The infrared interferometer spectrometer (IRIS) on Voyager 2 recorded thermal emission spectra of Uranus between 200 and 400 cm(-1) and of Miranda and Ariel between 200 and 500 cm(-1) with a spectral resolution of 4.3 cm(-1). Reflected solar radiation was also measured with a single-channel radiometer sensitive in the visible and near infrared. By combining IRIS spectra with radio science results, a mole fraction for atmospheric helium of 0.15 +/- 0.05 (mass fraction, 0.26 +/- 0.08) is found. Vertical temperature profiles between 60 and 900 millibars were derived from average polar and equatorial spectra. Temperatures averaged over a layer between 400 to 900 millibars show nearly identical values at the poles and near the equator but are 1 or 2 degrees lower at mid-latitudes in both hemispheres. The cooler zone in the southern hemisphere appears darker in reflected sunlight than the adjacent areas. An upper limit for the effective temperature of Uranus is 59.4 kelvins. Temperatures of Miranda and Ariel at the subsolar point are 86 +/- 1 and 84 +/- 1 kelvins, respectively, implying Bond albedos of 0.24 +/- 0.06 and 0.31 +/- 0.06, respectively. Estimates of phase integrals suggest that these satellites have unusual surface microstructure.  相似文献   

9.
Speckle observations of Jupiter's satellite Io at a wavelength of 5 micrometers during July 1984 resolved the disk and showed emission from a hot spot in the Loki region. The hot spot contributed a flux approximately equal to 60 percent of that from the disk. Images reconstructed by means of the Knox-Thompson algorithm showed the spot moving across the disk as the satellite rotated. It was located at 301 degrees +/- 6 degrees west longitude, 10 degrees +/- 6 degrees north latitude, and had a radiance of (2.96 +/- 0.54) x 10(22) ergs sec(-1) cm(-1) sr(-1)/A where A is the area of the spot. For an assumed temperature of 400 K, the area of the source would be 11,400 square kilometers. An active "lava lake" similar to that seen by Voyager may be the source of the infrared emission.  相似文献   

10.
Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70 degrees to -27 degrees ), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20 degrees . Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 10(2) new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earth's moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Miranda's surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.  相似文献   

11.
Aeolian features on Triton that were imaged during the Voyager Mission have been grouped. The term "aeolian feature" is broadly defined as features produced by or blown by the wind, including surface and airborne materials. Observations of the latitudinal distributions of the features probably associated with current activity (known plumes, crescent streaks, fixed terminator clouds, and limb haze with overshoot) all occur from latitude -37 degrees to latitude -62 degrees . Likely indicators of previous activity (dark surface streaks) occur from latitude -5 degrees to -70 degrees , but are most abundant from -15 degrees to -45 degrees , generally north of currently active features. Those indicators which give information on wind direction and speed have been measured. Wind direction is a function of altitude. The predominant direction of the surface wind streaks is found to be between 40 degrees and 80 degrees measured clockwise from north. The average orientation of streaks in the northeast quadrant is 59 degrees . Winds at 1- to 3- kilometer altitude are eastward, while those at &8 kilometers blow west.  相似文献   

12.
Analysis of the preliminary results from the Voyager mission to the Neptune system has provided the scientific community with several methods by which the temperature of Neptune's satellite Triton may be determined. If the 37.5 K surface temperature reported by several Voyager investigations is correct, then the photometry reported by the imaging experiment on Voyager requires that Triton's surface have a remarkably low emissivity. Such a low emissivity is not required in order to explain the photometry from the photopolarimeter experiment on Voyager. A low emissivity would be inconsistent with Triton having a rough surface at the approximately 100-microm scale as might be expected given the active renewal processes which appear to dominate Triton's surface.  相似文献   

13.
Polar projections of 50 images of Saturn at 889 nanometers and 25 images at 718 nanometers taken by the Hubble Space Telescope in November 1990, as well as 3 images at each wavelength taken in June 1991, have been examined. Among them, 31 show the north polar spot, which is associated with Saturn's polar hexagon, in locations suitable for measurement. In each image, planetocentric coordinates of the polar spot were determined, and the movement of the spot with respect to Saturn's system III rotation rate was studied. During the period of observation, the polar spot had first a short-term westward movement and then a long-term eastward drift. The rate of the long-term drift was -0.060 +/- 0.008 degrees per day with respect to system III, approximately 50 percent greater than previously determined from Voyager. The original 1980 and 1981 Voyager data were combined with the new Hubble images to form an 11-year base line. The eastward drift over the longer period was -0.0569 degrees per day. The long-term drift could be due to uncertainty in the standard value of the internal rotation period, which is 810.7939 +/- 0.148 degrees per 24-hour day. The short-term movement in November 1990 has a rate that is greater in magnitude but opposite in sign and probably represents a real, transient motion of the spot relative to the internal rotation system.  相似文献   

14.
Voyager 2 photography has complemented that of Voyager I in revealing many additional characteristics of Saturn and its satellites and rings. Saturn's atmosphere contains persistent oval cloud features reminiscent of features on Jupiter. Smaller irregular features track out a pattern of zonal winds that is symmetric about Saturn's equator and appears to extend to great depth. Winds are predominantly eastward and reach 500 meters per second at the equator. Titan has several haze layers with significantly varying optical properties and a northern polar "collar" that is dark at short wavelengths. Several satellites have been photographed at substantially improved resolution. Enceladus' surface ranges from old, densely cratered terrain to relatively young, uncratered plains crossed by grooves and faults. Tethys has a crater 400 kilometers in diameter whose floor has domed to match Tethys' surface curvature and a deep trench that extends at least 270 degrees around Tethys' circumference. Hyperion is cratered and irregular in shape. Iapetus' bright, trailing hemisphere includes several dark-floored craters, and Phoebe has a very low albedo and rotates in the direction opposite to that of its orbital revolution with a period of 9 hours. Within Saturn's rings, the "birth" of a spoke has been observed, and surprising azimuthal and time variability is found in the ringlet structure of the outer B ring. These observations lead to speculations about Saturn's internal structure and about the collisional and thermal history of the rings and satellites.  相似文献   

15.
Magnetic field studies by Voyager 1 have confirmed and refined certain general features of the Saturnian magnetosphere and planetary magnetic field established by Pioneer 11 in 1979. The main field of Saturn is well represented by a dipole of moment 0.21 +/- 0.005 gauss-R(s)(3) (where 1 Saturn radius, R(s), is 60,330 kilometers), tilted 0.7 degrees +/- 0.35 degrees from the rotation axis and located within 0.02 R(s) of the center of the planet. The radius of the magnetopause at the subsolar point was observed to be 23 R(s) on the average, rather than 17 R(s). Voyager 1 discovered a magnetic tail of Saturn with a diameter of approximately 80 R(s). This tail extends away from the Sun and is similar to type II comet tails and the terrestrial and Jovian magnetic tails. Data from the very close flyby at Titan (located within the Saturnian magnetosphere) at a local time of 1330, showed an absence of any substantial intrinsic satellite magnetic field. However, the results did indicate a very well developed, induced magnetosphere with a bipolar magnetic tail. The upper limit to any possible internal satellite magnetic moment is 5 x 10(21) gauss-cubic centimeter, equivalent to a 30-nanotesla equatorial surface field.  相似文献   

16.
Several observations of Jupiter's atmosphere made by instruments on the New Horizons spacecraft have implications for the stability and dynamics of Jupiter's weather layer. Mesoscale waves, first seen by Voyager, have been observed at a spatial resolution of 11 to 45 kilometers. These waves have a 300-kilometer wavelength and phase velocities greater than the local zonal flow by 100 meters per second, much higher than predicted by models. Additionally, infrared spectral measurements over five successive Jupiter rotations at spatial resolutions of 200 to 140 kilometers have shown the development of transient ammonia ice clouds (lifetimes of 40 hours or less) in regions of strong atmospheric upwelling. Both of these phenomena serve as probes of atmospheric dynamics below the visible cloud tops.  相似文献   

17.
The quantity and physical state of methane and nitrogen in the atmosphere of Neptune's satellite Triton and on the surface are evaluated by means of new telescopic data and laboratory measurements of these volatiles. Methane ice is seen in some spectral regions, indicating that the atmosphere is sufficiently transparent to permit sunlight penetration to the surface. Some of the molecular nitrogen absorption occurs in the atmosphere, though some must occur in condensed nitrogen (liquid or solid) on Triton's surface, or in a thin cloud of condensed nitrogen. The Voyager spacecraft cameras should see the surface of Triton.  相似文献   

18.
During the passage of Voyager 1 through the Saturn system, the infrared instrument acquired spectral and radiometric data on Saturn, the rings, and Titan and other satellites. Infrared spectra of Saturn indicate the presence of H(2), CH(4), NH(3), PH(3), C(2)H(2), C(2)H(6), and possibly C(3)H(4) and C(3)H(8). A hydrogen mole fraction of 0.94 is inferred with an uncertainty of a few percent, implying a depletion of helium in the atmosphere of Saturn relative to that of Jupiter. The atmospheric thermal structure of Saturn shows hemisphere asymmetries that are consistent with a response to the seasonally varying insolation. Extensive small-scale latitudinal structure is also observed. On Titan, positive identifications of infrared spectral features are made for CH(4), C(2)H(2), C(2)H(4), C(2)H(6), and HCN; tentative identifications are made for C(3)H(4) and C(3)H(8). The infrared continuum opacity on Titan appears to be quite small between 500 and 600 cm(-1), implying that the solid surface is a major contributor to the observed emission over this spectral range; between 500 and 200 cm(-1) theopacity increases with decreasing wave number, attaining an optical thickness in excess of 2 at 200 cm(-1). Temperatures near the 1-millibar level are independent of longitude and local time but show a decrease of approximately 20 K between the equator and north pole, which suggests a seasonally dependent cyclostrophic zonal flow in the stratosphere of approximately 100 meters per second. Measurements of the C ring of Saturn yield a temperature of 85 +/- 1 K and an infrared optical depth of 0.09 +/- 0.01. Radiometer observations of sunlight transmitted through the ring system indicate an optical depth of 10(-1.3 +/-0.3) for the Cassini division. A phase integral of 1.02 +/- 0.06 is inferred for Rhea, which agrees with values for other icy bodies in the solar system. Rhea eclipse observations indicate the presence of surface materials with both high and low thermal inertias, the former most likely a blocky component and the latter a frost.  相似文献   

19.
As Voyager 1 flew through the Saturn system it returned photographs revealing many new and surprising characteristics of this complicated community of bodies. Saturn's atmosphere has numerous, low-contrast, discrete cloud features and a pattern of circulation significantly different from that of Jupiter. Titan is shrouded in a haze layer that varies in thickness and appearance. Among the icy satellites there is considerable variety in density, albedo, and surface morphology and substantial evidence for endogenic surface modification. Trends in density and crater characteristics are quite unlike those of the Galilean satellites. Small inner satellites, three of which were discovered in Voyager images, interact gravitationally with one another and with the ring particles in ways not observed elsewhere in the solar system. Saturn's broad A, B, and C rings contain hundreds of "ringlets," and in the densest portion of the B ring there are numerous nonaxisymmetric features. The narrow F ring has three components which, in at least one instance, are kinked and crisscrossed. Two rings are observed beyond the F ring, and material is seen between the C ring and the planet.  相似文献   

20.
The infrared interferometer spectrometer on Voyager 2 obtained thermal emission spectra of Neptune with a spectral resolution of 4.3 cm(-1). Measurements of reflected solar radiation were also obtained with a broadband radiometer sensitive in the visible and near infrared. Analysis of the strong C(2)H(2) emission feature at 729 cm(-1) suggests an acetylene mole fraction in the range between 9 x 10(-8) and 9 x 10(-7). Vertical temperature profiles were derived between 30 and 1000 millibars at 70 degrees and 42 degrees S and 30 degrees N. Temperature maps of the planet between 80 degrees S and 30 degrees N were obtained for two atmospheric layers, one in the lower stratosphere between 30 and 120 millibars and the other in the troposphere between 300 and 1000 millibars. Zonal mean temperatures obtained from these maps and from latitude scans indicate a relatively warm pole and equator with cooler mid-latitudes. This is qualitatively similar to the behavior found on Uranus even though the obliquities and internal heat fluxes of the two planets are markedly different. Comparison of winds derived from images with the vertical wind shear calculated from the temperature field indicates a general decay of wind speed with height, a phenomenon also observed on the other three giant planets. Strong, wavelike longitudinal thermal structure is found, some of which appears to be associated with the Great Dark Spot. An intense, localizd cold region is seen in the lower stratosphere, which does not appear to be correlated with any visible feature. A preliminary estimate of the effective temperature of the planet yields a value of 59.3 +/- 1.0 kelvins. Measurements of Triton provide an estimate of the daytime surface temperature of 38(+3)(-4) kelvins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号