首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new greenland deep ice core   总被引:1,自引:0,他引:1  
The polar ice sheets are rich sources of information on past atmospheric conditions, including paleoclimates. A new deep ice core has been drilled in south Greenland. Comparison of the oxygen isotopic profile with that from camp Century and with a deep-sea foraminifera record indicates that the new core reaches back to about 90,000 years before present in a continuous sequence. The details in the Wisconsin part of the ice core records seem to be climatically, significant, and the general trends reveal all of the relevant Emiliani stages recorded in deep-sea cores. The redated Camp Century record suggests a dramatic termination of the Eem/Sangamon interglacial.  相似文献   

2.
An ice core in south Greenland covering the period 1869 to 1984 was analyzed for oxygen isotopes and chloride, nitrate, and sulfate concentrations. The data show that the "excess" (nonsea-salt) sulfate concentration has tripled since approximately 1900 to 1910 and the nitrate concentration has doubled since approximately 1955. The increases may be attributable to the deposition of these chemical specis from air masses carrying North American and Eurasian anthropogenic emissions.  相似文献   

3.
4.
Geomagnetic field strength is expected to affect the production rate of cosmogenic isotopes such as beryllium-10, carbon-14, or chlorine-36. Chlorine-36 data from the Greenland Ice Core Project (GRIP) ice core agree well with a production rate calculation based on a paleomagnetic reconstruction for the past 100,000 years over both long- and short-term variations. A chlorine-36 peak at 38,000 years ago previously found in the beryllium-10 record from the Vostok ice core can be explained by a period of low geomagnetic field intensity.  相似文献   

5.
Evidence from ice at the bottom of ice cores from the Canadian Arctic Islands and Camp Century and Dye-3 in Greenland suggests that the Greenland ice sheet melted extensively or completely during the last interglacial period more than 100 ka (thousand years ago), in contrast to earlier interpretations. The presence of dirt particles in the basal ice has previously been thought to indicate that the base of the ice sheets had melted and that the evidence for the time of original growth of these ice masses had been destroyed. However, the particles most likely blew onto the ice when the dimensions of the ice caps and ice sheets were much smaller. Ice texture, gas content, and other evidence also suggest that the basal ice at each drill site is superimposed ice, a type of ice typical of the early growth stages of an ice cap or ice sheet. If the present-day ice masses began their growth during the last interglacial, the ice sheet from the earlier (Illinoian) glacial period must have competely or largely melted during the early part of the same interglacial period. If such melting did occur, the 6-meter higher-than-present sea level during the Sangamon cannot be attributed to disintegration of the West Antarctic ice sheet, as has been suggested.  相似文献   

6.
Zwally HJ 《Science (New York, N.Y.)》1989,246(4937):1589-1591
An observed 0.23 m/year thickening of the Greenland ice sheet indicates a 25% to 45% excess ice accumulation over the amount required to balance the outward ice flow. The implied global sea-level depletion is 0.2 to 0.4 mm/year, depending on whether the thickening is only recent (5 to 10 years) or longer term (< 100 years). If there is a similar imbalance in the northern 60% of the ice-sheet area, the depletion is 0.35 to 0.7 mm/year. Increasing ice thickness suggests that the precipitation is higher than the long-term average; higher precipitation may be a characteristic of warmer climates in polar regions.  相似文献   

7.
Measurements of ice-sheet elevation change by satellite altimetry show that the Greenland surface elevation south of 72 degrees north latitude is increasing. The vertical velocity of the surface is 0.20 +/- 0.06 meters per year from measured changes in surface elevations at 5906 intersections between Geosat paths in 1985 and Seasat in 1978, and 0.28 +/- 0.02 meters per year from 256,694 intersections of Geosat paths during a 548-day period of 1985 to 1986.  相似文献   

8.
Large, abrupt shifts in the (l8)O/(16)O ratio found in Greenland ice must reflect real features of the climate system variability. These isotopic shifts can be viewed as a result of air temperature fluctuations, but determination of the cause of the changes-the most crucial issue for future climate concerns-requires a detailed understanding of the controls on isotopes in precipitation. Results from general circulation model experiments suggest that the sources of Greenland precipitation varied with different climate states, allowing dynamic atmospheric mechanisms for influencing the ice core isotope shifts.  相似文献   

9.
Airborne radar images of part of the Greenland ice sheet reveal icy terrain whose radar properties are unique among radar-studied terrestrial surfaces but resemble those of Jupiter's icy Galilean satellites. The 5.6- and 24-centimeter-wavelength echoes from the Greenland percolation zone, like the 3.5- and 13-centimeter-wavelength echoes from the icy satellites, are extremely intense and have anomalous circular and linear polarization ratios. However, the detailed subsurface configurations of the Galilean satellite regoliths, where heterogeneities are the product of prolonged meteoroid bombardment, are unlikely to resemble that within the Greenland percolation zone, where heterogeneities are the product of seasonal melting and refreezing.  相似文献   

10.
Past temperatures directly from the greenland ice sheet   总被引:3,自引:0,他引:3  
A Monte Carlo inverse method has been used on the temperature profiles measured down through the Greenland Ice Core Project (GRIP) borehole, at the summit of the Greenland Ice Sheet, and the Dye 3 borehole 865 kilometers farther south. The result is a 50, 000-year-long temperature history at GRIP and a 7000-year history at Dye 3. The Last Glacial Maximum, the Climatic Optimum, the Medieval Warmth, the Little Ice Age, and a warm period at 1930 A.D. are resolved from the GRIP reconstruction with the amplitudes -23 kelvin, +2.5 kelvin, +1 kelvin, -1 kelvin, and +0.5 kelvin, respectively. The Dye 3 temperature is similar to the GRIP history but has an amplitude 1.5 times larger, indicating higher climatic variability there. The calculated terrestrial heat flow density from the GRIP inversion is 51.3 milliwatts per square meter.  相似文献   

11.
Activities of beryllium-10 and aluminum-26 dissolved in 200-year-old Greenland ice were found to be 18.4 (+ 8.4, - 4.8) x 10(-6) and 3.2 +/- 0.9 x 10(-7) disintegration per minute per liter, respectively. From these values and the precipitation rate (30 milliliters of water per square centimeter per year), the production rates of these isotopes are calculated to be 3.6 (+ 1.6, - 0.9) x 10(-2) and 1.7 +/- 0.5 x 10(-4) atom per second * square centimeter. These rates agree with the rates calculated for the production of these isotopes by cosmic rays in the atmosphere. Probably all the Al(26) in the ice is accounted for by such atmospheric production; however, an upper limit for the influx of cosmic dust bearing aluminum-26 is calculated at 3.2 x 10(5) tons per year for Earth. Only upper limits could be found for Al(26) and Be(10) in the undissolved particulate matter in the ice; their addition to the activities in the dissolved material leaves our conclusions unchanged.  相似文献   

12.
Seasat and Geosat satellite altimeter measurements for the Greenland ice sheet (south of 72 degreesN latitude) show that surface elevations above 2000 meters increased at an average rate of only 1. 5 +/- 0.5 centimeters per year from 1978 to 1988. In contrast, elevation changes varied regionally from -15 to +18 centimeters per year, seasonally by +/-15 centimeters, and interannually by +/-8 centimeters. The average growth rate is too small to determine if the Greenland ice sheet is undergoing a long-term change due to a warmer polar climate.  相似文献   

13.
Carefully selected ice core data from Greenland can be used to reconstruct an annual proxy North Atlantic oscillation (NAO) index. This index for the past 350 years indicates that the NAO is an intermittent climate oscillation with temporally active (coherent) and passive (incoherent) phases. No indication for a single, persistent, multiannual NAO frequency is found. In active phases, most of the energy is located in the frequency band with periods less than about 15 years. In addition, variability on time scales of 80 to 90 years has been observed since the mid-19th century.  相似文献   

14.
A hole was drilled through the Ross Ice Shelf 450 kilometers from the barrier. Scientific sampling through this hole revealed a sparse population of crustaceans, fish, and microbial biomass. The seabed consists of mid-Miocene glaciomarine mud. Geothermal heat flow is average. Oceanographic data indicate an active circulation and melting at the base of the ice.  相似文献   

15.
New data support the contention that the mercury content of Greenland glacial ices has not increased dramatically in recent years but rather is distributed nonhomogeneously through the ice sheet.  相似文献   

16.
Aircraft laser-altimeter surveys over southern Greenland in 1993 and 1998 show three areas of thickening by more than 10 centimeters per year in the southern part of the region and large areas of thinning, particularly in the east. Above 2000 meters elevation the ice sheet is in balance but thinning predominates at lower elevations, with rates exceeding 1 meter per year on east coast outlet glaciers. These high thinning rates occur at different latitudes and at elevations up to 1500 meters, which suggests that they are caused by increased rates of creep thinning rather than by excessive melting. Taken as a whole, the surveyed region is in negative balance.  相似文献   

17.
A concentration process occurring in the melt zone of the Greenland ice cap has produced the richest known deposit of cosmic dust on the surface of the earth. Extraterrestrial particles collected from this region are well preserved and are collectable in large quantities. The collected particles are generally identical to cosmic spheres found on the ocean floor, but a pure glass type was discovered that has not been seen in deep-sea samples. Iron-rich spheres are conspicuously rare in the collected material.  相似文献   

18.
The Quelccaya Ice Cap in the easternmost glaciated mountain chain of the Peruvian Andes has been studied in four recentfield seasons. Ice cores to a depth of 15 meters have been retrieved at the summit dome (elevation, 5650 meters) and two other locations and used for microparticle, isotope, and beta radioactivity measurements. A concurrent study of the present climate and the heat and mass budgets is being made to permit a paleoclimatic interpretation of deep core records. The results indicate the need for a revision of the isotope "thermometry" for application in the tropics. However, the seasonality of the beta radioactivity, microparticle content, and isotope ratios offers the prospect of a mass balance chronology. This is important in that precipitation is believed to be a more indicative paleoclimatic parameter than temperature in the tropics.  相似文献   

19.
20.
A correlation of time with depth has been evaluated for the Camp Century, Greenland, 1390 meter deep ice core. Oxygen isotopes in approximately 1600 samples throughout the core have been analyzed. Long-term variations in the isotopic composition of the ice reflect the climatic changes during the past nearly 100,000 years. Climatic oscillations with periods of 120, 940, and 13,000 years are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号